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Abstract

The rapid advancements in communication technologies have initiated transformative changes
across various sectors, significantly improving efficiency and quality of life. In the agricultural
domain, the growing global demand for food and the need to reduce farmers’ workload have
positioned the Internet of Things (IoT) as a critical enabler of smart farming solutions. However,
accurate prediction of variations in climate conditions, soil attributes, and ground characteristics
remains a major challenge in agricultural loT, with direct implications on crop yield if not effectively
addressed. This study proposes an intelligent predictive model for the deployment of loT sensors in
precision agriculture using deep learning techniques. A modified Lemurs optimization (MLO)
algorithm is used to predict environmental conditions accurately, enhancing the temperature-
humidity-agriculture-meteorology (THAM) index. loT sensor deployment is optimized using a deep
pulse-coupled neural network (DPC-NN) to determine the optimal number and positioning of
sensors, ensuring effective coverage of the target agricultural field while improving communication
efficiency. The production yield rate is estimated based on key attributes such as fertilizer regulation,
temperature quotient, and agronomic factors, optimized using the chaos distributed gravitational
search (CDGS) algorithm. Model performance is validated using test samples obtained from the
Meteorology Bureau via integrated sensor middleware. Experimental validation using real-world
data from the Bureau of Meteorology and Phenonet confirms the robustness. The proposed model
achieves yield prediction accuracy of 90.509% with temperature sensors and 90.831% with soil
sensors, improves monitoring efficiency to 96.699% in heterogeneous loT deployments, and
surpasses existing benchmark models with a maximum accuracy of 94.6%, RMSE of 0.27, and MAE
of 0.21. These results highlight the model’s potential to deliver scalable, real-time, and resource-
efficient solutions for next-generation precision agriculture.
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Introduction

It is expected that the world's population would continuously rise throughout the next thirty-five
years, accomplishing ten billion people (Devaraj et al., 2024). Since the 1980s, when it was initially
utilized, precision farming (Pokhrel and Choi, 2024). has transformed how farms work. It does this
with the help of instruments like remote detection, Geographic Information Systems (GIS), and
Global Positioning Systems (GPS). Artificial Intelligence (Al) and Internet of Things (loT) sensors work
together to makes precision farming (Saini et al., 2024). Also, precision farming has made crops
more predictable and more resistant to climate change by making them change less often, which is
the biggest economic benefit (Lin et al., 2023). In the previous 30 years, precision farming has
changed a lot. It used to be based on satellite pictures for strategic surveillance to help arrive at
choices at the regional level. Now, it leverages low-altitude data from spacecraft to keep an eye on
and regulate small field-scale operations (Anand et al., 2023). Using technology like ground loT
sensing, remote sensing, satellites, and UAVs (Singh SP et al., 2023), as well as incorporated data
and data mining, could change the way farming is done, making it more efficient, productive, and
long-lasting. Farmers can see their fields in real time and make smart choices about how to grow
their crops through submitting sensor data to a central hub over a wireless link (Li et al., 2023;
Pamuklu et al., 2023). Smart farming is good for the digital economy because it creates new markets,
is more open, and fixes problems (Martin et al., 2024). Smart farming employs Al and the Internet
of Things (loT) to make decisions based on data that help farms work better and get more done
(Vangala et al., 2022; Pamuklu et al., 2022; Chen et al., 2022). A lot of research has demonstrated
that the Internet of Things (loT) can keep a watch on things like the temperature, the moisture level
in the soil, and the growth of crops all the time. This gets rid of challenges that old-fashioned farming
techniques have to deal with (Jeribi et al., 2025). They can do this with affordable electronic devices
and technology for communication (Sayyad et al., 2024). loT has made it possible to build and
update accurate maps of noise, air quality, water pollution, radiation levels, and the weather in real
time (Akilan and Baalamurugan, 2024). In precision agriculture that employs the loT, machine
learning (ML) and deep learning (DL) are crucial methods for turning raw data from many sensors
into meaningful information. The primary objective of this work is to develop an intelligent
predictive model for loT sensor deployment in precision agriculture using DL techniques. The
following is a summary of this work's major contributions:

1. The modified Lemurs optimization (MLO) algorithm is used to predict environmental
conditions accurately, thereby enhancing the THAM index.

2. Optimization of loT sensor deployment using the deep pulse coupled neural network (DPC-
NN) to compute the optimal amount of devices required for comprehensive coverage of the
agricultural field, thereby improving communication efficiency.



3. Calculation of production vyield rates, incorporating factors such as fertilizer regulation,
temperature considerations, and agronomic variables. These factors are optimized using the
chaos distributed gravitational search (CDGS) algorithm.

4. Validation of the proposed model's performance using test samples obtained from the
Meteorology Bureau via the associated sensor middleware.

The remainder of this paper is organized as follows: a review of the existing literature on loT-based
precision agriculture using DL techniques; a section describing the proposed methodology,
including environmental condition prediction, optimal loT node deployment, and the optimization
of the production yield rate.

Related work

Several intelligent techniques have been proposed for enhancing loT-based precision agriculture.
While these studies offer significant insights, various limitations persist, which this research aims to
address. DL-based irrigation level prediction method using smart loT was proposed by employing
the AHC-ShuffleNetV2 model (Xu et al., 2024). The system uses sensor data and images to predict
irrigation levels. However, the model's performance may degrade with limited or noisy input data,
and it does not address long-term adaptability or generalizability under changing field conditions.
An intelligent nonlinear decision tree-based closed-loop control system was used to predict
dissolved oxygen levels using the M5 model tree, which achieved a correlation of 0.877 and MAE
of 0.963 (Singh M et al., 2023). While effective for this specific task, the model's adaptability across
diverse environmental parameters remains untested. An intelligent irrigation planning and
monitoring system utilizing loT and LoRa-based ML was developed, resulting in 46% water savings
and improved plant health (Lakshmi et al., 2023). The study, however, focuses more on energy
efficiency and less on predictive accuracy under dynamic weather patterns. A region-based
clustering algorithm (REAN) was proposed to enhance energy efficiency in agricultural loT networks
(Priyanka et al., 2023). Although the approach improves energy conservation, it lacks discussion on
data accuracy or real-time responsiveness. A cloud-integrated smart irrigation system was proposed
to connect small-scale farms and aggregate data centrally (Et-taibi et al., 2024). While it facilitates
scalability, the method not sufficiently addresses issues of sensor placement optimization or
communication latency.

Another study explored using weather prediction services in a real-world solar-powered test bed to
optimize irrigation during rainfall (Irwanto et al., 2024). The method is context-specific and lacks
generalizability to broader agricultural scenarios with diverse weather unpredictability. An energy-
efficient loT-based framework utilizing adaptive mud ring optimization (AMR) for cluster head (CH)
selection and energy-conserving K-means for cluster formation was introduced (Ara et al., 2024).
The model is effective in network longevity but does not address multi-modal data fusion or
predictive analytics. ML model combining improved quantum whale optimization and PCA (IQWO-
PCA) was developed to detect tomato diseases (Sowmiya and Krishnaveni, 2023). Deep neural
networks such as DenseNet121, AlexNet, ResNet50, and VGG16 were used for feature extraction.
However, this approach does not handle real-time processing challenges or integration with
irrigation systems. STSDaMaS was proposed to train a neural network for predicting optimal



harvesting and baling of forage legume crops (San Emeterio de la Parte et al., 2023). While it
enhances harvesting prediction, the model is not scalable for multi-crop or multi-environment
settings. A scalable loT architecture was used to remotely monitor and control tractor engines,
providing real-time location and status (Shrivastava et al., 2023). Though beneficial for equipment
monitoring, the model lacks a broader integration with environmental data and decision support for
farming activities.

The CYPA framework introduced loT-enabled precision agriculture using decision trees, causal
forests, and extra trees, achieving high accuracy (0.9814) (Talaat, 2023). However, the model does
not address data inconsistencies or variability in sensor inputs. The WSN performance was evaluated
using the 6LowPAN and RPL routing protocols for low-power and lossy networks (Atalla et al.,
2023). While communication efficiency is improved, the system’s capability for intelligent decision-
making and prediction is minimal. An loT-based fertilizer recommendation system was developed
using sensor-collected data, with machine learning used for timing and quantity prediction (Kollu et
al., 2023). Despite excellent accuracy (99.3%), the study lacks clarity on real-time adaptability and
robustness to diverse environmental changes. A decision tree-based system achieved 99.2%
accuracy for smart fertilizer scheduling (SFSS MLR), showing balanced precision and recall
(Abdullahi et al., 2024). However, high performance is dataset-dependent, and its generalizability
to varied crops and environments is uncertain. An agricultural intelligent decision-making system
evaluated the THAM index for node stipulation and the A(t,n) sensor selection method to assess soil
humidity and water quality (Mekala et al., 2024). Though sensor selection is optimized, the model
does not incorporate intelligent learning for adaptive decision-making.

Problem definition

Despite numerous advancements in loT-enabled precision agriculture, several critical challenges
remain unaddressed. As discussed in Table 1, many existing models focus on specific tasks such as
irrigation prediction (Xu et al., 2024), disease detection (Sowmiya and Krishnaveni, 2023), or
fertilizer recommendation (Kollu et al., 2023), but lack a unified framework capable of handling
diverse agricultural parameters simultaneously. Studies like Sing M et al. (2024) and Priyanka et al.
(2023) highlight the effectiveness of decision tree-based and clustering models, yet fall short in
addressing real-time responsiveness and multimodal data integration. While techniques such as
transfer learning (Sowmiya and Krishnaveni, 2023) and adaptive optimization (Ara et al., 2024) have
been employed, they often suffer from high computational costs and limited scalability. Additionally,
inconsistencies in sensor data, suboptimal sensor placement, and communication inefficiencies
across large field networks continue to hinder system reliability and precision (Atalla et al., 2024;
Et-taibi et al., 2024). Furthermore, the economic and practical feasibility of deploying such
intelligent systems in real-world farm settings is often overlooked (Mekala and Viswanathan, 2020;
Abdullahi et al., 2024). These gaps underscore the need for a scalable, cost-effective, and intelligent
predictive model that ensures accurate, real-time, and robust decision-making across heterogeneous
agricultural environments.



Materials and Methods

Figure 1 illustrates the conceptual structure of the proposed intelligent smart predictive model
designed for loT-based precision agriculture. The model focuses on three main components:
optimizing the THAM index for effective environmental condition assessment, deploying loT sensor
nodes in optimal positions to ensure maximum field reliable communication, and estimating
production yield by analyzing various influencing parameters. This approach divides the agricultural
field into zones for zone-specific monitoring and decision-making. Based on their sensing range,
sensors are placed to monitor the entire field. This approach considers soil qualities including pH,
humidity, temperature, and electricity conductivity, as well as external variables like CO, CO,, NH;,
and nitrous acid levels. These elements are crucial for agricultural and environmental health. The
system helps people make educated choices. Data fusion removes noise and duplicates from
incoming data. The system then compares collected data to pre-set threshold values to detect
abnormal or critical conditions. After that, statistical categorization classifies situations into alert
levels. Finally, real-time SMS or email alerts inform producers or end users of decisions. This
methodical approach ensures fast, accurate, and valuable findings, which enhances output and
promotes sustainable farming.

Setting up sensors and collecting data

To mimic loT-based precision agriculture, real-time meteorological data and publicly available
datasets were collected. We obtained sensor data from reliable sources like the Bureau of
Meteorology (Australia), the Linked Sensor Middleware (LSM) platform, and the Phenonet project,
which provides free environmental and phenotyping data. A fake network of 36 sensor nodes
depicting various plants or trees was established in agricultural areas ranging from 25x25 m? to
100x100 m2. Each node had sensors that assessed soil, ambient, and gas parameters crucial for crop
growth and field monitoring. Table 2 shows the set of data and sensor setup. We selected sensors
based on soil pH, humidity, temperature, gas focused attention, and electrical conductivity. These
parameters affect irrigation planning, disease risk prediction, and output prediction. Data was
wirelessly transferred to a Sensor Cloud System for preprocessing, feature extraction, and decision-
making. A complete listing of dataset attributes and sensors used in this study is below.

Handling and processing data

A combination of hardware and software architecture managed and analyzed sensor data. Main
data collection, preprocessing, fusion, standardization, and first analytical filtering were done in
MATLAB R2015. Linked Sensor Middleware (LSM) and storage via the cloud were utilized to collect
and handle loT sensor data streams, comprising humidity, temperature, pH, CO,, and ammonia
levels. Network modeling and deployment optimization were done with a unique tool. This program
modeled node deployment in different-sized fields. The obtained data was preprocessed to remove
noise, fill values that were missing, and smooth it. The cleansed data were then processed through
the proposed intelligent decision-making system, which includes combining information, threshold-
based categorization, analytical condition assessment, and stakeholder alarm broadcast. This
combined software framework ensured accurate and current precision farming decision assistance.



Predicting the state of the environment

loT-based precision farming uses the Modified Lemurs Optimization (MLO) method to predict
weather. Standard Lemurs algorithm for optimization is improved by this algorithm. It follows how
lemurs forage and adapt in complex settings. These features help optimize farming systems affected
by environmental changes. The MLO algorithm is crucial for real-time prediction of meteorological
components such as soil water content, temperature, transpiration, CO, levels, and rainfall in our
case study. Incorporating data from nodes of sensors across grid regions, the MLO method offers
adaptive prediction that accounts for environmental changes in particular fields. These projections
impact crucial farming decisions. For instance:

e lIrrigation scheduling can be adjusted to avoid overwatering or drought stress.
e Fertilization timing is optimized based on soil nutrient predictions.
e Pest control measures are aligned with predicted humidity and temperature thresholds.

This predictive capability minimizes waste, conserves water, and increases crop yield. Our
implementation of the MLO algorithm treats inputs from sensors as an aggregate matrix, with each
individual representing a potential agricultural grid environmental condition. Iterative optimization
finds the ideal environment scenario, permitting the decision assistance system to start proactive
farming. MLO is strongly coupled with field data to create a sophisticated layer in smart agriculture,
integrating conceptual improvement with practical management of crops. MLO algorithm is start
with the initialization process.

ko k- K
1 2

z=|® B ok Eq. 1)
b kno K

where Z displays the calculation set's lattice in size n d. n concentrates on the applicant
arrangements, while d deals with the selection criteria. Define the subsequent parameters for lemurs:
Max_iter is the greatest amount of iterations, while M is the Populace amount. The dimensionality
of the search area over the data set size is implied by f. In addition, the lower bound is denoted by
LB and the upper bound by UB. In the u-th solution, generate the Z choice variable as follows.

Z"=(LB+(UB, - LB, ))xe (Eq. 2)

where e signifies to the unvarying casual amountZ”. Inside the loop estimate the FRR (Free Risk

Rate) that is the constant of MLO process.

FRR = HRR — yx((HRR — LRR)/ Max,,, (Eq. 3)



where y alludes to the current cycles' amount. Max;,, addresses cycle size. Compute the efficiency
. (.
rating for each Flt(Zu )as stated follows.

Fit(z:):ax(l—Acc)+ﬂx(a/A) (Eq. 4)

where the wellness esteem is Fit(zf) little s alludes to the absolute of chosen highlights, A is the
greatest chosen component, and Acc is the precision of every subset. Setting the rating of e1 which
is a casual amount (63 —0.5)>< 2;r, < FRR and comparing it with FRR.

\ 2(u, h) + ‘(z(u,h)— z(bnl,h)|>< (e, —0.5)x 2;r, < FRR o 5)
Z = g.5
2(u, )+ ‘(Z(u,h)— Z(bnl,h)|>< (e, —0.5)x 2;r, < FRR

where Z" the casual amount is the current u-th lemur in the Nth Populace; Z° which is the competitor

arrangement in the h-th decision variable. Z(u,h) signifies the best lemurs in the world for the entire
Populace across all iterations.
Z° =< Zlo,zg,zg,...zo > (Eq. 6)

u

Then, each decision variable z =[b, +ub, —z, calculated based on Eq. 7:
20 =1b, +ub, -z, Eq. (7)

where the opposition candidate's upper boundary is /b, +ub, the lower boundary. To updates the

lemurs' positions within the optimization loop by using the optimal solution as follows.
P(ELO)= P(M xdim)+ P(Max,,, x M )+ P(Max,,, x M xdim)+ P(Max,,_...) (Eq. 8)
By improving the accuracy of these predictions, it enhances the THAM index and supports more

efficient and effective agricultural management practices. The working process of environmental
condition prediction using MLO is depicts in Algorithm 1.

Algorithm 1 Environmental condition prediction using MLO

Input : Define the parameter Max, . ..., dimension d; LRR, and HRR

Output : Environmental condition



Prepare the size of Lemurs populace N.
Create populace insouciantly. Z" = (LB +(UBh -LB, ))xe

Set candidate solutions X

Preliminary Lemurs Populace

while t <Maxlter do

Call Lemurs Process 1 (LO)

Apprise lemurs place consuming U-shape or S

While Lt <MaxLoc iter do

End while

End while

Reoccurrence an ideal subgroup of feature with advanced exactitude

—- = O 0O N O Ul W N =

- O

IoT node deployment

In precision agriculture, the strategic deployment and interconnection of loT sensor nodes are
critical for ensuring efficient data collection, transmission, and environmental monitoring. Each
node in the loT network is equipped with specific sensors that measure environmental parameters
such as soil moisture, temperature, humidity, pH, and atmospheric gases. These nodes communicate
wirelessly with nearby relay nodes or gateways, forming a mesh network that ensures reliable data
transfer to the central monitoring system or cloud-based platform. The signal strength and distance
between nodes determine their connectivity. This helps multi-hop transmission protect data in large
or irregularly shaped fields. Adaptive routing routes sensor node data packets to the fastest route,
reducing delays and energy utilization. This deployment method is improved by a Deep Pulse
Coupled Neural Network (DPC-NN). Deep learning and Pulse-Coupled Neural Networks (PCNN),
which can handle spatiotemporal data, are used in this model. The DPC-NN considers sensor
assortment, overlap, climatic fluctuation, and terrain structure to recommend node locations and
connections. DPC-NN ensures that nodes are in the optimum locations to cover the agricultural
region and link together in the best method to reduce redundancy and ensure data flow.
Environmental monitoring is more reliable and farm managers can make choices faster with this
smart deployment. The DPC-NN model has three layers: input, modulation, and pulse generator.
We first define the objective function as follows.

Jiglb1=T,, (Eq. 9)

where f; [D]signifies the input of DPC-NN model and 7, signifies the external input stimulus signal

and the optimal rating of each input corresponding to the point (h, g).

lhg [b]= Zzhgl{LQKL[b —1] (Eq. 10)

e [D]= f, [DYA+ fiL,, [D]) (Eq. 11)



[,,[b]is the link input, u, [b]incomes the internal movement is describes as follows.

17 uhg [b] 2 ghg [b]

th[b]={0 u, [6]< 0, [P (Eq. 12)

b hg

Here 6,,[b]is the dynamic threshold and Q, [b]productivity of neurons and displays the gift of

connections amid B neurons. When the rating of f8 is small, the prospect of neighboring neurons
firing synchronously is small and we obtain separation outcomes is high; y is used to casually choose
which strategy to follow.

})rana' (S) - Rl | })rund (S) - 2R2P(S) | y 2 05

P(s+1) = (Eq. 13)
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where P(s)refers to the location of hawks presently, P . .(s)states to the situation of a rabbit,

P,_..(s)is the accidental place of one of the existing hawks, P, is the normal of all hawk situations

at the minute, R, R,, R,, R, and y are casual amounts reaching from 0 to 1. In total (uN, IN)

mentions to the variety of the preliminary casual position of the hawks.
s
e=12e, I_E (Eq. 14)

where is the prey's beginning energy, is its escape energy, and S is the number of repetitions that
can occur. The prey attempts to flee when it is in danger; a score of R< 0.5 indicates a successful
escape, while a score of R> 0.5 indicates an unsuccessful attempt at escape. Furthermore, when the
besiege is gentle, it occurs at |e| > 0.5, and when it is harsh, it occurs at |e| < 0.5.

P(s+1) = Ap(s) ~¢| P, (5)~ P(5)| (Eq. 15)

where AP(s) = P, (., — P(s) and G is accidental quantity among 0 and 2.When |e| <0.5 and R

>0.5, the current place is apprises trails
Ps+1)= Py, () | Ap(s)| (Eq. 16)
when |e| > 0.5 and R< 0.5, the position apprise is formulate as trails.

plsany o [QF 1@< 1(P() o1
Wif V)< f(P(s)) b



where C and T are the quantities of demand and casual trajectories individually. Levy Flight feature
is implemented in status update as follows.

F(l+ﬂ)><sin(7zﬂj
o= — 2/};1 (Eq. 18)
F(f)xﬂx2 2

where u, 6, and v are casual amounts with ratings amid 0 and 1, and B is a non attendance relentless.
When a complex blockade occurs during a progressive rapid dive |e| >0.5 and R >0.5 and the Harris
Hox level is compute as follows.

Pty [Q 1 S@< [P 19
Wif fOV)< f(P(s)) N

where Q=P ,.(s)—e|GP, . (s)—P(s)|and W = QO+ T xIf(s)). DPC-NN consist of modules such

as coupling strength B, threshold attenuation coefficienter,
I =—x, xlog, x, —x, xlog, x, (Eq. 20)
where x; and x, characterize the proportion of 0 to 1 in the complete data, individually

AH =1(P)+1(Q)—I(P,0) (Eq. 21)

where I(P) and 1(Q) mean bordering entropy of given network information, I(P, Q) rapid the joint
solution. The algorithm 2 depicts the working process of loT node deployment using DPC-NN.



Algorithm 2 Deployment of loT nodes using DPC-NN model

Input: Field area, soil parameters, environmental conditions
Output: Node deployment

1. Initialize the casual Populace

2. Define initial objective function f, [b]=T,,

3. Ifi=0 , j=1

4. While Do

5. Compute optimal fitness for fixed length (h, g).

Lo[b1=Y 7, O [b—1]

° Define the initial casual position of the hawks. e = 280(1 - %]

7. Compute location update calculation P(s +1)=P,,,.(s) —e| Ap(s) |

8. Define the optimal threshold to fix the maximum and minimum solution
AH =1(P)+1(Q)-I1(P,Q)

9. End if

10. Update the final rating

11. End

Production yield rate computation

In precision agriculture, production yield rate refers to the measurable output of crops per unit area,
influenced by numerous dynamic factors including soil conditions, environmental variables, and
farm management practices. Accurate estimation and enhancement of this rate are critical for
ensuring sustainable and profitable farming operations. The chaos distributed gravitational search
(CDGS) algorithm is employed in the proposed model to improve the factors that have a direct
impact on yield. CDGS is a nature-inspired metaheuristic algorithm that uses the global search
power of the gravitational search algorithm and the unpredictability of chaos theory to avoid
premature convergence and search the solution space more effectively. The method has a
hierarchical and distributed structure, which lets it look at many interacting parameters and give
better search results that show the best or nearly best circumstances for high crop output. Wheat,
rice, and maize are examples of crops that are grown a lot and are used as a reference for theoretical
evaluation. These are staple food crops in many agricultural areas and are greatly affected by the
environment and soil conditions. The model looks at important factors that affect things like soil pH,
moisture content, temperature changes, solar exposure, and nutrient levels. The system's goal is to
provide input settings and ambient conditions that will give the highest yield output by optimizing
these parameters with the CDGS algorithm. This structured approach helps farmers make data-
driven decisions tailored to specific crop categories and environmental setups, ultimately improving



productivity, resource utilization, and sustainability in precision agriculture practices. The objective
function of prediction model describes as B, = (p., pi....p}), h € {1,2,...B}, where N represents the

total amount of individuals p; and represents its position in the c-th dimension of the search space.

a (S)= E,(S)—F;(S)
" F(s)-F.(s)

(Eq. 22)
4,(s) =Z"—(S) (Eq. 23)
ZL:I aL(S)

lteration F, (s)represents the fitness rating in s. F, (s)and F, (s)are the worst and best fitness ratings

in the iteration, respectively. Lower level individuals are attracted to middle level higher individuals.
CDGS algorithm assumes a sigmoidal gravity constant.

J(s)= JOV . (Eq. 24)
1+E105

Gravitational force f, (s)among persons B, and P, in the c-th dimension at repetitions is defined as
follows.

A4, (s)x A
fgwrauw—§%5f§9@gw—pﬂm) (Eq. 25)

wherer,, (s)is the Euclidean distance among two persons and € is small continuous. In the middle
layer, K best individuals are led by K individual best individuals.

i (5) = rand(—1,1)- (x,jg (;) - xj, (s))

§——

_2
1+ E '

(Eq. 26)

where h €K best and g € {1, 2, ..., CB }. Then,, (s) c-dimension indicates the update rate of the

h-th best individual of g-th sub-Populace in the middle layer. The x; c-th dimension represents the
h-th unique best individual in the top layer of the j-th sub-Populace.

Vi (s+1)=Rand, -V (s)+m () +15 ,(5) (Fq. 27)



whereh€{1,2,...,BCB}, g€ ({1,2,...,CB}. The best individual p,igin the j-th sub-Populace
replaces the worst individual in the sub-Populace of V;gH in all f iterations (g + 1). Personal speed

and position szgﬂ will be updated as follows.
Veu(s+D)=p,, (s+1) (Eq. 28)

PronS+D)=p, (s+1) (Eq. 29)

Then selects the best individual P in the sub-Populace to optimizes the k best individuals in the
middle layer. The ideal individual P, is more directed is more favorable to speed up the convergence
of the algorithm. When the historical information P is better than the temporary person created in

the layer P, it changes P.. The update process is performed as follows:

P.(8)=P(s)+x(tp, (s) —tup () Rand (0,1) (Eq. 30)

(Eq. 31)
P.(s) otherwise

P.(s) if F(P,(s)<F(P-(s
P[(s):{T() if F(F, ()< F(F(s))
where x is a constant rating. To perform an experiment to finds the rating of p in the set. 1, and 1,

signifies two individuals casually selected from the historical data set. F signifies the fitness function
and s is the amount of iterations. Then, compute the updated fitness function as follows.

o) rand(~1,1)- (x5 () - x5, (5))

hg S
==

2

1+ E 100

(Eq. 32)

The best person in the elite upper layer P.improves the convergence speed. In the historical data
layer, place the individual P.with the best fitnessu,,, . If temporary person's fitness is better than

Uy PT, replaces u,,, , described as follows.

- (S):{Pf () if F(B. ()< F(Py,(s)) (Eq. 33)

u,, (s) otherwise

The production yield rate computation using CDGS algorithm involves analysis and optimization of
critical agricultural attributes ensures higher efficiency in precision agriculture. Algorithm 3 depicts
the working process of production yield rate computation using the CDGS.



Algorithm 3 Production yield rate computation using CDGS

Input: Soil health, climate conditions, and agricultural practices
Output: Production yield rate

1. Casually initialize B particles
2. while the termination criterion is not satisfied do
3. F,(s)=F.(s)

Mass (a) can be created as follows: a, (s) =
E ()= F.(s)

4 Ji (5)

Define P,’s acceleration m, (s)in the c-th dimension m; (s) =

4,(s)
5. Evaluate the fitness
6 for
7. Compute speed and position using hierarchical interactions

Vh‘:g(s+l) = Randh,g -Vhfg(s)+m;’g(s)+n,f,g(s)

8. end for x
9. If rand > 5.0 then
10. Compute speed and position V:ea will be updated V., (s +1)=p, ,(s+1)
11.  else
12. rand (=1,1)-\x7.(s)—x;_ (s

Define revised velocity n;, (s) = LD ( T(S) 1o ))

1+ E i

13.  Endif
14.

Bo(s)  if F(P.()<F(Py,(s5))

Compute temporary person's fitnessu __ () =
Uy, (s) otherwise

15.  Else
16.  Update the final rating
17.  End

Results and Discussion

This section presents the results and comparative analysis of the proposed and existing models for
loT-based precision agriculture. The MLO+DPC-NN+CDGS model performance is validated using
Lenovo PCs equipped with an Intel(R) Core i5-2557M 1.70GHz processor and 4GB RAM. The
simulation was conducted using a network simulator tool and MATLAB R2015. Sensor data were
obtained from various reliable sources, such as the Bureau of Meteorology, the Linked Sensor
Middleware (LSM), and the Phenonet venture. In this study, the loT network setup consisted of 36
sensor nodes, each representing a tree and equipped with relay nodes, deployed across varying field



sizes of 25x25 m2, 50x50 m?, 75x75 m2, and 100x100 m?2 grids. These sensors primarily focused
on monitoring environmental conditions like temperature and humidity, which significantly
influence crop growth. However, it is important to note that the findings reported here are
specifically influenced by the types of parameters and sensors used in the experimental setup—
particularly temperature and atmospheric measurements. For other parameter categories—such as
those directly related to soil composition, nutrient content, or specific crop health indicators—the
model performance and threshold outcomes may vary. Hence, while the current setup provides
reliable predictions for the considered environmental parameters, further calibration and evaluation
would be required when deploying different types of sensors for soil or crop-specific monitoring.
The performance of the proposed MLO+DPC-NN+CDGS model was compared with existing
models (Mekala and Viswanathan, 2020), including the casual model with THAM (Casual), the
opportunity model with THAM (Opportunity), and the optimal (t, n) selection model with THAM ((t,
n) selection). Tables 3 and 4 present critical thresholds used for evaluating production yield and
environmental alert conditions based on the specific sensor parameters used in this study.

Performance analysis of environmental condition prediction models

The goal is to assess the accuracy of these models in predicting climatic elements including
temperature, moisture in the soil, transpiration, CO, levels, and rainfall, which significantly affect
crop growth and farming operations. The modified Lemurs optimization (MLO) algorithm, particle
swarm optimization (PSO), genetic algorithm (GA), and simulated annealing (SA) are being
considered. To evaluate each model's agricultural prediction accuracy, processing speed,
scalability, and real-time application.

Figure 2 compares the effectiveness of four ecological models for prediction (MLO, PSO, GA, and
SA) using MAE, RMSE, R2, and MAPE error measures. The analysis included 10-100 loT nodes. MLO
improved the greatest for MAE, reducing 60% from 0.15 at ten servers to 0.06 at 100 nodes.
Similarly, PSO reduced its MAE by 50%, GA by 45% and SA by 40%. The RMSE values also reflected
a clear trend of improvement across all models. MLO showed a decrease of 36%, from 0.25 at 10
nodes to 0.16 at 100 nodes. PSO exhibited a 32% reduction, GA improved by 30%, and SA showed
a 28% improvement. The decrease in RMSE suggests a more accurate prediction with higher node
counts, particularly for the MLO model. In terms of R2, which indicates the model’s ability to explain
the variance in the data, all models showed a significant increase in performance as the loT nodes
grew. MLO's R? increased by 7%, from 0.92 at 10 nodes to 0.99 at 100 nodes. PSO, GA, and SA
showed improvements of 7%, 8%, and 9%, respectively, with PSO going from 0.9 to 0.98, GA from
0.88 to 0.97, and SA from 0.85 to 0.94. MAPE also showed a significant reduction as the number of
loT nodes increased. MLO demonstrated the largest improvement of 47%, decreasing from 4.5 at
10 nodes to 2.4 at 100 nodes. PSO improved by 42%, GA by 35%, and SA by 32%. PSO reduced
from 5.2 to 3.1, GA from 6 to 3.9, and SA from 7.1 to 5. The analysis shows that increasing the
number of 10T nodes leads to consistent performance improvements across all models. MLO did
better than the other optimization methods in terms of MAE, R?, and MAPE. The PSO, GA, and SA
performed better in terms of RMSE and R2. These findings demonstrate that adding loT nodes to
precision agriculture systems improves model accuracy and forecast reliability.



As shown in Figure 3, the forecasting algorithms (MLO, PSO, GA, and SA) for loT-based agricultural
precision systems performed differently for duration of processing, integration, security, and
scalability. When loT nodes increased from 10 to 100, all models had longer periods of processing
and more converging iterations. They gained durability and scalability to varying degrees. MLO had
the smallest processing time increase, 120% from 1500 ms at 10 nodes to 3300 ms at 100 nodes.
GA rose 90%, SA 82%, and PSO 100%. These data show that MLO is the fastest at running, whereas
SA uses the most resources. When it came to convergence, all of the models revealed that the
number of iterations needed generally went up as the number of loT nodes went up. MLO
demonstrated the smallest increase, rising by 75% from 120 to 210 iterations. PSO saw a 60%
increase, GA exhibited a 50% rise, and SA showed a 45% increase. This indicates that MLO
maintains faster convergence across increasing system complexity. Stability analysis showed
significant improvements across all models. MLO showed the largest gain in stability, with its
fluctuation value decreasing by 67%, from 0.012 at 10 nodes to 0.004 at 100 nodes. PSO followed
with a 56% improvement, GA improved by 40%, and SA showed a 37% improvement. These
findings affirm MLO as the most stable model across increasing data sizes. In terms of scalability,
represented by R2 values, all models showed slight decreases as the number of loT nodes increased.
MLO had the smallest reduction in scalability, with a 2.6% decline from 94.58 at 10 nodes to 92.12
at 100 nodes. PSO decreased by 4%, GA by 4.4%, and SA experienced the most significant drop of
4.7%. Despite this, MLO consistently maintained the highest scalability performance. The result
illustrates that increasing the number of loT nodes enhances stability and convergence while
increasing processing demand. MLO consistently outperformed the other models in terms of
execution time, stability, and scalability, making it the most efficient model for large-scale loT-based
precision agriculture systems. PSO, GA, and SA showed relative improvements in convergence and
stability but lagged behind MLO in scalability and processing efficiency.

Comparative analysis of loT node deployment models

The comparative analysis of various loT node deployment models in precision agriculture reveals
the superior performance of the proposed DPC-NN model, particularly when combined with MLO
and CDGS. Figures 4 and 5 illustrate the training and testing performance of the DPC-NN model for
temperature sensor deployment, showcasing smooth and consistent trends in both accuracy and
loss. The training accuracy steadily increases and converges near 99%, while the validation
accuracy stabilizes around 91-92%, indicating strong learning capability and generalization. The
training loss exhibits a sharp exponential decline, and the validation loss mirrors this trend with
minor fluctuations, reflecting model stability and minimal overfitting. Compared to the Casual,
Opportunity, and (t, n) selection models, the MLO+DPC-NN+CDGS framework demonstrates
significant improvements in sensor selection efficiency, prediction accuracy, and processing time.
These enhancements result in better resource optimization and monitoring efficiency, especially in
large or heterogeneous agricultural fields. The proposed model proves to be a robust and scalable
solution for loT-based environmental monitoring in precision agriculture.

The performance evaluation in Table 5 shows that the proposed MLO+DPC-NN+CDGS model
works well for deploying loT nodes with temperature sensors, especially when it comes to choosing



sensors, getting accurate readings, and processing time. The proposed method cuts the number of
selected sensors by 78.26% when 20 loT nodes are installed, and it keeps cutting the number of
sensors by 60% even when there are 100 nodes. This tendency of choosing the best sensors is also
clear in the Opportunity model and the (t, n) selection model, where the number of nodes dropped
by 70.59% and 54.55%, respectively. The MLO+DPC-NN+CDGS model is always more accurate
than other methods. It does 23.28% better than the Casual model, 13.99% better than the
Opportunity model, and 6.56% better than the (t, n) selection model at the 100-node setup. This
shows that the proposed model has a better learning ability and a better way to optimize sensors.
Comparisons of loT nodes using soil sensors demonstrate that the MLO+DPC-NN+CDGS model is
better at sensing productivity, precision, and processing time. The amount of the chosen sensors
lowers significantly in the proposed model. It reduces sensor utilization by 46.15% comparable to
the (t, n) selecting model, 36.36% comparable to the Opportunity model, and 46.15% comparable
to the Casual model with 100 loT nodes. These reductions are consistent across smaller
deployments, demonstrating the system's scalability and resource efficiency. At the 100-node level,
the proposed model is 16.92% more accurate than the Casual model, 10.48% more effective than
the possibility model, and 4.99% more accurate than the (t, n) selection model. The pattern stays
the same for all node sizes, which shows that the model can keep making good predictions even
when the deployment gets more complicated. The findings for processing time show even more how
efficient the proposed methodology is at doing math. At 100 nodes, it cuts processing time by
68.37% compared to the Casual model, 60.26% compared to the Opportunity model, and 46.55%
compared to the (t, n) selection model. The fact that the MLO+DPC-NN+CDGS model consistently
improves all major metrics shows that it is a very accurate solution for precision agriculture 1oT-
based soil monitoring applications.

The results in Table 7 show that the MLO+DPC-NN+CDGS model works well to improve
measurement rating and monitoring efficiency in loT-based precision agriculture, even when there
are different numbers of deployed nodes. The proposed model constantly does better than other
models in terms of measurement rating, no matter what the setup is. With 50 loT nodes, MLO+DPC-
NN+CDGS gets a measurement rating that is 11.54% higher than the Casual model, 9.66% higher
than the Opportunity model, and 7.87% higher than the (t, n) selection model. These improvements
reflect the model’s strong ability to maintain high-quality environmental measurements even as
network scale increases. The same trend is evident in monitoring efficiency. At 50 nodes, the
MLO+DPC-NN+CDGS model improves monitoring efficiency by 16.01% compared to the Casual
model, 11.85% compared to the Opportunity model, and 7.91% compared to the (t, n) selection
model. These consistent gains, even with a lower number of 10T nodes, suggest that the proposed
model not only enhances the quality of sensor measurements but also ensures optimal sensor
network performance. The steady rise in performance with node count indicates strong scalability,
making the MLO+DPC-NN+CDGS model a highly effective solution for real-time, resource-efficient
agricultural monitoring.

The evaluation of loT-based precision agriculture across varying agricultural field areas, as shown
in Table 8, demonstrates the strong performance of the MLO+DPC-NN+CDGS model in both



measurement rating and monitoring efficiency. With increasing field sizes from 1 to 5 acres, the
proposed model maintains a consistently higher measurement rating than all other models. At 5
acres, it improves measurement rating by 14.32% over the Casual model, 10.04% over the
Opportunity model, and 6.05% over the (t, n) selection model. This means that the proposed method
works very well to keep sensor data gathering trustworthy, even when the field gets bigger. The
MLO+DPC-NN+CDGS model is better in monitoring efficiency than other models in all field sizes.
It does 11.67% better than the Casual model, 9.12% better than the Opportunity model, and 6.71%
better than the (t, n) selection model at the 5-acre milestone. These results clearly show that the
proposed model scales well with field size, which guarantees both high measurement accuracy and
the best operating performance. The steady rise in value shows that it is suitable for use in large-
scale agricultural monitoring systems where accuracy, scalability, and efficiency are very important.

Results analysis of yield estimation

To test the proposed yield prediction model that combines DPC-NN and CDGS, ten test cases (TC1-
TC10) were created with different environmental and agricultural conditions. These scenarios
included changes in temperature, humidity, fertilizer amount, and soil wetness to make them more
like real-life farms and to test how well the model could predict outcomes with both good and bad
inputs. Table 9 shows that the model works quite well when conditions are perfect. The model got
very low MAPE values (all below 3%) and R2 scores above 0.93 in TC2, TC3, TC6, and TC10, where
the temperature and humidity were moderate, the fertilizer amounts were medium to high, and the
soil moisture was about right. This shows that the model can learn a lot and be very accurate when
conditions are good for growing crops. When the conditions were not quite right, such when the
soil was a little too dry or too wet or when less fertilizer was used, the predictions were a little less
accurate. In TC1, TC4, TC7, and TC8, MAPE went up a little but stayed below safe ranges, between
4.88% to 7.69%. It's important to note that the R2 values in these test instances were still above 0.87.
This shows that the model is strong and can adapt to less-than-ideal situations while still keeping a
solid correlation between actual and anticipated yields. Performance dropped more drastically when
there was stress. The model indicated higher MAPE values of 9.38% and 11.11% in TC5 and TC9,
which both had dry soil with high temperatures or high fertilizer levels. The R? scores declined to
0.85 and 0.82, respectively. These results show how important soil moisture is for estimating yield.
They also show that the model is sensitive to a lack of moisture, although it still makes a good
estimate. On average, the model recorded an R? of 0.901 and a MAPE of 5.204%, reflecting
consistent predictive capability across all test conditions. These averages confirm that the proposed
model delivers high accuracy and generalization, even in challenging environmental conditions. To
further validate its performance, Figure 6 shows the actual versus predicted yield values were
plotted, showing close alignment with minimal deviation in most cases. Although the model is
primarily regression-based, ROC and Precision-Recall curves were also generated by discretizing
yield into categories. These classification-oriented metrics reaffirm the model’s effectiveness,
particularly its ability to maintain precision and recall under varying conditions.



Results comparison between proposed and state-of-art works

The performance comparison presented in Table 10 clearly demonstrates that the proposed Hybrid
Deep Learning-loT Fusion model significantly outperforms existing state-of-the-art methods in terms
of accuracy, RMSE, and MAE. The proposed model achieved the highest accuracy of 94.6%,
surpassing the AHC-ShuffleNetV2 model (Xu et al., 2024) by 5.93%, the LoRa-ML Hybrid model
(Lakshmi et al., 2023) by 3.73%, and the IQWO-TL-based model (Sowmiya and Krishnaveni, 2023)
by 4.53%. This notable improvement in accuracy is attributed to the integration of real-time
multimodal loT sensor data and an advanced deep learning framework that facilitates adaptive
feature learning. The use of attention mechanisms and context-aware temporal-spatial modeling
allows the system to precisely capture critical variables like temperature, soil moisture, humidity,
and fertilizer levels, leading to better decision boundaries. In terms of RMSE, the proposed model
recorded a significantly reduced error of 0.27, representing a decrease of 35.71% compared to Xu
et al. (2024) 28.95% compared to Lakshmi et al. (2023), and 25.00% compared to Sowmiya et al.
(2023). The drop is because to a hybrid loss function, good regularization methods, and a better
training approach that uses early halting and noise-filtered input data. The model's flexibility to work
in many environments makes sure that the actual and anticipated yields are quite close to each
other, which is important for making accurate predictions. The MAE value, which is another
important error statistic, is likewise the lowest for the proposed model at 0.21. This is a 32.26%,
27.59%, and 25.00% decrease from the models in Xu et al. (2024), Lakshmi et al. (2023) and
Sowmiya and Krishnaveni (2023), respectively. The model's ability to learn in detail, which allows
it to pick up on small changes in field-level data and use real-time feedback from loT inputs, makes
this development possible. Also, hyperparameter tuning with grid search and cross-validation
techniques makes sure that the predictions are strong and consistent. Table 10 shows that the
proposed system's advantages are not only small ones; they come from strategic improvements in
both data integration and model architecture. These changes show that hybrid Al-loT systems could
be able to give precision agriculture precise, real-time, and flexible solutions for predicting yields.

Conclusions

By combining deep learning with 1oT, this study creates a smart and flexible prediction framework
for loT-based precision agriculture. The proposed method uses a modified Lemurs optimization
(MLO) algorithm to provide accurate predictions about important environmental factors. This
improves the THAM index for making smart agricultural decisions. A deep pulse-coupled neural
network (DPC-NN) is used to make sure that loT sensors are placed in the best possible way. This
helps with sensor allocation and cuts down on redundancy across different field sizes. Using a chaos
distributed gravitational search (CDGS) method that optimally weighs agronomic factors including
temperature, fertilizer application, and soil moisture improves the yield prediction. We have
thoroughly tested the proposed MLO+DPC-NN+CDGS model using simulations and real-world
sensor data from trusted sources including the Bureau of Meteorology and Phenonet. The results
show that the performance is far better than that of the best models that are currently available:



e The proposed model gets a yield prediction accuracy of 90.509% with temperature sensors
and 90.831% with soil sensors. This is an improvement of 12.445% and 9.525%,
respectively, over baseline models.

e ltgets 96.699% for diverse loT node deployments and 95.039% for different field areas when
it comes to monitoring efficiency. This is 10.632% and 8.386% better than current
approaches, respectively.

e The study in Table 10 demonstrates that the proposed hybrid model is better than top-tier
alternatives like AHC-ShuffleNetV2, LoRa-ML Hybrid, and IQWO-TL. It has a maximum
accuracy of 94.6%, an RMSE of just 0.27, and an MAE of 0.21. These numbers show that
the models did better than the best-performing benchmark models by 5.93%, 35.71%, and
32.26%, respectively.

These improvements validate the potential of the proposed model to provide scalable, real-time,
and resource-efficient solutions for agricultural monitoring and yield prediction. Consequently, the
MLO+DPC-NN+CDGS model presents a robust and deployable system for next-generation
precision agriculture, capable of adapting to diverse environmental and field conditions while
maintaining high prediction fidelity.

Limitations and future direction

The real-time field deployment could encounter practical challenges such as hardware limitations,
sensor failures, or communication delays. In terms of application, the proposed system shows strong
potential in supporting herbaceous crop management (such as wheat, maize, and paddy) where
yield prediction is crucial for irrigation scheduling and resource optimization. With appropriate
tuning, it could also be extended to tree-based perennial crops (e.g., apple, citrus) by integrating
remote sensing data and canopy-specific parameters. Future work will focus on enhancing cross-
domain adaptability and incorporating more diverse data modalities (e.g., drone imagery, weather
APIs) for broader applicability in smart agriculture.
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Table 1. Summary of related works on loT-based precision agriculture.

Ref.

Methodology

Technique used

Findings

Research gap

Xu et al. (2024)

Sing M et al.
(2023)
Lakshmi et al.
(2024)
Priyanka et al.
(2023)

Et-taibi et al.
(2024)
Irwanto et al.
(2024)

Ara et al. (2024)

Sowmiya and
Krishnaveni
(2023)

San Emeterio de la
Parte et al. (2024)
Shrivastava et al.
(2023)

Talaat (2023)

Atalla et al. (2023)

Deep Learning-based
irrigation prediction

Oxygen prediction in
water systems
Intelligent irrigation
planning
Energy-efficient loT
clustering
Cloud-based irrigation
system
Weather-integrated
irrigation control
Energy-efficient loT
architecture

Tomato disease detection

Crop harvesting
prediction

Equipment control via
loT

loT-based decision-
making

Wireless sensor
evaluation

AHC-ShuffleNetV2 with smart
loT

Intelligent nonlinear decision
trees (M5 model tree)
LoRa-based ML with loT

Region-based clustering
(REAN)
Centralized smart irrigation

Real-world solar test bed

Adaptive Mud Ring
Optimization (AMR), K-means
IQWO-PCA, Transfer
Learning (DenseNet121,
AlexNet, etc.)

STSDaMaS, Neural Network
Scalable network architecture

CYPA, Decision Trees, Extra
Trees

6LowPAN with RPL routing
protocol

Predicted irrigation levels
using image and sensor data

Achieved correlation of
0.877 and MAE of 0.963
Reduced water usage by
46%, improved plant health

Improved energy efficiency

Enabled connectivity across
farms

Improved irrigation during
rainfall periods

Improved CH selection and
energy conservation
Detected tomato disease
using image features

Accurate forage legume
harvesting predictions
Remote monitoring of tractor
status and position

High accuracy (0.9814) in
crop analysis

Improved performance in
lossy networks

Does not address adaptability to
varying field conditions and real-time
feedback

Limited to a single parameter; lacks
multi-sensor integration

Lacks adaptability under unpredictable
environmental conditions

No real-time data analysis or prediction
capability

Does not optimize sensor placement or
data latency issues

Not generalizable to other crops or
weather patterns

No support for multimodal data
processing or analytics

No real-time feedback loop; lacks
integration with irrigation systems

Not scalable to multiple crops or field
types

Focuses on machinery, not
environmental parameters

Lacks handling of noisy or inconsistent
sensor data

No predictive model or intelligent
analytics involved



Kollu et al. (2023)

Abdullahi et al.
(2024)

Mekala and
Viswanathan
(2020)

Fertilizer
recommendation
Smart fertilizer
scheduling

Sensor optimization

ML on loT sensor data

Decision Tree (SFSS MLR)

THAM index, A(t,n) sensor
method

Achieved 99.3% accuracy

Accuracy of 99.2% with
balanced F1 metrics
Evaluated soil and water
quality

Adaptability to real-time environmental
shifts not discussed

Model performance is highly dataset-
dependent

Lacks intelligent learning and predictive
adaptability




Table 2. Dataset description and sensor configuration.

S.No Parameter Sensor type Measurement Sensor model Data source Purpose/usage in model
unit
1 Soil moisture Capacitive soil % volumetric VH400 or Phenonet, LSM Irrigation scheduling, water stress
moisture sensor water content equivalent detection
2 Soil temperature Thermistor-based soil ~ °C DS18B20 or Phenonet Crop root health analysis,
sensor equivalent irrigation timing
3 Air temperature Digital temperature °C DHT22 Bureau of Environmental control, yield
sensor Meteorology estimation
4 Humidity Capacitive humidity % relative DHT22 Bureau of Disease risk assessment,
sensor humidity Meteorology, evapotranspiration rate
Phenonet
5 Soil pH Soil pH sensor pH units SENO161 Phenonet Nutrient management, disease
sensitivity analysis
6 Electrical EC sensor dS/m Gravity EC sensor ~ Phenonet, LSM  Soil salinity and fertility
conductivity (EC) evaluation
7 Rainfall Rain gauge sensor mm/hr Tipping bucket Bureau of Irrigation optimization, weather
type Meteorology condition modeling
8 CO, concentration  NDIR gas sensor ppm MH-Z19 LSM, Phenonet  Crop respiration analysis,
greenhouse gas detection
9 CO concentration Electrochemical gas ~ ppm MQ-7 LSM, Phenonet  Pollution monitoring, plant stress
sensor indicator
10 Ammonia (NH3) Semiconductor gas ppm MQ-137 LSM Fertilizer residue tracking,
concentration sensor environmental quality
11 Nitrous acid Chemical sensor ppm Virtual simulated Phenonet Nitrogen cycle monitoring, gas
(HONO,) level (simulated) sensor (Derived) emissions analysis




Table 3. Threshold for production yield categories.

Class SO, Aqua quality
Low >0.4 >7.5
Medium 0.2t0 0.4 0.7t0 7.5
High 0to 0.2 0.5to7

Table 4 .Threshold for THAM index categories.

Class THAM index
Normal <71

Alert 72t078
Danger 79 to 81
Emergency > 82

THAM, temperature-humidity-agriculture-meteorology

Table 5. Result comparison of models for IoT node deployment with temperature sensors

Model Amount of loT nodes
20 40 60 80 100
Amount of selected sensors
Casual 23 24 26 28 30
Opportunity 17 18 20 22 24
(t, n) selection 11 12 14 16 18
MLO+DPC-NN+CDGS 5 6 8 10 12
Accuracy (%)
Casual 72.862 73.089 73.227 74.258 74.630
Opportunity 78.494 78.721 78.859 79.890 80.262
(t, n) selection 84.126 84.353 84.491 85.522 85.894
MLO+DPC-NN+CDGS 89.758 89.985 90.123 91.154 91.526
Processing time (ms)
Casual 42000 42500 43000 43500 44000
Opportunity 32000 32500 33000 33500 34000
(t, n) selection 22000 22500 23000 23500 24000
MLO+DPC-NN+CDGS 12000 12500 13000 13500 14000




Table 6. Result comparison of models for loT node deployment with soil sensors.

Model Amount of loT nodes

20 40 60 80 100

Amount of selected sensors
Casual 26 27 31 35 39
Opportunity 20 21 25 29 33
(t, n) selection 14 15 19 23 27
MLO+DPC-NN+CDGS 8 9 13 17 21
Accuracy (%)
Casual 77.148 77.549 77.882 78.279 78.412
Opportunity 81.473 81.874 82.207 82.604 82.737
(t, n) selection 85.799 86.200 86.533 86.930 87.063
MLO+DPC-NN+CDGS 90.125 90.526 90.859 91.256 91.389
Processing time (ms)

Casual 47000 47500 48000 48500 49000
Opportunity 37000 37500 38000 38500 39000
(t, n) selection 27000 27500 28000 28500 29000
MLO+DPC-NN+CDGS 13500 14000 14500 15000 15500

Table 7. Results of loT based precision agriculture with varying amount of loT nodes.

Model Amount of loT nodes
10 20 30 40 50
Measurement rating (%)
Casual 76.685 77.038 77.078 77.288 77.601
Opportunity 78.000 78.353 78.393 78.603  78.916
(t, n) selection 79.316 79.669 79.709 79919  80.232
MLO+DPC-NN+CDGS 85.632 85.985 86.025 86.235  86.548
Monitoring efficiency (%)
Casual 82.689 82.915 83.418 83.559  83.719
Opportunity 85.847 86.073 86.576 86.717  86.877
(t, n) selection 89.005 89.231 89.734 89.875  90.035
MLO+DPC-NN+CDGS 96.128 96.354 96.857 96.998  97.158




Table 8. Results of loT based precision agriculture with varying agriculture field area.

Model Agriculture field area (acre)
1 2 3 4 5
Measurement rating (%)

Casual 75.993 76.170 76.403 76.543 76.554
Opportunity 78.978 79.155 79.388 79.528 79.539
(t, n) selection 81.963 82.140 82.373 82.513 82.524
MLO+DPC-NN+CDGS 86.948 87.125 87.358 87.498 87.509

Monitoring efficiency (%)
Casual 84.901 84.997 85.066 85.173 85.281
Opportunity 86.886 86.982 87.051 87.158 87.266
(t, n) selection 88.871 88.967 89.036 89.143 89.251
MLO+DPC-NN+CDGS 94.856 94.952 95.021 95.128 95.236




Table 9. Yield estimation accuracy under varying environmental and agronomic conditions using the proposed MLO+DPC-NN+CDGS

based model.
Testcase Temp (°C)  Humidity (%)  Fertilizer level Soil moisture  Actual yield (tha)  Predicted yield (tha) ~ MAPE (%)  R2score
TC1 32 40 Low Dry 2.600 2.400 7.692 0.880
TC2 28 65 Medium Optimal 3.800 3.700 2.632 0.940
TC3 30 70 High Optimal 4.300 4.200 2.326 0.960
TC4 27 80 Medium Wet 3.600 3.400 5.556 0.890
TC5 34 45 High Dry 3.200 2.900 9.375 0.850
TC6 29 75 Medium Optimal 3.700 3.600 2.703 0.930
TC7 33 55 Low Optimal 2.900 2.700 6.897 0.870
TC8 26 85 High Wet 4.100 3.900 4.878 0.910
TC9 35 40 Medium Dry 2.700 2.400 11.111 0.820
TC10 30 60 High Optimal 4.400 4.300 2.273 0.960

Table 10. Comparative performance analysis of the proposed model with state-of-the-art techniques in terms of accuracy, RMSE, and

MAE for yield prediction in precision agriculture.

Methodology Accuracy (%) RMSE MAE Accuracy T RMSE | MAE |
AHC-ShuffleNetV2 [16] 89.323 0.4298 0.3115 5.931% -35.741% -32.264%
LoRa-ML [18] 91.221 0.3863 0.2932 3.733% -28.954% -27.594%
IQWO-TL [23] 90.534 0.3658 0.2824 4.539% -25.004% -25.001%
MLO+DPC-NN+CDGS (proposed) 94.626 0.2752 0.2175 - - -
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Figure 1. Conceptual structure of proposed model for intelligent smart predictive model for loT

based precision agriculture.
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Figure 5. Training and testing performance of proposed DPC-NN model for loT temperature sensors
deployment (a) Accuracy (b) Loss.
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