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Abstract 

This study developed a rapid method for monitoring water stress in tea trees using unmanned 

aerial vehicle (UAV) multispectral imaging combined with machine learning models. The study 

analyzed tea trees subjected to five different irrigation treatments. UAV multispectral imaging 

and ground-based measurements were employed to explore the relationships between canopy-

air temperature differences, soil moisture content, spectral reflectance, vegetation indices, and 

canopy temperature. The ordering points to identify the clustering structure (OPTICS) 

algorithm was used to cluster soil moisture content and canopy-air temperature difference data. 

The clustering process determined the radius parameter (ϵ) from an ordered decision graph, 

establishing the upper and lower limits of the canopy-air temperature difference. These limits 

were then correlated with the vapor pressure deficit (VPD) lower limit equation for fully 

irrigated tea trees to validate the effectiveness of the OPTICS algorithm. Several machine 

learning regression models, including random forest (RF), support vector regression (SVR), K-

nearest neighbors (KNR), and backpropagation (BP) neural networks, were used to create an 

inversion model for predicting canopy temperature based on vegetation indices. A strong 
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correlation (coefficient of 0.74) was observed between the canopy-air temperature difference 

bounds derived from OPTICS clustering and the crop water stress index (CWSI) values 

calculated from empirical model data. Spectral reflectance at 450 nm, 560 nm, and 650 nm 

remained stable, while reflectance at 730 nm and 840 nm increased significantly with rising 

canopy temperature. The RF model demonstrated robust performance, achieving an R² value 

greater than 0.8, and effectively predicted canopy temperature using vegetation indices. By 

combining density-based OPTICS clustering to establish water stress index limits and 

leveraging vegetation indices for canopy temperature inversion, this study presents a rapid and 

accurate method for calculating the water stress index in tea trees. The findings provide a 

foundation for UAV-based remote sensing applications in monitoring tea tree water stress and 

highlight potential advancements in precision irrigation management. 

 

Key words: Tea tree; canopy temperature; water stress index; UAV remote sensing; 

multispectral; machine learning.  

 

Introduction 

Tea trees require substantial water for growth and development (Li et al., 2021; Kumar Jha et 

al., 2019; Wang et al., 2021). Adequate water supply and relative humidity significantly 

enhance tea quality and yield, whereas insufficient water or low humidity often result in coarse, 

low-quality leaves, ultimately reducing the economic benefits of the tea industry (Huang et al., 

2019; Yubin et al., 2019; Zou et al., 2023). In addition to water availability, tea trees are highly 

sensitive to temperature, with physiological processes regulated by minimum, optimal, and 

maximum temperature threshold (Awais et al., 2023; Maimaitijiang et al., 2020; Yin et al., 

2019). When subjected to water stress, tea trees experience stomatal closure, reduced 

transpiration, and increased canopy temperature, making canopy temperature a critical indicator 

of water stress (Harle et al., 2024; Maes and Steppe, 2019; Shi et al., 2022; Wu and Mao, 2022). 

Monitoring water stress during the spring tea harvest is especially crucial due to its impact on 

the quality, yield, and market value of tea (Liu et al., 2021; Zou et al., 2023, 2023). 

Current methods for quantifying water stress in tea trees primarily rely on determining the upper 

and lower baselines of the canopy-air temperature difference(de Castro et al., 2021; Harle et al., 



2024; Idso et al., 1981). These baselines are essential for calculating the CWSI, a widely used 

parameter for assessing crop water stress (Kouadio et al., 2023; Li et al., 2021; Zhang et al., 

2021). However, these baselines are highly sensitive to meteorological factors such as air 

temperature, relative humidity, and solar radiation, which can fluctuate rapidly. This variability 

complicates the accurate and stable determination of CWSI, limiting its reliability for precision 

irrigation (Bhandari et al., 2018; Harle et al., 2024, 2024). Machine learning models have been 

explored to predict CWSI baselines based on meteorological data, but their generalizability is 

often constrained by the dynamic variability of environmental conditions (Ge et al., 2019). Thus, 

a more robust and adaptable approach is needed to monitor tea tree water stress effectively. 

In recent years, UAV-based multispectral remote sensing has emerged as a powerful tool for 

efficient crop monitoring (Huang et al., 2019; Khanal et al., 2020; Maimaitijiang et al., 2020). 

UAVs enable the collection of high-resolution multispectral data, capturing spectral reflectance 

at different wavelengths to calculate vegetation indices that can infer crop growth parameters 

and physiological states (Deng et al., 2018; Wang et al., 2021; Zou et al., 2023). For instance, 

spectral data combined with models such as R and SVR have demonstrated success in 

predicting canopy temperature for crops like wheat and rice (Ge et al., 2019; Romero et al., 

2018). However, applications of UAV multispectral imaging for tea trees remain limited, 

especially for long-term water stress monitoring (Guofeng et al., 2022; Maes and Steppe, 2019). 

Moreover, traditional CWSI models struggle to adapt to dynamic environmental conditions, 

further restricting their effectiveness in precision agriculture (Kouadio et al., 2023; Liu et al., 

2021; Zou et al., 2023). 

To overcome these challenges, this study introduces a novel approach that integrates UAV 

multispectral imaging, machine learning models, and the density-based OPTICS clustering 

algorithm for monitoring water stress in tea trees. Specifically, UAVs were employed to collect 

spectral reflectance data, which were used to calculate vegetation indices and predict canopy 

temperature. Machine learning models, including RF, SVR, KNR, and BP neural networks, 

were used to establish predictive models for canopy temperature. The OPTICS clustering 

algorithm was further applied to stabilize the upper and lower baselines of canopy-air 

temperature differences, addressing the limitations of traditional empirical models. 

Compared to existing methods, this approach offers several advantages. UAV-based 



multispectral imaging allows for rapid and accurate data acquisition across large tea plantations, 

while machine learning provides robust predictive capabilities for canopy temperature 

estimation. Notably, traditional approaches for crop water stress index (CWSI) often rely on 

empirically derived or fixed baseline values for canopy-air temperature differences, which are 

highly sensitive to environmental variability (Kouadio et al., 2023). In contrast, this study 

introduces the OPTICS clustering algorithm to dynamically extract upper and lower CWSI 

bounds based on actual field conditions, including soil moisture and thermal data. This 

clustering-based approach enhances robustness and adaptability under heterogeneous 

microclimates. 

Additionally, the OPTICS clustering algorithm effectively mitigates the impact of 

meteorological variability by establishing stable baselines for CWSI calculation. To the best of 

our knowledge, this is the first application of combining UAV-based vegetation indices with 

OPTICS clustering for real-time tea plantation water stress monitoring. Together, these 

innovations enhance the accuracy, scalability, and reliability of water stress monitoring in tea 

trees. 

By integrating these advanced technologies, this study proposes a comprehensive and scalable 

solution for monitoring tea tree water stress. The findings not only provide theoretical support 

for precision irrigation management but also address broader challenges in adapting crop water 

stress monitoring methods to dynamic environmental conditions. This approach lays the 

groundwork for advancing UAV-based remote sensing applications in agriculture and 

promoting sustainable tea production practices. 

 

Material and Methods 

Study area 

The study was conducted in a tea plantation at South China Agricultural University, Guangzhou, 

Guangdong Province, China (113°36′E, 23°15′N). This region experiences a subtropical 

monsoon climate characterized by warm, humid springs, an average annual temperature of 

approximately 22°C, and abundant rainfall, making it suitable for studying the physiological 

and ecological characteristics of tea trees. The soil in the study area is classified as red sandy 

soil (80% red soil, 20% sandy soil) with good drainage and aeration properties and a field 



capacity of 27%, providing an ideal substrate to investigate the effects of varying water 

treatments on tea tree canopy temperature and soil moisture.  

The experiment, conducted from March to April 2023, utilized the Huanong No. 1 tea variety 

developed by South China Agricultural University. The experimental field was divided into five 

water treatment zones (T1–T5), each measuring 2 m × 0.5 m. The water treatments were 

designed to simulate conditions ranging from adequate irrigation to extreme drought, based on 

the drought tolerance of tea trees and practical irrigation requirements: 

T1: Adequate irrigation (field capacity of 85%–95%) 

T2: Mild stress (field capacity of 75%–85%) 

T3: Moderate stress (field capacity of 55%–65%) 

T4: Severe stress (field capacity of 45%–55%) 

T5: No irrigation. 

 

Data acquisition 

Data were collected between March 1 and April 16, 2023, under clear, cloudless weather 

conditions to ensure the accuracy of both multispectral imagery and meteorological data. 

Meteorological data were recorded every 10 minutes, while soil moisture and canopy 

temperature data were measured before and after each UAV flight. The data collection process 

is illustrated in Figure 1. 

 

UAV multi-spectral image acquisition 

A DJI Phantom 4 Multispectral UAV was employed to capture images of the tea tree canopy 

across five spectral bands: blue, green, red, red-edge, and near-infrared. These bands encompass 

key wavelengths in the visible and near-infrared spectra, effectively representing tea tree growth 

conditions and water stress levels. The UAV operated at an altitude of 10 meters, with forward 

and side overlap rates set at 80%. Images were captured at a resolution of 1600 × 1300, ensuring 

high-quality coverage of the tea canopy for subsequent image stitching. 

To ensure precise radiometric calibration, reflectance values specific to the DJI Phantom 4 

Multispectral camera were applied (blue: 25.095%, green: 26.648%, red: 26.687%, red-edge: 

26.680%, near-infrared: 28.000%). These calibration values, derived from a standard reference 



panel, minimized atmospheric and sensor-related effects, ensuring accuracy in subsequent 

vegetation index calculations. 

 

Ground data acquisition 

Ground-based data collection included meteorological observations and measurements of 

physiological characteristics of tea trees: 

Meteorological data: An intelligent video weather station was installed 1 meter above the 

tea canopy to collect real-time data on air temperature, humidity, light intensity, wind speed, 

wind direction, and rainfall. Measurements were recorded every 10 minutes, providing 

comprehensive 24-hour environmental information. 

Canopy temperature: Canopy temperature was measured using a Raytek ST18 infrared 

thermometer with an accuracy of ±0.2°C. To minimize random errors, each leaf was measured 

three times, and the average value was calculated. Measurements were conducted from a 

distance of 30 cm to ensure precise focus of the infrared beam on the leaf surface. For each 

treatment group, 20 representative tea leaves were randomly selected for measurement. All 

measurements were performed between 10:30 and 12:00 a.m. on clear-sky days to minimize 

variability due to sun angle and ambient conditions. The sensor was oriented perpendicular to 

the leaf surface during measurement to reduce angular distortion and ensure consistency. 

Soil moisture content: Soil volumetric moisture content was measured using a JK-300F soil 

moisture meter with an accuracy of ±0.2%. This device enabled rapid and reliable monitoring 

of soil water dynamics, making it suitable for the experimental conditions. 

 

Multispectral image processing workflow 

Multispectral image processing was conducted to ensure the accuracy and usability of data for 

vegetation index calculations. Initially, radiometric calibration was performed using DJI Terra 

software. A standard calibration panel was utilized to adjust reflectance values, ensuring 

consistency between the collected data and actual canopy reflectance. This step provided 

reliable input data for subsequent vegetation index computations. Following calibration, images 

captured during the UAV flight in five spectral bands were reconstructed and stitched together 

to generate complete multispectral image files (Guptha et al., 2021; Huang et al., 2019). The 



radiometric calibration was based on calibration panel images captured on the same day as the 

flight. The Phantom 4 Multispectral camera's reflectance panel was used, with preset reflectance 

values for each band: blue (25.095%), green (26.648%), red (26.687%), red-edge (26.680%), 

and near-infrared (28.000%). These values were entered into DJI Terra to correct for 

atmospheric interference. The software also completed orthorectification and georeferencing 

using embedded GPS data. A simplified version of the complete processing workflow is 

illustrated in Figure 2. 

To further process the data, ENVI 5.3 software was employed. The Layer Stacking tool was 

used to merge raw images from the five spectral bands into a single multispectral image, 

ensuring proper spatial alignment across all bands. The ZProfile tool was then applied to extract 

spectral reflectance data from Regions of Interest (ROI), carefully selecting representative areas 

of the tea tree canopy while avoiding interference from shadows and weeds. This approach 

ensured the extraction of accurate and representative reflectance data. 

Based on the spectral reflectance data, vegetation indices were calculated to characterize the 

physiological conditions of the tea tree canopy. These indices, derived from spectral reflectance, 

are commonly used to infer vegetation health and stress levels. The following indices were 

selected for this study: 

NDVI (Normalized Difference Vegetation Index) 

RDVI (Renormalized Difference Vegetation Index) 

DVI (Difference Vegetation Index) 

OSAVI (Optimized Soil-Adjusted Vegetation Index) 

These indices effectively reflect tea tree growth conditions and water stress levels. By analyzing 

the temporal trends of these vegetation indices and their correlation with canopy temperature, 

the water stress state of tea trees was predicted with higher accuracy. The specific formulas for 

calculating the vegetation indices are as follows: 
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In the formula: 

𝑅!"# — Reflectance of the near-infrared band (840 nm) 

𝑅#%& — Reflectance of the red band (650 nm) 

 

Calculation method of CWSI of tea plant 

The formula for calculating the CWSI is as follows: 

𝐶𝑊𝑆𝐼 =
(𝑇' − 𝑇() − (𝑇' − 𝑇()II
(𝑇' − 𝑇()𝑢) − (𝑇' − 𝑇()II

	 

Where: 

• 𝑇' is the tea tree canopy temperature in °C 

• 𝑇( is the air temperature above the tea tree in °C 

• (𝑇' − 𝑇()II is the lower limit of the canopy-air temperature difference, which represents 

the canopy-air temperature difference when stomata are completely closed with no 

transpiration, in °C 

• (𝑇' − 𝑇()𝑢) is the upper limit of the canopy-air temperature difference, which 

represents the canopy-air temperature difference when stomata are fully open under full 

transpiration, in °C 

The equations for the lower and upper limits are: 

 

(𝑇' − 𝑇()II = 𝑚 × 𝑉𝑃𝐷 + 𝐶 

𝑉𝑃𝐷 = 0.61078×e
17.27×T(
𝑇( + 237.3 ×

(1 − RH) 

(𝑇' − 𝑇()*! = 𝑚 × 𝑉𝑃𝐺 + 𝐶 

𝑉𝑃𝐺 = 𝑉𝑃𝐷(𝑇() − 𝑉𝑃𝐷(𝑇( + 𝐶) 

Where: 

• m and C are linear regression coefficients 

• RH is the air relative humidity in % 

• VPD is the vapor pressure deficit in Pa 

• VPG is the difference between the air saturation vapor pressure at temperature Ta and 



the air saturation vapor pressure at temperature Ta + C. The values of VPD and VPG 

are calculated using meteorological parameters Ta and RH. 

 

OPTICS clustering algorithm 

OPTICS is an enhanced density-based clustering algorithm that improves upon the traditional 

DBSCAN algorithm, particularly in handling noise points and irregularly shaped clusters 

(Ndlovu et al., 2021; Su et al., 2020; Wang et al., 2014). In this study, OPTICS was employed 

to classify soil moisture and canopy-air temperature difference data with greater precision, 

providing a more robust foundation for calculating the CWSI of tea trees. 

As an extension of DBSCAN, OPTICS generates an ordered list of points and determines 

cluster categories based on an appropriate neighborhood radius (ϵ). This algorithm was applied 

to classify canopy-air temperature difference and soil moisture data, enabling the extraction of 

upper and lower boundaries for more accurate determination of the water stress state of tea trees. 

Compared to DBSCAN, OPTICS offers improved performance in managing noise and irregular 

cluster shapes by generating an ordered sequence and calculating reachability distances (Cheng 

et al., 2024; Feroz and Abu Dabous, 2021; Jeong et al., 2016). This capability allows for more 

precise identification of the relationship between soil moisture and canopy-air temperature 

differences, avoiding potential errors in traditional methods. 

The OPTICS algorithm requires two main parameters: the minimum number of points (MinPts), 

which specifies the minimum number of samples required within the neighborhood radius, and 

the neighborhood radius (ϵ). Points that do not meet the MinPts requirement are considered 

noise points. In this experiment, MinPts was set to 9, and the clustering radius ϵ to 0.75. 

The ordered sequence generated by OPTICS represents the processing order of data points. On 

a plot of the ordered sequence, the x-axis denotes the order of processing, while the y-axis 

represents the reachability distance. Mathematically, the ordered list can be expressed as: 

{P+} = @21,35,6，. . . E 

where the 21st node is processed first, followed by the 35th and 6th nodes. 

The reachability distance determines whether one data point is accessible from another. If a 

point p can reach another point q via a series of intermediate points, p is considered reachable 



from q. This reachability is evaluated by comparing the reachability distance between p and q 

with MinPts. If the reachability distance is less than or equal to MinPts, the point is deemed 

reachable. 

By applying these principles, OPTICS facilitated the accurate classification of soil moisture 

and canopy-air temperature difference data in this study, providing the necessary boundaries 

for calculating the CWSI and improving the assessment of tea tree water stress. 

 

Canopy temperature prediction model 

This study utilized various regression models to predict the canopy temperature of tea plants, 

including BP neural networks, SVR, RF and KNR. Each model has distinct advantages and is 

suitable for specific scenarios, contributing to improved prediction accuracy and error reduction 

(Osco et al., 2021; Pipatsitee et al., 2023; Tsouros et al., 2019). 

The BP neural network is widely applied in regression tasks. It consists of an input layer, hidden 

layers, and an output layer. The network’s weights and biases are optimized through the 

backpropagation algorithm. During training, the network parameters are iteratively adjusted 

until the predicted results converge with the target values or the loss function stabilizes. In this 

study, the mean squared error (MSE) was employed as the loss function to quantify the average 

difference between predicted and actual values. 

The SVR model, a regression application of support vector machines (SVM), minimizes errors 

and enhances regression accuracy by maximizing the margin between samples and the decision 

surface. 

Random forest regression, an ensemble learning method, is well-suited for regression tasks. It 

aggregates predictions from multiple decision trees to produce the final output. Each decision 

tree is trained on a randomly selected subset of samples and features, and the final prediction is 

obtained by averaging the results of all decision trees. To prevent overfitting in this experiment, 

the minimum sample size for node splitting and leaf nodes was set to 5. 

KNR is an instance-based learning method that predicts a sample's value by averaging or 

weighting the values of its K nearest neighbors. In this study, Euclidean distance was used to 

measure the proximity of neighboring points, with K set to 6. 

To evaluate the performance of these machine learning regression models, the following metrics 



were used: 

• Coefficient of determination (𝑅,): measures the goodness of fit for the model. 

• Root mean squared error (RMSE): quantifies the dispersion between predicted and 

actual values. 

• Mean absolute error (MAE): represents the average difference between predicted and 

actual values. 

The formulas for these metrics are as follows: 

𝑅, = 1 −
F (𝑦H+ − 𝑦+),+
∑ (𝑦J+ − 𝑦+),+

 

𝑅𝑀𝑆𝐸 = M
1
𝑚N(𝑦+ − 𝑦H+),

-

+.)

 

𝑀𝐴𝐸 =
1
𝑚N|(𝑦+ − 𝑦H+)|

-

+.)

 

These metrics provide a comprehensive assessment of the model's performance, facilitating 

comparisons between different approaches for canopy temperature prediction. 

The selection of regression models—random forest (RF), support vector regression (SVR), K-

nearest neighbors (KNR), and backpropagation (BP) neural networks—was based on their 

strong track record in agricultural remote sensing applications and their effectiveness in 

modeling complex, non-linear relationships. These models offer high interpretability, are 

computationally efficient, and have been successfully applied in canopy temperature estimation 

and crop stress monitoring(Ge et al., 2019; Osco et al., 2021; Romero et al., 2018). 

Although deep learning models such as convolutional neural network (CNN) and long short-

term memory network (LSTM) have shown promise in large-scale agricultural studies, they are 

typically designed to process image sequences or time-series data. In this study, the input data 

(vegetation indices) are one-dimensional numerical features rather than raw image sequences 

or time-series data, which are more appropriate for CNN or LSTM architectures. Moreover, the 

primary goal of this study was to establish a lightweight, scalable, and interpretable framework 

for field-deployable canopy temperature estimation, which conventional ML models are better 

suited for. 



 

Results 

Determining canopy-air temperature bounds using OPTICS clustering 

The canopy-air temperature difference represents the variation in temperature between the tea 

tree canopy and the surrounding air, serving as a critical indicator of water stress levels. Soil 

moisture content is closely linked to this temperature difference: when soil moisture is low, 

stomata close, transpiration decreases, and canopy temperature rises, resulting in a larger 

temperature difference. Conversely, when soil moisture is high, transpiration increases, leading 

to a lower canopy-air temperature difference. 

To determine the upper and lower bounds of the canopy-air temperature difference, this study 

applied the OPTICS clustering algorithm to analyze soil moisture and canopy-air temperature 

difference data collected from different moisture treatment zones (T1 to T5). Figure 3 presents 

the clustering results, illustrating the distribution of various data points. This figure illustrates 

the clustering results of soil moisture and canopy-air temperature difference data points, 

classified into three clusters (A, B, and C) using the OPTICS algorithm. Cluster A (blue squares) 

represents low soil moisture conditions, cluster B (green diamonds) represents medium soil 

moisture conditions, and cluster C (red triangles) corresponds to high soil moisture conditions. 

Grey points represent outliers that do not belong to any cluster. Figure 4 depicts the OPTICS 

ordered decision diagram, which reveals the clustering characteristics of each data point. The 

red dashed line represents the epsilon threshold (ϵ= 0.75), which separates clusters. Data points 

below the threshold form distinct clusters, corresponding to low, medium, and high soil 

moisture conditions (clusters A, B, and C). Outliers are represented as isolated points above the 

threshold. 

From the analysis, the average canopy-air temperature difference for cluster C (representing 

high soil moisture) was calculated as -0.376°C, defining the lower bound. For cluster A 

(representing low soil moisture), the average canopy-air temperature difference was 5.52°C, 

defining the upper bound. These bounds were subsequently used in the calculation of the CWSI, 

providing a clear understanding of the physiological response of tea trees under varying 

moisture conditions. 

The results from Figure 3, showing the OPTICS clustering diagram, illustrate the clustering 



distribution of data points across different moisture levels. Meanwhile, Figure 4, the ordered 

decision diagram, further validates the clustering results and supports the establishment of 

accurate CWSI bounds. The clear identification of upper and lower bounds not only simplifies 

the calculation of CWSI but also enhances its accuracy, thereby improving the assessment of 

tea tree water stress.  

 

CWSI calculation and verification 

CWSI is a critical parameter for evaluating water stress in tea trees. In this study, the CWSI was 

calculated using the method described in Section X, which combines the linear regression 

relationship between VP and the canopy-air temperature difference, along with the upper and 

lower bounds determined using the OPTICS clustering algorithm. 

Under fully irrigated conditions, a linear regression model was developed to describe the 

relationship between VPD and the lower bound of the canopy-air temperature difference, 

yielding the following equation: 

(𝑇' − 𝑇()II = −2.118091 × 𝑉𝑃𝐷 + 3.374 

The coefficient of determination (R2=0.811) indicates a strong fit. Figure 5 illustrates this 

regression, highlighting a significant negative correlation between VPD and the lower bound 

of the canopy-air temperature difference, validating the use of VPD as a reliable water stress 

indicator. 

The upper and lower bounds derived from OPTICS clustering, combined with actual canopy 

temperature (TC) data, were then applied to compute the CWSI under various moisture 

conditions. Figure 6 compares the measured and predicted CWSI values, demonstrating a 

strong linear correlation (R2=0.74). Notably, the CWSI derived from OPTICS clustering 

provided more stable results, particularly for rapid assessments of water stress in tea trees under 

varying moisture conditions. 

 

Canopy temperature and spectral reflectance analysis 

Canopy temperature and spectral reflectance are critical indicators for assessing water stress in 

tea trees. Figure 7 illustrates the variation in canopy temperature under different water 

treatments. Under sufficient irrigation (T1), the canopy temperature remains relatively stable, 



with minimal fluctuations. However, as water stress intensifies (e.g., T4 and T5), the fluctuation 

range of canopy temperature increases significantly, with the maximum temperature difference 

exceeding 10°C. This suggests that reduced transpiration and stomatal closure have a 

pronounced impact on the canopy temperature of tea trees. 

Figure 8 depicts the variation in spectral reflectance across different moisture conditions. Under 

full irrigation (T1) and extreme water stress (T5), higher canopy temperatures are associated 

with a significant increase in reflectance in the red-edge (730 nm) and near-infrared (840 nm) 

bands. These changes are attributed to water stress-induced alterations in photosynthesis and 

transpiration, which affect the internal structure of leaves and their light absorption properties. 

In contrast, the reflectance in the blue (450 nm) and green (560 nm) bands exhibits minimal 

variation across treatments. 

Table 1 summarizes the characteristics of vegetation indices under varying moisture conditions. 

In the T1 zone with adequate soil moisture, vegetation indices such as NDVI and NIR show 

low standard deviations, indicating stable growth conditions. Conversely, in the T5 zone, the 

standard deviations of these indices, particularly NDVI and NIR, increase significantly, 

reflecting the adverse effects of water stress on vegetation growth. 

This analysis underscores the crucial role of canopy temperature and spectral reflectance in 

monitoring water stress in tea trees and provides valuable insights for understanding the 

physiological responses of tea trees to varying moisture levels. 

 

Model prediction and verification 

In this study, multiple machine learning regression models were utilized to predict the canopy 

temperature of tea trees, including SVR, RF, KNR, and BP neural network. Table 2 presents the 

error analysis results for the training and validation datasets across these models. 

Among the models, the RF model demonstrated the best performance, achieving R2 values of 

0.869 and 0.802 for the training and validation datasets, respectively. The RMSE values were 

0.985°C for the training set and 1.473°C for the validation set, while the MAE values were 

0.777°C and 1.095°C. These results indicate that the RF model has strong generalization 

capability and provides accurate predictions of canopy temperature. In contrast, the BP neural 

network exhibited the weakest performance on the validation set, with an R2 value of only 0.723. 



By integrating the predicted canopy temperature with the canopy-air temperature difference 

limits determined by the OPTICS clustering algorithm, the CWSI was calculated. Figure 9 

compares the predicted and observed CWSI values, showing a correlation coefficient (R2=0.73) . 

This result demonstrates that CWSI prediction based on the RF model can effectively and 

rapidly diagnose the water stress status of tea trees, making it a practical tool for irrigation 

management. However, under conditions of low water stress, some prediction errors remain. 

Future work should focus on optimizing model parameters and incorporating additional 

environmental variables to further enhance prediction accuracy. 

 

Discussion 

This study developed a model to calculate the CWSI for tea trees by integrating various water 

treatments, the OPTICS clustering algorithm, and UAV-based multispectral image analysis. The 

model's effectiveness in monitoring tea tree water status was successfully validated. The results 

indicate a strong correlation between the canopy-air temperature difference and soil moisture 

content. The OPTICS clustering algorithm effectively extracted the upper and lower limits of 

the canopy-air temperature difference based on soil moisture data. Compared to traditional 

empirical models, the limits identified using the OPTICS method were more stable, achieving 

a coefficient of determination (R2) of 0.74. This confirms the feasibility of applying this method 

to monitor tea tree water stress. The method's primary advantage lies in its reliance on stable 

soil moisture changes, minimizing interference from meteorological factors such as temperature, 

humidity, and light intensity, and providing a more reliable water stress assessment. 

The study also revealed significant differences in canopy temperature and spectral reflectance 

under various water conditions. Under low soil moisture conditions, the canopy-air temperature 

difference exhibited a wider variation range, with greater fluctuations in canopy temperature 

and a noticeable increase in reflectance within the red-edge (730 nm) and near-infrared (840 

nm) bands. To statistically validate the observed differences in spectral reflectance under 

varying water treatments, a one-way ANOVA was conducted on the 730 nm (red-edge) and 840 

nm (near-infrared) bands across the five treatment groups (T1-T5). The results showed 

significant differences for both wavelengths (730 nm: F = 21.68, p<0.001; 840 nm: F = 46.10, 

p<0.001), indicating that canopy reflectance increased significantly with water stress severity. 



As illustrated in Figure 10, the distribution of reflectance values clearly shifts upward from T1 

to T5 in both spectral bands, with the most substantial elevation observed in the NIR region. 

These findings support the physiological rationale for using red-edge and near-infrared 

wavelengths to monitor water stress in tea canopies. These findings suggest that while canopy 

temperature is strongly influenced by soil moisture, it may also be affected by other 

environmental factors, such as ambient temperature and light intensity. For tea trees under full 

irrigation, the canopy temperature showed minimal variation, and the vegetation indices 

displayed smaller standard deviations, indicating stable growth conditions. In contrast, water 

stress conditions led to greater fluctuations in both canopy temperature and spectral reflectance. 

These results provide valuable insights into diagnosing tea tree water stress and optimizing 

irrigation management practices. 

Additionally, this study verified the potential of UAV multispectral images for predicting the 

canopy temperature of tea trees. By analyzing the correlation between vegetation indices and 

canopy temperature, the R-based prediction model outperformed other machine learning 

models on both the training and validation datasets, demonstrating high prediction accuracy 

and robust generalization ability. This spectral data-based prediction method enables the rapid 

acquisition of canopy temperature information across large-scale tea plantations, facilitating 

real-time monitoring of tea tree water stress.Although this study focused on a relatively short 

data collection window during the spring tea season (March to April), this period represents the 

most critical growth stage for tea trees, when leaf quality and yield potential are at their peak. 

Spring tea is highly valued for its superior flavor and chemical composition, making this season 

especially relevant for precision irrigation and water stress assessment. Nevertheless, seasonal 

variations in environmental conditions -such as temperature, humidity, and solar radiation- may 

influence the physiological response of tea trees and affect the stability of model performance. 

Future research should therefore incorporate multi-season or year-round data collection to 

validate and improve the generalizability of the proposed models across diverse phenological 

stages and climatic conditions. 

Despite the significant advantages demonstrated by the OPTICS clustering algorithm and UAV 

spectral analysis in monitoring tea tree water stress, certain limitations remain. For instance, 

data consistency may be influenced by varying weather conditions. Future studies are 



recommended to increase control over experimental conditions or conduct experiments in 

greenhouse environments to minimize interference from external factors. Furthermore, 

integrating additional data, such as leaf stomatal conductance and physiological response 

metrics, could help construct a more comprehensive water stress assessment model. 

In summary, this study proposes a novel approach to tea tree water stress monitoring by 

combining the OPTICS clustering algorithm and UAV-based multispectral analysis. The 

method achieves accurate canopy temperature prediction and efficient CWSI calculation, 

making it both theoretically innovative and practically applicable. This approach offers valuable 

technical support for precise irrigation management in tea tree cultivation. 

 

Conclusions 

This study investigated the water stress status of tea trees during the spring tea harvest period 

by utilizing UAV multispectral imagery combined with soil moisture content and canopy 

temperature data collected under varying water treatments. By establishing machine learning 

models and integrating the OPTICS clustering algorithm, the following key findings were 

obtained: 

1. Determination of canopy-air temperature difference limits: 

Using soil moisture content and canopy-air temperature difference as variables, the 

OPTICS clustering algorithm successfully identified the upper and lower limits of the 

canopy-air temperature difference for tea trees. Compared to traditional empirical 

models for CWSI calculation, the lower limit determined by the OPTICS method 

demonstrated higher accuracy and stability, with a coefficient of determination 

(R2=0.74), highlighting its effectiveness in water stress monitoring. 

2. Canopy temperature prediction model: 

For predicting canopy temperature using vegetation index inversion, the RF model 

achieved the best performance, with R2>0.8 for both the training and validation datasets. 

The RF model also recorded a validation set RMSE of 1.473°C, demonstrating high 

prediction accuracy and strong generalization ability. In contrast, the BP neural network 

yielded the poorest results, underscoring its limitations in this application. 

3. Rapid CWSI calculation: 



By integrating the OPTICS clustering algorithm with the RF-based prediction model, 

the CWSI was calculated rapidly, achieving an R2=0.73. This method proved to be 

effective for monitoring the water stress status of tea trees and offers practical technical 

support for precision irrigation management. 

The primary innovation of this study lies in the combination of the density-based OPTICS 

clustering algorithm with machine learning models, proposing a novel approach to water stress 

monitoring that addresses the limitations of traditional empirical methods. Future research 

should explore the applicability of this approach over extended time periods and under diverse 

climatic conditions, while incorporating additional physiological parameters and 

meteorological data to enhance the model's accuracy and robustness. 
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Figure 1. Data collection system and workflow for monitoring tea tree water stress. 

 

 

 
 
Figure 2. Workflow of UAV multispectral image processing: including radiometric calibration, 
orthomosaic generation using DJI Terra, and reflectance extraction and analysis in ENVI 5.3. 



 
Figure 3. OPTICS clustering diagram for canopy-air temperature difference and soil moisture 
data. 

 

Figure 4. OPTICS ordered decision diagram for canopy-air temperature difference data. 



 
Figure 5. Linear regression between VPD and canopy-air temperature difference lower bound: 
This figure illustrates the linear regression relationship between VPD and the lower bound of 
the canopy-air temperature difference (𝑇' − 𝑇() under fully irrigated conditions. The fitted line 
(Y=−2.12X+3.37Y) demonstrates a strong negative correlation (𝑅,=0.811), confirming the 
importance of VPD as an indicator of water stress in tea trees. 
 

 

 
Figure 6. Comparison of measured and predicted CWSI values: This figure compares the 
measured and predicted CWSI values across various moisture conditions. The dashed red line 
represents the regression line (𝑅,=0.74), while the solid black line indicates the ideal 1:1 
relationship. The strong linear correlation highlights the accuracy of the OPTICS clustering-
based CWSI calculation method for assessing tea tree water stress. 



 
Figure 7. Variation in canopy temperature under different water treatments: This figure shows 
the variation in canopy temperature across different dates under five water treatment conditions 
(T1–T5). T1 represents sufficient irrigation, while T5 indicates extreme water stress. As water 
stress intensifies, the fluctuation in canopy temperature becomes more pronounced, with T5 
exhibiting the highest temperature and fluctuation range. These changes reflect the impact of 
transpiration reduction and stomatal closure under water stress. 
 

 
Figure 8. Spectral reflectance under different canopy temperatures: This figure illustrates the 
spectral reflectance of tea leaves under two conditions: full irrigation (T1, 𝑇'=25.55∘C) and 
mild water stress (T2, 𝑇'=27.91∘C). Reflectance in the red-edge (730 nm) and near-infrared 
(840 nm) bands increases significantly with rising canopy temperature, indicating physiological 
changes in leaf structure and photosynthetic activity under water stress. Reflectance in the blue 
(450 nm) and green (560 nm) bands remains relatively stable. 
 



 
Figure 9. Comparison between predicted and measured CWSI values: This figure illustrates 
the relationship between the predicted CWSI values, calculated using the RF model, and the 
observed CWSI measurements. The black solid line represents the ideal 1:1 relationship, while 
the red squares depict the predicted data points. 

 
Figure 10. Variation in spectral reflectance under different water treatments: This figure shows 
the distribution of spectral reflectance at two key wavelengths—red-edge (730 nm) and near-
infrared (840 nm)—under five water treatment conditions (T1–T5). T1 represents sufficient 
irrigation, while T5 indicates extreme water stress. As water stress intensifies, reflectance 
values at both wavelengths increase progressively, with T5 showing the highest levels. These 
changes reflect reduced chlorophyll absorption and increased leaf scattering associated with 
stomatal closure and altered canopy structure under water-limited conditions.  



Table 1. Vegetation index of tea leaves under different water conditions. 

 

Spring tea period Data characteristic  Vegetation index 
 NIR NDVI DVI RDVI OSAVI 

 
 

T1 

Maximum value  0.5 0.95 0.49 0.68 0.84 
Minimum value  0.42 0.86 0.40 0.60 0.74 

 Mean value  0.46 0.92 0.44 0.64 0.80 
Standard deviation  0.0246 0.0216 0.0264 0.0242 0.0231 

 
 

T2 

Maximum value  0.59 0.93 0.55 0.72 0.85 
Minimum value  0.45 0.82 0.41 0.58 0.72 

Mean value  0.55 0.86 0.51 0.67 0.79 
Standard deviation  0.0357 0.0307 0.0360 0.0312 0.0302 

 

 
Table 2. Performance metrics of machine learning models for canopy temperature prediction. 
This table summarizes the performance of four machine learning models for predicting the 
canopy temperature of tea trees. 
 

Model Modeling set  Validation set 
RMSE/℃ MAE/℃ 𝑅!  RMSE/℃ MAE/℃ 𝑅! 

SVR 1.256 0.952 0.825  1.299 1.013 0.774 
RF 0.985 0.777 0.869  1.473 1.095 0.802 

KNR 1.12 0.819 0.85  1.326 1.084 0.783 
BP 1.397 1.08 0.761  1.61 1.239 0.723 

 


