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Abstract 
The rapid advancements in communication technologies have initiated transformative changes 
across various sectors, significantly improving efficiency and quality of life. In the agricultural 
domain, the growing global demand for food and the need to reduce farmers’ workload have 
positioned the Internet of Things (IoT) as a critical enabler of smart farming solutions. However, 
accurate prediction of variations in climate conditions, soil attributes, and ground characteristics 
remains a major challenge in agricultural IoT, with direct implications on crop yield if not effectively 
addressed. This study proposes an intelligent predictive model for the deployment of IoT sensors in 
precision agriculture using deep learning techniques. A modified Lemurs optimization (MLO) 
algorithm is used to predict environmental conditions accurately, enhancing the temperature-
humidity-agriculture-meteorology (THAM) index. IoT sensor deployment is optimized using a deep 
pulse-coupled neural network (DPC-NN) to determine the optimal number and positioning of 
sensors, ensuring effective coverage of the target agricultural field while improving communication 
efficiency. The production yield rate is estimated based on key attributes such as fertilizer regulation, 
temperature quotient, and agronomic factors, optimized using the chaos distributed gravitational 
search (CDGS) algorithm. Model performance is validated using test samples obtained from the 
Meteorology Bureau via integrated sensor middleware. Experimental validation using real-world 
data from the Bureau of Meteorology and Phenonet confirms the robustness. The proposed model 
achieves yield prediction accuracy of 90.509% with temperature sensors and 90.831% with soil 
sensors, improves monitoring efficiency to 96.699% in heterogeneous IoT deployments, and 
surpasses existing benchmark models with a maximum accuracy of 94.6%, RMSE of 0.27, and MAE 
of 0.21. These results highlight the model’s potential to deliver scalable, real-time, and resource-
efficient solutions for next-generation precision agriculture. 



Key words: Precision agriculture; IoT sensor; node deployment; environmental condition; 
production yield rate. 

 

Introduction 
It is expected that the world's population would continuously rise throughout the next thirty-five 
years, accomplishing ten billion people (Devaraj et al., 2024). Since the 1980s, when it was initially 
utilized, precision farming (Pokhrel and Choi, 2024). has transformed how farms work. It does this 
with the help of instruments like remote detection, Geographic Information Systems (GIS), and 
Global Positioning Systems (GPS). Artificial Intelligence (AI) and Internet of Things (IoT) sensors work 
together to makes precision farming (Saini et al., 2024). Also, precision farming has made crops 
more predictable and more resistant to climate change by making them change less often, which is 
the biggest economic benefit (Lin et al., 2023). In the previous 30 years, precision farming has 
changed a lot. It used to be based on satellite pictures for strategic surveillance to help arrive at 
choices at the regional level. Now, it leverages low-altitude data from spacecraft to keep an eye on 
and regulate small field-scale operations (Anand et al., 2023). Using technology like ground IoT 
sensing, remote sensing, satellites, and UAVs (Singh SP et al., 2023), as well as incorporated data 
and data mining, could change the way farming is done, making it more efficient, productive, and 
long-lasting. Farmers can see their fields in real time and make smart choices about how to grow 
their crops through submitting sensor data to a central hub over a wireless link (Li et al., 2023; 
Pamuklu et al., 2023). Smart farming is good for the digital economy because it creates new markets, 
is more open, and fixes problems (Martin et al., 2024). Smart farming employs AI and the Internet 
of Things (IoT) to make decisions based on data that help farms work better and get more done 
(Vangala et al., 2022; Pamuklu et al., 2022; Chen et al., 2022). A lot of research has demonstrated 
that the Internet of Things (IoT) can keep a watch on things like the temperature, the moisture level 
in the soil, and the growth of crops all the time. This gets rid of challenges that old-fashioned farming 
techniques have to deal with (Jeribi et al., 2025). They can do this with affordable electronic devices 
and technology for communication (Sayyad et al., 2024). IoT has made it possible to build and 
update accurate maps of noise, air quality, water pollution, radiation levels, and the weather in real 
time (Akilan and Baalamurugan, 2024). In precision agriculture that employs the IoT, machine 
learning (ML) and deep learning (DL) are crucial methods for turning raw data from many sensors 
into meaningful information. The primary objective of this work is to develop an intelligent 
predictive model for IoT sensor deployment in precision agriculture using DL techniques. The 
following is a summary of this work's major contributions: 

1. The modified Lemurs optimization (MLO) algorithm is used to predict environmental 
conditions accurately, thereby enhancing the THAM index. 

2. Optimization of IoT sensor deployment using the deep pulse coupled neural network (DPC-
NN) to compute the optimal amount of devices required for comprehensive coverage of the 
agricultural field, thereby improving communication efficiency. 



3. Calculation of production yield rates, incorporating factors such as fertilizer regulation, 
temperature considerations, and agronomic variables. These factors are optimized using the 
chaos distributed gravitational search (CDGS) algorithm. 

4. Validation of the proposed model's performance using test samples obtained from the 
Meteorology Bureau via the associated sensor middleware. 

The remainder of this paper is organized as follows: a review of the existing literature on IoT-based 
precision agriculture using DL techniques; a section describing the proposed methodology, 
including environmental condition prediction, optimal IoT node deployment, and the optimization 
of the production yield rate.  

Related work 
Several intelligent techniques have been proposed for enhancing IoT-based precision agriculture. 
While these studies offer significant insights, various limitations persist, which this research aims to 
address. DL-based irrigation level prediction method using smart IoT was proposed by employing 
the AHC-ShuffleNetV2 model (Xu et al., 2024). The system uses sensor data and images to predict 
irrigation levels. However, the model's performance may degrade with limited or noisy input data, 
and it does not address long-term adaptability or generalizability under changing field conditions. 
An intelligent nonlinear decision tree-based closed-loop control system was used to predict 
dissolved oxygen levels using the M5 model tree, which achieved a correlation of 0.877 and MAE 
of 0.963 (Singh M et al., 2023). While effective for this specific task, the model's adaptability across 
diverse environmental parameters remains untested. An intelligent irrigation planning and 
monitoring system utilizing IoT and LoRa-based ML was developed, resulting in 46% water savings 
and improved plant health (Lakshmi et al., 2023). The study, however, focuses more on energy 
efficiency and less on predictive accuracy under dynamic weather patterns. A region-based 
clustering algorithm (REAN) was proposed to enhance energy efficiency in agricultural IoT networks 
(Priyanka et al., 2023). Although the approach improves energy conservation, it lacks discussion on 
data accuracy or real-time responsiveness. A cloud-integrated smart irrigation system was proposed 
to connect small-scale farms and aggregate data centrally (Et-taibi et al., 2024). While it facilitates 
scalability, the method not sufficiently addresses issues of sensor placement optimization or 
communication latency. 

Another study explored using weather prediction services in a real-world solar-powered test bed to 
optimize irrigation during rainfall (Irwanto et al., 2024). The method is context-specific and lacks 
generalizability to broader agricultural scenarios with diverse weather unpredictability. An energy-
efficient IoT-based framework utilizing adaptive mud ring optimization (AMR) for cluster head (CH) 
selection and energy-conserving K-means for cluster formation was introduced (Ara et al., 2024). 
The model is effective in network longevity but does not address multi-modal data fusion or 
predictive analytics. ML model combining improved quantum whale optimization and PCA (IQWO-
PCA) was developed to detect tomato diseases (Sowmiya and Krishnaveni, 2023). Deep neural 
networks such as DenseNet121, AlexNet, ResNet50, and VGG16 were used for feature extraction. 
However, this approach does not handle real-time processing challenges or integration with 
irrigation systems. STSDaMaS was proposed to train a neural network for predicting optimal 



harvesting and baling of forage legume crops (San Emeterio de la Parte et al., 2023). While it 
enhances harvesting prediction, the model is not scalable for multi-crop or multi-environment 
settings. A scalable IoT architecture was used to remotely monitor and control tractor engines, 
providing real-time location and status (Shrivastava et al., 2023). Though beneficial for equipment 
monitoring, the model lacks a broader integration with environmental data and decision support for 
farming activities. 

The CYPA framework introduced IoT-enabled precision agriculture using decision trees, causal 
forests, and extra trees, achieving high accuracy (0.9814) (Talaat, 2023). However, the model does 
not address data inconsistencies or variability in sensor inputs. The WSN performance was evaluated 
using the 6LowPAN and RPL routing protocols for low-power and lossy networks (Atalla et al., 
2023). While communication efficiency is improved, the system’s capability for intelligent decision-
making and prediction is minimal. An IoT-based fertilizer recommendation system was developed 
using sensor-collected data, with machine learning used for timing and quantity prediction (Kollu et 
al., 2023). Despite excellent accuracy (99.3%), the study lacks clarity on real-time adaptability and 
robustness to diverse environmental changes. A decision tree-based system achieved 99.2% 
accuracy for smart fertilizer scheduling (SFSS MLR), showing balanced precision and recall 
(Abdullahi et al., 2024). However, high performance is dataset-dependent, and its generalizability 
to varied crops and environments is uncertain. An agricultural intelligent decision-making system 
evaluated the THAM index for node stipulation and the A(t,n) sensor selection method to assess soil 
humidity and water quality (Mekala et al., 2024). Though sensor selection is optimized, the model 
does not incorporate intelligent learning for adaptive decision-making. 

Problem definition 
Despite numerous advancements in IoT-enabled precision agriculture, several critical challenges 
remain unaddressed. As discussed in Table 1, many existing models focus on specific tasks such as 
irrigation prediction (Xu et al., 2024), disease detection (Sowmiya and Krishnaveni, 2023), or 
fertilizer recommendation (Kollu et al., 2023), but lack a unified framework capable of handling 
diverse agricultural parameters simultaneously. Studies like Sing M et al. (2024) and Priyanka et al. 
(2023) highlight the effectiveness of decision tree-based and clustering models, yet fall short in 
addressing real-time responsiveness and multimodal data integration. While techniques such as 
transfer learning (Sowmiya and Krishnaveni, 2023) and adaptive optimization (Ara et al., 2024) have 
been employed, they often suffer from high computational costs and limited scalability. Additionally, 
inconsistencies in sensor data, suboptimal sensor placement, and communication inefficiencies 
across large field networks continue to hinder system reliability and precision (Atalla et al., 2024; 
Et-taibi et al., 2024). Furthermore, the economic and practical feasibility of deploying such 
intelligent systems in real-world farm settings is often overlooked (Mekala and Viswanathan, 2020; 
Abdullahi et al., 2024). These gaps underscore the need for a scalable, cost-effective, and intelligent 
predictive model that ensures accurate, real-time, and robust decision-making across heterogeneous 
agricultural environments. 
 
 



Materials and Methods 
Figure 1 illustrates the conceptual structure of the proposed intelligent smart predictive model 
designed for IoT-based precision agriculture. The model focuses on three main components: 
optimizing the THAM index for effective environmental condition assessment, deploying IoT sensor 
nodes in optimal positions to ensure maximum field reliable communication, and estimating 
production yield by analyzing various influencing parameters. This approach divides the agricultural 
field into zones for zone-specific monitoring and decision-making. Based on their sensing range, 
sensors are placed to monitor the entire field. This approach considers soil qualities including pH, 
humidity, temperature, and electricity conductivity, as well as external variables like CO, CO2, NH3, 
and nitrous acid levels. These elements are crucial for agricultural and environmental health. The 
system helps people make educated choices. Data fusion removes noise and duplicates from 
incoming data. The system then compares collected data to pre-set threshold values to detect 
abnormal or critical conditions. After that, statistical categorization classifies situations into alert 
levels. Finally, real-time SMS or email alerts inform producers or end users of decisions. This 
methodical approach ensures fast, accurate, and valuable findings, which enhances output and 
promotes sustainable farming. 
 
Setting up sensors and collecting data 
To mimic IoT-based precision agriculture, real-time meteorological data and publicly available 
datasets were collected. We obtained sensor data from reliable sources like the Bureau of 
Meteorology (Australia), the Linked Sensor Middleware (LSM) platform, and the Phenonet project, 
which provides free environmental and phenotyping data. A fake network of 36 sensor nodes 
depicting various plants or trees was established in agricultural areas ranging from 25x25 m² to 
100x100 m². Each node had sensors that assessed soil, ambient, and gas parameters crucial for crop 
growth and field monitoring. Table 2 shows the set of data and sensor setup. We selected sensors 
based on soil pH, humidity, temperature, gas focused attention, and electrical conductivity. These 
parameters affect irrigation planning, disease risk prediction, and output prediction. Data was 
wirelessly transferred to a Sensor Cloud System for preprocessing, feature extraction, and decision-
making. A complete listing of dataset attributes and sensors used in this study is below. 
 
Handling and processing data 
A combination of hardware and software architecture managed and analyzed sensor data. Main 
data collection, preprocessing, fusion, standardization, and first analytical filtering were done in 
MATLAB R2015. Linked Sensor Middleware (LSM) and storage via the cloud were utilized to collect 
and handle IoT sensor data streams, comprising humidity, temperature, pH, CO₂, and ammonia 
levels. Network modeling and deployment optimization were done with a unique tool. This program 
modeled node deployment in different-sized fields. The obtained data was preprocessed to remove 
noise, fill values that were missing, and smooth it. The cleansed data were then processed through 
the proposed intelligent decision-making system, which includes combining information, threshold-
based categorization, analytical condition assessment, and stakeholder alarm broadcast. This 
combined software framework ensured accurate and current precision farming decision assistance. 
 



Predicting the state of the environment 
IoT-based precision farming uses the Modified Lemurs Optimization (MLO) method to predict 
weather. Standard Lemurs algorithm for optimization is improved by this algorithm. It follows how 
lemurs forage and adapt in complex settings. These features help optimize farming systems affected 
by environmental changes. The MLO algorithm is crucial for real-time prediction of meteorological 
components such as soil water content, temperature, transpiration, CO₂ levels, and rainfall in our 
case study. Incorporating data from nodes of sensors across grid regions, the MLO method offers 
adaptive prediction that accounts for environmental changes in particular fields. These projections 
impact crucial farming decisions. For instance: 

• Irrigation scheduling can be adjusted to avoid overwatering or drought stress. 
• Fertilization timing is optimized based on soil nutrient predictions. 
• Pest control measures are aligned with predicted humidity and temperature thresholds. 

This predictive capability minimizes waste, conserves water, and increases crop yield. Our 
implementation of the MLO algorithm treats inputs from sensors as an aggregate matrix, with each 
individual representing a potential agricultural grid environmental condition. Iterative optimization 
finds the ideal environment scenario, permitting the decision assistance system to start proactive 
farming. MLO is strongly coupled with field data to create a sophisticated layer in smart agriculture, 
integrating conceptual improvement with practical management of crops. MLO algorithm is start 
with the initialization process.  

     (Eq. 1)  

where Z displays the calculation set's lattice in size n d. n concentrates on the applicant 
arrangements, while d deals with the selection criteria. Define the subsequent parameters for lemurs: 
Max_iter is the greatest amount of iterations, while M is the Populace amount. The dimensionality 
of the search area over the data set size is implied by f. In addition, the lower bound is denoted by 
LB and the upper bound by UB. In the u-th solution, generate the Z choice variable as follows. 

     (Eq. 2) 

where e signifies to the unvarying casual amount . Inside the loop estimate the FRR (Free Risk 

Rate) that is the constant of MLO process.  

    (Eq. 3) 
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where y alludes to the current cycles' amount. addresses cycle size. Compute the efficiency 

rating for each as stated follows.  

     (Eq. 4) 

where the wellness esteem is  little s alludes to the absolute of chosen highlights, A is the 

greatest chosen component, and Acc is the precision of every subset. Setting the rating of e1 which 

is a casual amount  and comparing it with FRR.  

   (Eq. 5) 

where the casual amount is the current u-th lemur in the Nth Populace; Z° which is the competitor 

arrangement in the h-th decision variable.  signifies the best lemurs in the world for the entire 

Populace across all iterations.  

     (Eq. 6) 

Then, each decision variable  calculated based on Eq. 7: 

       Eq. (7) 

where the opposition candidate's upper boundary is the lower boundary. To updates the 

lemurs' positions within the optimization loop by using the optimal solution as follows.  

   (Eq. 8) 

By improving the accuracy of these predictions, it enhances the THAM index and supports more 
efficient and effective agricultural management practices. The working process of environmental 
condition prediction using MLO is depicts in Algorithm 1.  

 

 

Algorithm 1 Environmental condition prediction using MLO 

Input    : Define the parameter , dimension d; LRR, and HRR 

Output : Environmental condition 
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1 Prepare the size of Lemurs populace N. 
2 Create populace insouciantly.  

3 Set candidate solutions X 
4 Preliminary Lemurs Populace 
5 while t <MaxIter do 
6 Call Lemurs Process 1 (LO) 
7 Apprise lemurs place consuming  U-shape or S 
8 While Lt <MaxLoc iter do 
9 End while 
10 End while 
11 Reoccurrence an ideal subgroup of feature with advanced exactitude 

 

IoT node deployment 
In precision agriculture, the strategic deployment and interconnection of IoT sensor nodes are 
critical for ensuring efficient data collection, transmission, and environmental monitoring. Each 
node in the IoT network is equipped with specific sensors that measure environmental parameters 
such as soil moisture, temperature, humidity, pH, and atmospheric gases. These nodes communicate 
wirelessly with nearby relay nodes or gateways, forming a mesh network that ensures reliable data 
transfer to the central monitoring system or cloud-based platform. The signal strength and distance 
between nodes determine their connectivity. This helps multi-hop transmission protect data in large 
or irregularly shaped fields. Adaptive routing routes sensor node data packets to the fastest route, 
reducing delays and energy utilization. This deployment method is improved by a Deep Pulse 
Coupled Neural Network (DPC-NN). Deep learning and Pulse-Coupled Neural Networks (PCNN), 
which can handle spatiotemporal data, are used in this model. The DPC-NN considers sensor 
assortment, overlap, climatic fluctuation, and terrain structure to recommend node locations and 
connections. DPC-NN ensures that nodes are in the optimum locations to cover the agricultural 
region and link together in the best method to reduce redundancy and ensure data flow. 
Environmental monitoring is more reliable and farm managers can make choices faster with this 
smart deployment. The DPC-NN model has three layers: input, modulation, and pulse generator. 
We first define the objective function as follows.  

      (Eq. 9) 

where signifies the input of DPC-NN model and signifies the external input stimulus signal 

and the optimal rating of each input corresponding to the point (h, g). 

     (Eq. 10) 

     (Eq. 11) 
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is the link input, incomes the internal movement is describes as follows.  

     (Eq. 12) 

Here is the dynamic threshold and productivity of neurons and displays the gift of 

connections amid β neurons. When the rating of β is small, the prospect of neighboring neurons 
firing synchronously is small and we obtain separation outcomes is high; y is used to casually choose 
which strategy to follow. 

  (Eq. 13) 

where refers to the location of hawks presently, states to the situation of a rabbit, 

is the accidental place of one of the existing hawks,  is the normal of all hawk situations 

at the minute, , , ,  and y are casual amounts reaching from 0 to 1. In total (uN, lN) 

mentions to the variety of the preliminary casual position of the hawks. 

     (Eq. 14) 

where is the prey's beginning energy, is its escape energy, and S is the number of repetitions that 
can occur. The prey attempts to flee when it is in danger; a score of R< 0.5 indicates a successful 
escape, while a score of R> 0.5 indicates an unsuccessful attempt at escape. Furthermore, when the 
besiege is gentle, it occurs at |e| > 0.5, and when it is harsh, it occurs at |e| < 0.5. 

   (Eq. 15) 

where  and G is accidental quantity among 0 and 2.When |e| <0.5 and R 

≥0.5, the current place is apprises trails 

    (Eq. 16) 

when |e| ≥ 0.5 and R< 0.5, the position apprise is formulate as trails.  

    (Eq. 17) 
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where C and T are the quantities of demand and casual trajectories individually. Levy Flight feature 
is implemented in status update as follows.  

     (Eq. 18) 

where u, σ, and v are casual amounts with ratings amid 0 and 1, and β is a non attendance relentless. 
When a complex blockade occurs during a progressive rapid dive |e| ≥0.5 and R ≥0.5 and the Harris 
Hox level is compute as follows.  

    (Eq. 19) 

where and . DPC-NN consist of modules such 

as coupling strength β, threshold attenuation coefficient  

     (Eq. 20) 

where  and characterize the proportion of 0 to 1 in the complete data, individually 

     (Eq. 21) 

where I(P) and I(Q) mean bordering entropy of given network information, I(P, Q) rapid the joint 
solution. The algorithm 2 depicts the working process of IoT node deployment using DPC-NN.  
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Algorithm 2 Deployment of IoT nodes using DPC-NN model 

Input: Field area, soil parameters, environmental conditions 
Output: Node deployment 
1. Initialize the casual Populace 
2. Define initial objective function  

3. If i=0 , j=1 
4. While Do 
5. Compute optimal fitness for fixed length (h, g). 

 

6 
Define the initial casual position of the hawks.  

7. Compute location update calculation  

8. Define the optimal threshold to fix the maximum and minimum solution 
 

9. End if 
10. Update the final rating 
11. End 

 

 

Production yield rate computation 
In precision agriculture, production yield rate refers to the measurable output of crops per unit area, 
influenced by numerous dynamic factors including soil conditions, environmental variables, and 
farm management practices. Accurate estimation and enhancement of this rate are critical for 
ensuring sustainable and profitable farming operations. The chaos distributed gravitational search 
(CDGS) algorithm is employed in the proposed model to improve the factors that have a direct 
impact on yield. CDGS is a nature-inspired metaheuristic algorithm that uses the global search 
power of the gravitational search algorithm and the unpredictability of chaos theory to avoid 
premature convergence and search the solution space more effectively. The method has a 
hierarchical and distributed structure, which lets it look at many interacting parameters and give 
better search results that show the best or nearly best circumstances for high crop output. Wheat, 
rice, and maize are examples of crops that are grown a lot and are used as a reference for theoretical 
evaluation. These are staple food crops in many agricultural areas and are greatly affected by the 
environment and soil conditions. The model looks at important factors that affect things like soil pH, 
moisture content, temperature changes, solar exposure, and nutrient levels. The system's goal is to 
provide input settings and ambient conditions that will give the highest yield output by optimizing 
these parameters with the CDGS algorithm. This structured approach helps farmers make data-
driven decisions tailored to specific crop categories and environmental setups, ultimately improving 
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productivity, resource utilization, and sustainability in precision agriculture practices. The objective 
function of prediction model describes as , where N represents the 

total amount of individuals and represents its position in the c-th dimension of the search space.  

      (Eq. 22) 

      (Eq. 23) 

Iteration represents the fitness rating in s. and are the worst and best fitness ratings 

in the iteration, respectively. Lower level individuals are attracted to middle level higher individuals. 
CDGS algorithm assumes a sigmoidal gravity constant.  

     (Eq. 24) 

Gravitational force among persons and in the c-th dimension at repetitions is defined as 

follows.  

    (Eq. 25) 

where is the Euclidean distance among two persons and ε is small continuous. In the middle 

layer, K best individuals are led by K individual best individuals.  

     (Eq. 26) 

where h ∈K best and g ∈ {1, 2, . . . , CB }. The  c-dimension indicates the update rate of the 

h-th best individual of g-th sub-Populace in the middle layer. The c-th dimension represents the 

h-th unique best individual in the top layer of the j-th sub-Populace.  

   (Eq. 27) 
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where h ∈ {1, 2, . . . , B CB }, g ∈ {1, 2, . . . , CB }. The best individual in the j-th sub-Populace 

replaces the worst individual in the sub-Populace of in all f iterations (g + 1). Personal speed 

and position  will be updated as follows.  

     (Eq. 28) 

     (Eq. 29) 

Then selects the best individual in the sub-Populace to optimizes the k best individuals in the 

middle layer. The ideal individual  is more directed is more favorable to speed up the convergence 

of the algorithm. When the historical information is better than the temporary person created in 

the layer , it changes . The update process is performed as follows: 

   (Eq. 30) 

    (Eq. 31) 

where x is a constant rating. To perform an experiment to finds the rating of p in the set. and

signifies two individuals casually selected from the historical data set. F signifies the fitness function 
and s is the amount of iterations. Then, compute the updated fitness function as follows.  

     (Eq. 32) 

The best person in the elite upper layer improves the convergence speed. In the historical data 

layer, place the individual with the best fitness . If temporary person's fitness is better than

, replaces , described as follows.  

   (Eq. 33) 

The production yield rate computation using CDGS algorithm involves analysis and optimization of 
critical agricultural attributes ensures higher efficiency in precision agriculture. Algorithm 3 depicts 
the working process of production yield rate computation using the CDGS. 
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Algorithm 3 Production yield rate computation using CDGS 

Input: Soil health, climate conditions, and agricultural practices 
Output: Production yield rate 
1. Casually initialize B particles 
2. while the termination criterion is not satisfied do 
3. 

Mass (a) can be created as follows:  

4. 
Define ’s acceleration in the c-th dimension  

5. Evaluate the fitness 
6 for 
7. Compute speed and position using hierarchical interactions 

 

8. end for x 
9. If rand > 5.0 then 
10. Compute speed and position  will be updated  

11. else 
12. 

Define revised velocity  

13. End if 
14. 

Compute temporary person's fitness  

15. Else 
16. Update the final rating 
17. End 

 

 

Results and Discussion 
This section presents the results and comparative analysis of the proposed and existing models for 
IoT-based precision agriculture. The MLO+DPC-NN+CDGS model performance is validated using 
Lenovo PCs equipped with an Intel(R) Core i5-2557M 1.70GHz processor and 4GB RAM. The 
simulation was conducted using a network simulator tool and MATLAB R2015. Sensor data were 
obtained from various reliable sources, such as the Bureau of Meteorology, the Linked Sensor 
Middleware (LSM), and the Phenonet venture. In this study, the IoT network setup consisted of 36 
sensor nodes, each representing a tree and equipped with relay nodes, deployed across varying field 
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sizes of 25×25 m², 50×50 m², 75×75 m², and 100×100 m² grids. These sensors primarily focused 
on monitoring environmental conditions like temperature and humidity, which significantly 
influence crop growth. However, it is important to note that the findings reported here are 
specifically influenced by the types of parameters and sensors used in the experimental setup—
particularly temperature and atmospheric measurements. For other parameter categories—such as 
those directly related to soil composition, nutrient content, or specific crop health indicators—the 
model performance and threshold outcomes may vary. Hence, while the current setup provides 
reliable predictions for the considered environmental parameters, further calibration and evaluation 
would be required when deploying different types of sensors for soil or crop-specific monitoring. 
The performance of the proposed MLO+DPC-NN+CDGS model was compared with existing 
models (Mekala and Viswanathan, 2020), including the casual model with THAM (Casual), the 
opportunity model with THAM (Opportunity), and the optimal (t, n) selection model with THAM ((t, 
n) selection). Tables 3 and 4 present critical thresholds used for evaluating production yield and 
environmental alert conditions based on the specific sensor parameters used in this study. 
 
Performance analysis of environmental condition prediction models 
The goal is to assess the accuracy of these models in predicting climatic elements including 
temperature, moisture in the soil, transpiration, CO2 levels, and rainfall, which significantly affect 
crop growth and farming operations. The modified Lemurs optimization (MLO) algorithm, particle 
swarm optimization (PSO), genetic algorithm (GA), and simulated annealing (SA) are being 
considered. To evaluate each model's agricultural prediction accuracy, processing speed, 
scalability, and real-time application.  

Figure 2 compares the effectiveness of four ecological models for prediction (MLO, PSO, GA, and 
SA) using MAE, RMSE, R², and MAPE error measures. The analysis included 10–100 IoT nodes. MLO 
improved the greatest for MAE, reducing 60% from 0.15 at ten servers to 0.06 at 100 nodes. 
Similarly, PSO reduced its MAE by 50%, GA by 45% and SA by 40%. The RMSE values also reflected 
a clear trend of improvement across all models. MLO showed a decrease of 36%, from 0.25 at 10 
nodes to 0.16 at 100 nodes. PSO exhibited a 32% reduction, GA improved by 30%, and SA showed 
a 28% improvement. The decrease in RMSE suggests a more accurate prediction with higher node 
counts, particularly for the MLO model. In terms of R², which indicates the model’s ability to explain 
the variance in the data, all models showed a significant increase in performance as the IoT nodes 
grew. MLO's R² increased by 7%, from 0.92 at 10 nodes to 0.99 at 100 nodes. PSO, GA, and SA 
showed improvements of 7%, 8%, and 9%, respectively, with PSO going from 0.9 to 0.98, GA from 
0.88 to 0.97, and SA from 0.85 to 0.94. MAPE also showed a significant reduction as the number of 
IoT nodes increased. MLO demonstrated the largest improvement of 47%, decreasing from 4.5 at 
10 nodes to 2.4 at 100 nodes. PSO improved by 42%, GA by 35%, and SA by 32%. PSO reduced 
from 5.2 to 3.1, GA from 6 to 3.9, and SA from 7.1 to 5. The analysis shows that increasing the 
number of IoT nodes leads to consistent performance improvements across all models. MLO did 
better than the other optimization methods in terms of MAE, R², and MAPE. The PSO, GA, and SA 
performed better in terms of RMSE and R². These findings demonstrate that adding IoT nodes to 
precision agriculture systems improves model accuracy and forecast reliability. 



As shown in Figure 3, the forecasting algorithms (MLO, PSO, GA, and SA) for IoT-based agricultural 
precision systems performed differently for duration of processing, integration, security, and 
scalability. When IoT nodes increased from 10 to 100, all models had longer periods of processing 
and more converging iterations. They gained durability and scalability to varying degrees. MLO had 
the smallest processing time increase, 120% from 1500 ms at 10 nodes to 3300 ms at 100 nodes. 
GA rose 90%, SA 82%, and PSO 100%. These data show that MLO is the fastest at running, whereas 
SA uses the most resources. When it came to convergence, all of the models revealed that the 
number of iterations needed generally went up as the number of IoT nodes went up. MLO 
demonstrated the smallest increase, rising by 75% from 120 to 210 iterations. PSO saw a 60% 
increase, GA exhibited a 50% rise, and SA showed a 45% increase. This indicates that MLO 
maintains faster convergence across increasing system complexity. Stability analysis showed 
significant improvements across all models. MLO showed the largest gain in stability, with its 
fluctuation value decreasing by 67%, from 0.012 at 10 nodes to 0.004 at 100 nodes. PSO followed 
with a 56% improvement, GA improved by 40%, and SA showed a 37% improvement. These 
findings affirm MLO as the most stable model across increasing data sizes. In terms of scalability, 
represented by R² values, all models showed slight decreases as the number of IoT nodes increased. 
MLO had the smallest reduction in scalability, with a 2.6% decline from 94.58 at 10 nodes to 92.12 
at 100 nodes. PSO decreased by 4%, GA by 4.4%, and SA experienced the most significant drop of 
4.7%. Despite this, MLO consistently maintained the highest scalability performance. The result 
illustrates that increasing the number of IoT nodes enhances stability and convergence while 
increasing processing demand. MLO consistently outperformed the other models in terms of 
execution time, stability, and scalability, making it the most efficient model for large-scale IoT-based 
precision agriculture systems. PSO, GA, and SA showed relative improvements in convergence and 
stability but lagged behind MLO in scalability and processing efficiency. 

Comparative analysis of IoT node deployment models 
The comparative analysis of various IoT node deployment models in precision agriculture reveals 
the superior performance of the proposed DPC-NN model, particularly when combined with MLO 
and CDGS. Figures 4 and 5 illustrate the training and testing performance of the DPC-NN model for 
temperature sensor deployment, showcasing smooth and consistent trends in both accuracy and 
loss. The training accuracy steadily increases and converges near 99%, while the validation 
accuracy stabilizes around 91–92%, indicating strong learning capability and generalization. The 
training loss exhibits a sharp exponential decline, and the validation loss mirrors this trend with 
minor fluctuations, reflecting model stability and minimal overfitting. Compared to the Casual, 
Opportunity, and (t, n) selection models, the MLO+DPC-NN+CDGS framework demonstrates 
significant improvements in sensor selection efficiency, prediction accuracy, and processing time. 
These enhancements result in better resource optimization and monitoring efficiency, especially in 
large or heterogeneous agricultural fields. The proposed model proves to be a robust and scalable 
solution for IoT-based environmental monitoring in precision agriculture. 

The performance evaluation in Table 5 shows that the proposed MLO+DPC-NN+CDGS model 
works well for deploying IoT nodes with temperature sensors, especially when it comes to choosing 



sensors, getting accurate readings, and processing time. The proposed method cuts the number of 
selected sensors by 78.26% when 20 IoT nodes are installed, and it keeps cutting the number of 
sensors by 60% even when there are 100 nodes. This tendency of choosing the best sensors is also 
clear in the Opportunity model and the (t, n) selection model, where the number of nodes dropped 
by 70.59% and 54.55%, respectively. The MLO+DPC-NN+CDGS model is always more accurate 
than other methods. It does 23.28% better than the Casual model, 13.99% better than the 
Opportunity model, and 6.56% better than the (t, n) selection model at the 100-node setup. This 
shows that the proposed model has a better learning ability and a better way to optimize sensors. 
Comparisons of IoT nodes using soil sensors demonstrate that the MLO+DPC-NN+CDGS model is 
better at sensing productivity, precision, and processing time. The amount of the chosen sensors 
lowers significantly in the proposed model. It reduces sensor utilization by 46.15% comparable to 
the (t, n) selecting model, 36.36% comparable to the Opportunity model, and 46.15% comparable 
to the Casual model with 100 IoT nodes. These reductions are consistent across smaller 
deployments, demonstrating the system's scalability and resource efficiency. At the 100-node level, 
the proposed model is 16.92% more accurate than the Casual model, 10.48% more effective than 
the possibility model, and 4.99% more accurate than the (t, n) selection model. The pattern stays 
the same for all node sizes, which shows that the model can keep making good predictions even 
when the deployment gets more complicated. The findings for processing time show even more how 
efficient the proposed methodology is at doing math. At 100 nodes, it cuts processing time by 
68.37% compared to the Casual model, 60.26% compared to the Opportunity model, and 46.55% 
compared to the (t, n) selection model. The fact that the MLO+DPC-NN+CDGS model consistently 
improves all major metrics shows that it is a very accurate solution for precision agriculture IoT-
based soil monitoring applications. 

The results in Table 7 show that the MLO+DPC-NN+CDGS model works well to improve 
measurement rating and monitoring efficiency in IoT-based precision agriculture, even when there 
are different numbers of deployed nodes. The proposed model constantly does better than other 
models in terms of measurement rating, no matter what the setup is. With 50 IoT nodes, MLO+DPC-
NN+CDGS gets a measurement rating that is 11.54% higher than the Casual model, 9.66% higher 
than the Opportunity model, and 7.87% higher than the (t, n) selection model. These improvements 
reflect the model’s strong ability to maintain high-quality environmental measurements even as 
network scale increases. The same trend is evident in monitoring efficiency. At 50 nodes, the 
MLO+DPC-NN+CDGS model improves monitoring efficiency by 16.01% compared to the Casual 
model, 11.85% compared to the Opportunity model, and 7.91% compared to the (t, n) selection 
model. These consistent gains, even with a lower number of IoT nodes, suggest that the proposed 
model not only enhances the quality of sensor measurements but also ensures optimal sensor 
network performance. The steady rise in performance with node count indicates strong scalability, 
making the MLO+DPC-NN+CDGS model a highly effective solution for real-time, resource-efficient 
agricultural monitoring. 

The evaluation of IoT-based precision agriculture across varying agricultural field areas, as shown 
in Table 8, demonstrates the strong performance of the MLO+DPC-NN+CDGS model in both 



measurement rating and monitoring efficiency. With increasing field sizes from 1 to 5 acres, the 
proposed model maintains a consistently higher measurement rating than all other models. At 5 
acres, it improves measurement rating by 14.32% over the Casual model, 10.04% over the 
Opportunity model, and 6.05% over the (t, n) selection model. This means that the proposed method 
works very well to keep sensor data gathering trustworthy, even when the field gets bigger. The 
MLO+DPC-NN+CDGS model is better in monitoring efficiency than other models in all field sizes. 
It does 11.67% better than the Casual model, 9.12% better than the Opportunity model, and 6.71% 
better than the (t, n) selection model at the 5-acre milestone. These results clearly show that the 
proposed model scales well with field size, which guarantees both high measurement accuracy and 
the best operating performance. The steady rise in value shows that it is suitable for use in large-
scale agricultural monitoring systems where accuracy, scalability, and efficiency are very important. 

 
Results analysis of yield estimation 
To test the proposed yield prediction model that combines DPC-NN and CDGS, ten test cases (TC1-
TC10) were created with different environmental and agricultural conditions. These scenarios 
included changes in temperature, humidity, fertilizer amount, and soil wetness to make them more 
like real-life farms and to test how well the model could predict outcomes with both good and bad 
inputs. Table 9 shows that the model works quite well when conditions are perfect. The model got 
very low MAPE values (all below 3%) and R² scores above 0.93 in TC2, TC3, TC6, and TC10, where 
the temperature and humidity were moderate, the fertilizer amounts were medium to high, and the 
soil moisture was about right. This shows that the model can learn a lot and be very accurate when 
conditions are good for growing crops. When the conditions were not quite right, such when the 
soil was a little too dry or too wet or when less fertilizer was used, the predictions were a little less 
accurate. In TC1, TC4, TC7, and TC8, MAPE went up a little but stayed below safe ranges, between 
4.88% to 7.69%. It's important to note that the R² values in these test instances were still above 0.87. 
This shows that the model is strong and can adapt to less-than-ideal situations while still keeping a 
solid correlation between actual and anticipated yields. Performance dropped more drastically when 
there was stress. The model indicated higher MAPE values of 9.38% and 11.11% in TC5 and TC9, 
which both had dry soil with high temperatures or high fertilizer levels. The R² scores declined to 
0.85 and 0.82, respectively. These results show how important soil moisture is for estimating yield. 
They also show that the model is sensitive to a lack of moisture, although it still makes a good 
estimate. On average, the model recorded an R² of 0.901 and a MAPE of 5.204%, reflecting 
consistent predictive capability across all test conditions. These averages confirm that the proposed 
model delivers high accuracy and generalization, even in challenging environmental conditions. To 
further validate its performance, Figure 6 shows the actual versus predicted yield values were 
plotted, showing close alignment with minimal deviation in most cases. Although the model is 
primarily regression-based, ROC and Precision-Recall curves were also generated by discretizing 
yield into categories. These classification-oriented metrics reaffirm the model’s effectiveness, 
particularly its ability to maintain precision and recall under varying conditions. 
 
 



Results comparison between proposed and state-of-art works  
The performance comparison presented in Table 10 clearly demonstrates that the proposed Hybrid 
Deep Learning-IoT Fusion model significantly outperforms existing state-of-the-art methods in terms 
of accuracy, RMSE, and MAE. The proposed model achieved the highest accuracy of 94.6%, 
surpassing the AHC-ShuffleNetV2 model (Xu et al., 2024) by 5.93%, the LoRa-ML Hybrid model 
(Lakshmi et al., 2023) by 3.73%, and the IQWO-TL-based model (Sowmiya and Krishnaveni, 2023) 
by 4.53%. This notable improvement in accuracy is attributed to the integration of real-time 
multimodal IoT sensor data and an advanced deep learning framework that facilitates adaptive 
feature learning. The use of attention mechanisms and context-aware temporal-spatial modeling 
allows the system to precisely capture critical variables like temperature, soil moisture, humidity, 
and fertilizer levels, leading to better decision boundaries. In terms of RMSE, the proposed model 
recorded a significantly reduced error of 0.27, representing a decrease of 35.71% compared to Xu 
et al. (2024) 28.95% compared to Lakshmi et al. (2023), and 25.00% compared to Sowmiya et al. 
(2023). The drop is because to a hybrid loss function, good regularization methods, and a better 
training approach that uses early halting and noise-filtered input data. The model's flexibility to work 
in many environments makes sure that the actual and anticipated yields are quite close to each 
other, which is important for making accurate predictions. The MAE value, which is another 
important error statistic, is likewise the lowest for the proposed model at 0.21. This is a 32.26%, 
27.59%, and 25.00% decrease from the models in Xu et al. (2024), Lakshmi et al. (2023) and 
Sowmiya  and Krishnaveni (2023), respectively. The model's ability to learn in detail, which allows 
it to pick up on small changes in field-level data and use real-time feedback from IoT inputs, makes 
this development possible. Also, hyperparameter tuning with grid search and cross-validation 
techniques makes sure that the predictions are strong and consistent. Table 10 shows that the 
proposed system's advantages are not only small ones; they come from strategic improvements in 
both data integration and model architecture. These changes show that hybrid AI-IoT systems could 
be able to give precision agriculture precise, real-time, and flexible solutions for predicting yields. 

 

Conclusions 
By combining deep learning with IoT, this study creates a smart and flexible prediction framework 
for IoT-based precision agriculture. The proposed method uses a modified Lemurs optimization 
(MLO) algorithm to provide accurate predictions about important environmental factors. This 
improves the THAM index for making smart agricultural decisions. A deep pulse-coupled neural 
network (DPC-NN) is used to make sure that IoT sensors are placed in the best possible way. This 
helps with sensor allocation and cuts down on redundancy across different field sizes. Using a chaos 
distributed gravitational search (CDGS) method that optimally weighs agronomic factors including 
temperature, fertilizer application, and soil moisture improves the yield prediction. We have 
thoroughly tested the proposed MLO+DPC-NN+CDGS model using simulations and real-world 
sensor data from trusted sources including the Bureau of Meteorology and Phenonet. The results 
show that the performance is far better than that of the best models that are currently available: 



• The proposed model gets a yield prediction accuracy of 90.509% with temperature sensors 
and 90.831% with soil sensors. This is an improvement of 12.445% and 9.525%, 
respectively, over baseline models. 

• It gets 96.699% for diverse IoT node deployments and 95.039% for different field areas when 
it comes to monitoring efficiency. This is 10.632% and 8.386% better than current 
approaches, respectively. 

• The study in Table 10 demonstrates that the proposed hybrid model is better than top-tier 
alternatives like AHC-ShuffleNetV2, LoRa-ML Hybrid, and IQWO-TL. It has a maximum 
accuracy of 94.6%, an RMSE of just 0.27, and an MAE of 0.21. These numbers show that 
the models did better than the best-performing benchmark models by 5.93%, 35.71%, and 
32.26%, respectively. 

These improvements validate the potential of the proposed model to provide scalable, real-time, 
and resource-efficient solutions for agricultural monitoring and yield prediction. Consequently, the 
MLO+DPC-NN+CDGS model presents a robust and deployable system for next-generation 
precision agriculture, capable of adapting to diverse environmental and field conditions while 
maintaining high prediction fidelity. 

 
Limitations and future direction 
The real-time field deployment could encounter practical challenges such as hardware limitations, 
sensor failures, or communication delays. In terms of application, the proposed system shows strong 
potential in supporting herbaceous crop management (such as wheat, maize, and paddy) where 
yield prediction is crucial for irrigation scheduling and resource optimization. With appropriate 
tuning, it could also be extended to tree-based perennial crops (e.g., apple, citrus) by integrating 
remote sensing data and canopy-specific parameters. Future work will focus on enhancing cross-
domain adaptability and incorporating more diverse data modalities (e.g., drone imagery, weather 
APIs) for broader applicability in smart agriculture. 
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Table 1. Summary of related works on IoT-based precision agriculture. 

Ref. Methodology Technique used Findings Research gap 
Xu et al. (2024) Deep Learning-based 

irrigation prediction 
AHC-ShuffleNetV2 with smart 
IoT 

Predicted irrigation levels 
using image and sensor data 

Does not address adaptability to 
varying field conditions and real-time 
feedback 

Sing M et al. 
(2023) 

Oxygen prediction in 
water systems 

Intelligent nonlinear decision 
trees (M5 model tree) 

Achieved correlation of 
0.877 and MAE of 0.963 

Limited to a single parameter; lacks 
multi-sensor integration 

Lakshmi et al. 
(2024) 

Intelligent irrigation 
planning 

LoRa-based ML with IoT Reduced water usage by 
46%, improved plant health 

Lacks adaptability under unpredictable 
environmental conditions 

Priyanka et al. 
(2023) 

Energy-efficient IoT 
clustering 

Region-based clustering 
(REAN) 

Improved energy efficiency No real-time data analysis or prediction 
capability 

Et-taibi et al. 
(2024) 

Cloud-based irrigation 
system 

Centralized smart irrigation Enabled connectivity across 
farms 

Does not optimize sensor placement or 
data latency issues 

Irwanto et al. 
(2024) 

Weather-integrated 
irrigation control 

Real-world solar test bed Improved irrigation during 
rainfall periods 

Not generalizable to other crops or 
weather patterns 

Ara et al. (2024) Energy-efficient IoT 
architecture 

Adaptive Mud Ring 
Optimization (AMR), K-means 

Improved CH selection and 
energy conservation 

No support for multimodal data 
processing or analytics 

Sowmiya and 
Krishnaveni 
(2023) 

Tomato disease detection IQWO-PCA, Transfer 
Learning (DenseNet121, 
AlexNet, etc.) 

Detected tomato disease 
using image features 

No real-time feedback loop; lacks 
integration with irrigation systems 

San Emeterio de la 
Parte et al. (2024) 

Crop harvesting 
prediction 

STSDaMaS, Neural Network Accurate forage legume 
harvesting predictions 

Not scalable to multiple crops or field 
types 

Shrivastava et al. 
(2023) 

Equipment control via 
IoT 

Scalable network architecture Remote monitoring of tractor 
status and position 

Focuses on machinery, not 
environmental parameters 

Talaat (2023) IoT-based decision-
making 

CYPA, Decision Trees, Extra 
Trees 

High accuracy (0.9814) in 
crop analysis 

Lacks handling of noisy or inconsistent 
sensor data 

Atalla et al. (2023) Wireless sensor 
evaluation 

6LowPAN with RPL routing 
protocol 

Improved performance in 
lossy networks 

No predictive model or intelligent 
analytics involved 



Kollu et al. (2023) Fertilizer 
recommendation 

ML on IoT sensor data Achieved 99.3% accuracy Adaptability to real-time environmental 
shifts not discussed 

Abdullahi et al. 
(2024) 

Smart fertilizer 
scheduling 

Decision Tree (SFSS MLR) Accuracy of 99.2% with 
balanced F1 metrics 

Model performance is highly dataset-
dependent 

Mekala and 
Viswanathan 
(2020) 

Sensor optimization THAM index, A(t,n) sensor 
method 

Evaluated soil and water 
quality 

Lacks intelligent learning and predictive 
adaptability 



Table 2. Dataset description and sensor configuration. 

S.No Parameter Sensor type Measurement 
unit 

Sensor model Data source Purpose/usage in model 

1 Soil moisture Capacitive soil 
moisture sensor 

% volumetric 
water content 

VH400 or 
equivalent 

Phenonet, LSM Irrigation scheduling, water stress 
detection 

2 Soil temperature Thermistor-based soil 
sensor 

°C DS18B20 or 
equivalent 

Phenonet Crop root health analysis, 
irrigation timing 

3 Air temperature Digital temperature 
sensor 

°C DHT22 Bureau of 
Meteorology 

Environmental control, yield 
estimation 

4 Humidity Capacitive humidity 
sensor 

% relative 
humidity 

DHT22 Bureau of 
Meteorology, 
Phenonet 

Disease risk assessment, 
evapotranspiration rate 

5 Soil pH Soil pH sensor pH units SEN0161 Phenonet Nutrient management, disease 
sensitivity analysis 

6 Electrical 
conductivity (EC) 

EC sensor dS/m Gravity EC sensor Phenonet, LSM Soil salinity and fertility 
evaluation 

7 Rainfall Rain gauge sensor mm/hr Tipping bucket 
type 

Bureau of 
Meteorology 

Irrigation optimization, weather 
condition modeling 

8 CO2 concentration NDIR gas sensor ppm MH-Z19 LSM, Phenonet Crop respiration analysis, 
greenhouse gas detection 

9 CO concentration Electrochemical gas 
sensor 

ppm MQ-7 LSM, Phenonet Pollution monitoring, plant stress 
indicator 

10 Ammonia (NH3) 
concentration 

Semiconductor gas 
sensor 

ppm MQ-137 LSM Fertilizer residue tracking, 
environmental quality 

11 Nitrous acid 
(HONO) level 

Chemical sensor 
(simulated) 

ppm Virtual simulated 
sensor 

Phenonet 
(Derived) 

Nitrogen cycle monitoring, gas 
emissions analysis 



Table 3. Threshold for production yield categories. 

Class SO2 Aqua quality 
Low >0.4 >7.5 
Medium 0.2 to 0.4 0.7 to 7.5 
High 0 to 0.2 0.5 to 7 

Table 4 .Threshold for THAM index categories. 

Class THAM index 
Normal <71 
Alert 72 to 78 
Danger 79 to 81 
Emergency > 82 

THAM, temperature-humidity-agriculture-meteorology 

 

Table 5. Result comparison of models for IoT node deployment with temperature sensors 

Model Amount of IoT nodes 
20 40 60 80 100 

  Amount of selected sensors 
Casual 23 24 26 28 30 
Opportunity 17 18 20 22 24 
(t, n) selection 11 12 14 16 18 
MLO+DPC-NN+CDGS  5 6 8 10 12 
  Accuracy (%) 
Casual 72.862 73.089 73.227 74.258 74.630 
Opportunity 78.494 78.721 78.859 79.890 80.262 
(t, n) selection 84.126 84.353 84.491 85.522 85.894 
MLO+DPC-NN+CDGS  89.758 89.985 90.123 91.154 91.526 

  Processing time (ms) 
Casual 42000 42500 43000 43500 44000 
Opportunity 32000 32500 33000 33500 34000 
(t, n) selection 22000 22500 23000 23500 24000 
MLO+DPC-NN+CDGS  12000 12500 13000 13500 14000 

 

 

 



 

Table 6. Result comparison of models for IoT node deployment with soil sensors. 

Model Amount of IoT nodes 
20 40 60 80 100 

  Amount of selected sensors 

Casual 26 27 31 35 39 
Opportunity 20 21 25 29 33 
(t, n) selection 14 15 19 23 27 
MLO+DPC-NN+CDGS  8 9 13 17 21 

  Accuracy (%) 
Casual 77.148 77.549 77.882 78.279 78.412 
Opportunity 81.473 81.874 82.207 82.604 82.737 
(t, n) selection 85.799 86.200 86.533 86.930 87.063 
MLO+DPC-NN+CDGS  90.125 90.526 90.859 91.256 91.389 
  Processing time (ms) 
Casual 47000 47500 48000 48500 49000 
Opportunity 37000 37500 38000 38500 39000 
(t, n) selection 27000 27500 28000 28500 29000 
MLO+DPC-NN+CDGS  13500 14000 14500 15000 15500 

 

Table 7. Results of IoT based precision agriculture with varying amount of IoT nodes. 

Model Amount of IoT nodes 
10 20 30 40 50 

  Measurement rating (%) 
Casual 76.685 77.038 77.078 77.288 77.601 
Opportunity 78.000 78.353 78.393 78.603 78.916 
(t, n) selection 79.316 79.669 79.709 79.919 80.232 
MLO+DPC-NN+CDGS  85.632 85.985 86.025 86.235 86.548 
  Monitoring efficiency (%) 
Casual 82.689 82.915 83.418 83.559 83.719 
Opportunity 85.847 86.073 86.576 86.717 86.877 
(t, n) selection 89.005 89.231 89.734 89.875 90.035 
MLO+DPC-NN+CDGS  96.128 96.354 96.857 96.998 97.158 

 

 



Table 8. Results of IoT based precision agriculture with varying agriculture field area. 

Model Agriculture field area (acre) 

1 2 3 4 5 

  Measurement rating (%) 

Casual 75.993 76.170 76.403 76.543 76.554 
Opportunity 78.978 79.155 79.388 79.528 79.539 
(t, n) selection 81.963 82.140 82.373 82.513 82.524 
MLO+DPC-NN+CDGS  86.948 87.125 87.358 87.498 87.509 

  Monitoring efficiency (%) 

Casual 84.901 84.997 85.066 85.173 85.281 
Opportunity 86.886 86.982 87.051 87.158 87.266 
(t, n) selection 88.871 88.967 89.036 89.143 89.251 
MLO+DPC-NN+CDGS  94.856 94.952 95.021 95.128 95.236 



Table 9. Yield estimation accuracy under varying environmental and agronomic conditions using the proposed MLO+DPC-NN+CDGS 
based model. 

Test case Temp (°C) Humidity (%) Fertilizer level Soil moisture Actual yield (t/ha) Predicted yield (t/ha) MAPE (%) R² score 

TC1 32 40 Low Dry 2.600 2.400 7.692 0.880 
TC2 28 65 Medium Optimal 3.800 3.700 2.632 0.940 
TC3 30 70 High Optimal 4.300 4.200 2.326 0.960 
TC4 27 80 Medium Wet 3.600 3.400 5.556 0.890 
TC5 34 45 High Dry 3.200 2.900 9.375 0.850 
TC6 29 75 Medium Optimal 3.700 3.600 2.703 0.930 
TC7 33 55 Low Optimal 2.900 2.700 6.897 0.870 
TC8 26 85 High Wet 4.100 3.900 4.878 0.910 
TC9 35 40 Medium Dry 2.700 2.400 11.111 0.820 
TC10 30 60 High Optimal 4.400 4.300 2.273 0.960 

 

 

Table 10. Comparative performance analysis of the proposed model with state-of-the-art techniques in terms of accuracy, RMSE, and 
MAE for yield prediction in precision agriculture. 

Methodology Accuracy (%) RMSE MAE Accuracy ↑ RMSE ↓ MAE ↓ 

AHC-ShuffleNetV2 [16] 89.323 0.4298 0.3115 5.931% -35.741% -32.264% 
LoRa-ML [18] 91.221 0.3863 0.2932 3.733% -28.954% -27.594% 
IQWO-TL [23] 90.534 0.3658 0.2824 4.539% -25.004% -25.001% 
MLO+DPC-NN+CDGS (proposed) 94.626 0.2752 0.2175 – – – 



 

 

Figure 1. Conceptual structure of proposed model for intelligent smart predictive model for IoT 
based precision agriculture. 

 

 

 

 

 

 



 

 (a) (b) 

  

 (c) (d) 

Figure 2. Error metrics analysis for environmental condition prediction models in terms of (a) MAE 
(b) RMSE (c) R² and (d) MAPE for the IoT-based precision agriculture models. 
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Figure 3. Performance evaluation and scalability analysis of prediction models (a) processing time 
(ms) (b) convergence (iterations) (c) stability and (d) scalability for the IoT-based precision agriculture 
models. 



  

Figure 4. Training and testing performance of proposed DPC-NN model for IoT temperature sensors 
deployment (a) Accuracy (b) Loss. 

  

Figure 5. Training and testing performance of proposed DPC-NN model for IoT temperature sensors 
deployment (a) Accuracy (b) Loss.  



 

Figure 6. Comprehensive visualization of the proposed yield prediction model's performance (a) 
actual-predicted yield across 10 test cases, demonstrating close alignment in optimal conditions (b) 
ROC curve highlighting the model’s binary classification capability with high AUC (c) precision-
recall curve confirming the model’s effectiveness under imbalanced yield classes (d) prediction error 
scatter plot illustrating accuracy with most points clustering around the ideal diagonal line. 


