
Abstract 
In agriculture, it is crucial to identify and control weeds as 

these plant species pose a significant threat to the growth and 
development of crops by competing for vital resources such as 
nutrients, water, and light. A promising solution to this problem is 
adopting smart weed control systems (SWCS) that significantly 
reduce the use of harmful chemical products. Furthermore, SWCS 
leads to reduced production costs and a more sustainable and eco-
friendly approach to farming. However, implementing SWCS in 

natural fields can be challenging, mainly due to difficulties in 
accurately localizing plants. To address this issue, a visual identi-
fication system can be employed to label plants from images using 
a process known as semantic segmentation. In this work, we have 
implemented, validated, and compared three deep learning 
approaches, including Mask Region-based Convolutional Neural 
Network (Mask R-CNN), Mask R-CNN enhanced with an Atrous 
Spatial Pyramid Pooling module (Mask R-CNN-ASPP), and a 
proposed model named Residual U-Net architecture, for the 
semantic pixel segmentation of high densities of both crops (Zea 
mays) and weeds (including narrow-leaf weeds and broad-leaf 
weeds). Data augmentation and transfer learning have also been 
implemented. The performance of the models was evaluated with 
the well-known metrics Precision, Recall, Dice similarity coeffi-
cient (DSC), and mean Intersection-Over-Union (mIoU). As a 
result of the analysis, the DSC and mIoU of Mask R-CNN-ASPP 
based models were up to 10.63% and 10.54% superior to that of 
the Mask R-CNN based models. Nonetheless, the proposed 
Residual U-Net architecture outperformed Mask R-CNN-ASPP 
based networks in all the metrics, reaching a DSC of 92.98% and 
mIoU of 87.12%. Thus, we have concluded that the proposed 
Residual U-Net-like architecture is the best alternative for the 
semantic segmentation task in images with high plant density. Our 
research addresses the challenge of weed identification and con-
trol in agriculture, helping farmers produce crops more efficiently 
while minimizing environmental impact. 

 
 
 

Introduction 
Weed control is an indispensable practice in agriculture. One 

main reason for implementing this control is that weeds can com-
pete with crops for essential resources like nutrients, sunlight, and 
water, which can significantly reduce crop yield (Picon et al., 
2022). Moreover, weeds can act as carriers of pathogens, thereby 
augmenting the risk of disease infection to crop plants (Dentika et 
al., 2021). For instance, in the case of the corn crop with high den-
sities of weeds left uncontrolled during the production cycle, its 
yield is reduced by up to 90% (Nedeljković et al., 2021). Thus, the 
identification and location of weeds in the crop field have emerged 
as a crucial research topic, enabling the implementation of a well-
regarded approach to weed management, namely site-specific 
weed management (SSWM) (Montes de Oca et al., 2018; Montes 
de Oca and Flores, 2021a). 

SSWM techniques involve the accurate detection and localiza-
tion of weeds in the field to facilitate targeted control measures, 
such as the precise application of thermal beams or herbicide flow 
directly to weed-infested areas (Garibaldi-Márquez et al., 2022). 
This advanced technology has demonstrated remarkable results, 
leading to reductions of up to 82% in herbicide volume (Nikolić et 
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al., 2021), decreased production costs (Monteiro and Santos, 
2022), as well as a significant reduction in environmental pollution 
and herbicide residues in food (Montes de Oca and Flores, 2021b; 
Tang et al., 2016). Nevertheless, the first challenge for implement-
ing an efficient SSWM technology is the discrimination of crops 
and weeds under natural conditions. Then, a computer vision sys-
tem may perform weed and crop discrimination. An approach 
based on the pixel-wise semantic segmentation technique can be 
implemented in this context. Semantic segmentation aims to cate-
gorize each pixel in the image into a class, producing a segmenta-
tion map of the plant within the input image. 

Traditional semantic segmentation algorithms, including nor-
malized N-Cut (Shi and Malik, 2000), super-pixel (Ren and Malik, 
2003), and k-means clustering (Arai and Barakbah, 2007), have 
been widely used in various classification tasks. However, when it 
comes to agricultural applications, these classical algorithms have 
exhibited certain limitations due to factors such as similarities in 
plant color, the complex shapes of leaves, and high plant densities 
(Zhang and Peng, 2022). To address these challenges, researchers 
in recent years have turned to more advanced segmentation tech-
niques. Such techniques are commonly based on the use of deep 
learning (DL) architectures. These DL-based approaches have 
been overwhelmingly successful in several computer vision tasks 
including natural language processing, object recognition, and 
object segmentation, to name a few. 

Among the DL-based approaches, convolutional neural net-
works (CNNs), which are the most popular deep learning architec-
ture, have been utilized for plant classification (Garibaldi-Márquez 
et al., 2022), disease detection (Jadhav et al., 2021), nutrient defi-
ciencies studies (Taha et al., 2022), etc. The popularity of CNNs is 
because they can extract and learn multi-features from a set of 
input images (Picon et al., 2022). Thus, special attention was paid 
to CNN models for semantic segmentation. For instance, in the 
work presented by Long et al. (2015), a Fully Convolutional 
Network (FCN) for segmentation has been proposed. In this work, 

the authors have shown that the multi-resolution layer combina-
tions significantly improve the segmentation of objects present in 
the image while simultaneously simplifying and speeding up learn-
ing and inference. On the other hand, in the work reported by Ma 
et al. (2019), the authors segmented rice seedlings, weeds, and 
backgrounds utilizing the SegNet-FCN architecture, which was 
compared with the traditional FCN and U-Net networks. Similarly, 
in the work of Kolhar and Jayant (2021), the authors evaluated the 
residual U-Net, classic SegNet, and classic U-Net for segmentation 
of individual Arabidopsis and Tabacco plants, reaching a dice coef-
ficient (DSC) of 97.09% from the residual U-Net. Regarding 
works carried out in corn crops, Dyrmann et al. (2016) classified 
soil, weeds, and corn plants based on FCN from RGB images, 
reporting an accuracy of over 94%. Recently, Picon et al. (2022) 
presented a modified PSPNet for segmenting corn plants, three 
narrow-leaf weed species, and three broad-leaf weed species. They 
reached a DSC of 25.32% when the plants were grouped into crop, 
narrow-leaf weeds, and broad-leaf weeds classes. 

Even though numerous studies have explored the semantic 
segmentation of various crops, there needs to be more focus on 
segmenting one of the most crucial cereals, namely corn. Then, 
there is a clear need to propose and evaluate deep learning archi-
tectures specifically tailored for categorizing corn plants and dis-
tinguishing them from common weeds. Furthermore, to the best of 
our knowledge, the segmentation of corn plants in natural field 
conditions has received even less attention, an aspect of significant 
importance for understanding and accurately delineating corn 
plants within real-world agricultural environments, which is an 
essential requirement for developing site-specific weed and corn 
control systems. In this work, a modified residual U-Net network 
specifically designed to achieve semantic segmentation of weeds 
and corn plants has been proposed. The performance of this pro-
posed network has been compared with a Mask Region-based 
Convolutional Neural Network (Mask R-CNN) and a proposed 
improved version of the Mask R-CNN. The proposed Mask R-
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Figure 1. Methodology overview for crop/weed semantic segmentation in natural corn fields. The ground-level input image is shown on 
the left-hand side. In the center, the training/testing deep learning model is presented. On the right-hand side, the semantic segmented 
image is shown. This output image shows in green the segmented crop plant, in red the narrow-leaf weeds (NLW), and in blue the broad-
leaf weeds (BLW).



CNN (Mask R-CNN-ASPP) differs from the classic model by 
incorporating the Atrous Spatial Pyramid Pooling module. 

 
 
 

Materials and Methods 
Semantic segmentation is a computer vision technique that 

involves classifying each pixel in an image into a specific class or 
category, thereby dividing the image into meaningful segments. 
Unlike simpler forms of image segmentation, such as object detec-
tion, which identifies and locates objects in an image, semantic 
segmentation goes a step further by assigning a distinct label to 
every pixel, providing a detailed understanding of the image’s con-
tent. This method is particularly valuable in various applications, 
including agriculture, where it plays a pivotal role in precision 
farming (Figure 1). Semantic segmentation helps identify and clas-
sify different elements within an agricultural scene, such as crops, 
soil, and weeds, enabling farmers to gain granular insights into 
their fields. Farmers often face challenges in accurately assessing 
crop health, identifying weeds, and optimizing resource allocation. 
Semantic segmentation can address these issues by enabling auto-
mated and precise delineation of crop boundaries, detection of 

plant diseases, and differentiation between crops and unwanted 
vegetation. In this context, the addressed problem can be summa-
rized as follows:  

 
Problem 1. GGiven a ground-level set of images, denoted as 

X= {xi  ∈ I(m×n×3) |0 ≤ i ≤ N}, where I(m×n×3) refers to the set of m×n 
color images, acquired from a natural cornfield, the problem is to 
create a pixel-wise segmentation map where each pixel  
([xi ](r,c),r=1,…,m;c=1,…,n) is assigned to the class Corn plants 
(Crop), Narrow-leaf weeds (NLW), Broad-leaf weeds (BLW), or 
Soil, despite the presence of rocks, stubble, plant density, occlu-
sions, shadows, and sunlight intensity. Thus, the proposed method-
ology aims to label each pixel of the input image by means of a 
deep-learning-based model (M) with a specific class (Crop, NLW, 
BLW, Soil), i.e., M:[x](r,c)↦ y, where y ∈{Crop,NLW,BLW,Soil}. 

 
To address Problem 1, we propose the overall process summa-

rized in Figure 1, where an input image, which presents a high 
plant density, is pixel-wise segmented utilizing a deep-learning-
based model (residual U-Net, Mask R-CNN, or Mask R-CNN-
ASPP). 
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Figure 2. Sample images of our dataset. The first row shows individual plant images, while the second-row features images of multiple 
plants, exhibiting scenarios of overlapping leaves, occlusion, and soil appearance variability. Finally, the last row depicts images of mul-
tiple small plants, likely captured from the maximum possible distance.



Dataset description and image pre-processing 
We have collected extensive crop/weed images in natural corn 

fields to train and test the proposed system. All these images were 
pixel-level annotated. Most images were captured in a top-down 
view, and only a few were captured from side views. The image 
capture distance, h, between the plants and the camera was 0.4 m 
to 1.5 m, i.e., h ∈ [0.4 m, 1.5 m]. Most of the acquired images 
include different plant species (weeds) and several instances of the 
crop. The dataset for this study has been integrated by 10,200 
images of sizes 4,608×3,456, 1,6000×720 and 2,460 × 1,080 pix-
els. Our image dataset variability includes side views of plants and 
views of plants with zoom variation. Furthermore, several images 
were acquired with different light conditions, because these images 
were captured on sunny and cloudy days, in the morning, at noon, 
and in the afternoon. Additionally, our image dataset does not have 
a uniform background since elements like the soil appearance and 
straws from past crops were introduced. It is worth mentioning that 
the images were captured every five days. Figure 2 shows repre-
sentative instances of the dataset. In the first row (Figure 2a), sin-
gle-plant images are shown; in the second row (Figure 2b), multi-
ple-plant images are provided, where leaves overlap, occlusion and 
soil appearance variability are observed. Finally, in the last row 
(Figure 2c), multiple small plants are depicted as a product of the 
maximum capture distance (h = 1.5m). 

After carefully observing the acquired images, nine different 
plant species were found. These plants were grouped into three 

classes: i) Crop, ii) NLW, and iii) BLW. A manual labeling step 
using the tool VGG Image Annotator (Dutta and Zisserman, 2019) 
was conducted after grouping the plants in each of the 10,200 
acquired images. This involved tracing carefully a polygon around 
the contour of most plants in the image, ensuring that soil pixels 
were consistently excluded. The built dataset is defined as DS 
={(x1,Yi)}(i=1,...,N), where xi∈ I(m×n×3) represents the i-th image and 
Y_i={y_j}(j=1,...,M), in which yj∈{Crop, NLW, BLW, Soil}, is the 
set of all labeled plants and soil in the i-th image. It is worth men-
tioning that, in general, |Yi |≠|Yk |∀ i≠k (|·|  refers to the cardinality 
of the set). Table 1 shows a summary of the plant species that 
belong to each class, the labels traced per plant species (LBLS), 
and the total number of labels for each class (LBLC). It is worth 
noticing that the class Soil is not reported in this table because it 
was indirectly annotated. 

The proposed methodology aims to predict the elements “Y*” 
presented in an input image “x” with a previously trained deep 
learning model. 

 
Deep neural network architectures 

The integration of deep neural networks and semantic segmen-
tation has become a powerful technological advancement in the 
field of agriculture with diverse applications. Specifically, 
Convolutional Neural Networks (CNNs), a type of deep neural net-
work, have proven to be adept at handling large amounts of agri-
cultural data, enabling precise image analysis for various tasks 
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Figure 3. Residual U-Net architecture representation designed for semantic segmentation of weed plants and corn crops. 



(Dyrmann et al., 2016; Ma et al., 2019; Kolhar and Jayant, 2021). 
Through applying deep neural networks, semantic segmentation 
facilitates the accurate delineation of specific objects within agri-
cultural images, such as crops, weeds, and soil. 

 
Residual U-Net architecture 

The proposed residual U-Net architecture consists of two key 
components: an encoder, also referred to as the backbone or con-
tracting path, and a decoder or expansive path. The encoder per-
forms convolutional operations to extract essential features. On the 
other hand, the decoder employs transposed 2D convolutional lay-
ers to upscale the feature blocks until they match the size of the 
original input image. In the proposed architecture, we utilize the 
ResNet50 and ResNet101 architectures (He et al., 2016) to serve 
as the encoder part of our model. Figure 3 visually represents the 
proposed residual U-Net architecture. 

From the input image, the encoder operations commence with 
a 7×7 padded convolution, followed by normalization and a 
Rectified Linear Unit (ReLU) activation function. These sequential 
operations yield an initial feature map with dimensions 
256×256×64. Subsequently, this feature map becomes the input for 
the “ResNet, B1” block, the output of which is then passed to the 
next “ResNet, B2” block. This process continues until the final 
output is obtained from the “ResNet, B4” block. Each ResNet 
block contributes to downsampling the feature maps, resulting in 
halved size and twice the number of channels compared to the pre-
vious stage, as depicted in Figure 3. 

In the decoder section of our proposed network, we employ  
3×3 transposed convolutions to facilitate the up-sampling of the 
feature maps at each step. This operation effectively doubles the 

size of the feature maps while reducing the number of channels by 
half. Consequently, the up-sampled feature maps are concatenated 
with the corresponding feature map obtained from the ResNet 
block at the same level in the encoder. Following the concatena-
tion, two 3×3 padded convolutions and the ReLU activation func-
tion are applied. Lastly, at the final layer of the decoder, a 1×1 con-
volution is utilized to map each 64-dimensional feature vector to a 
four-channel output. This number of output channels aligns with 
the classes present in our dataset. 

 
ResNet backbone details 

The backbone of the residual U-Net architecture is constructed 
using ResNet50 and ResNet101 models. The selection of ResNet 
models was motivated by their demonstrated effectiveness in clas-
sifying plants in natural environments, as indicated by previous 
studies (Quan et al., 2021; Peng et al., 2022; Picon et al., 2022; 
Zenkl et al., 2022). The integration of ResNet50 and ResNet101 
involves several components. 

Figure 4a provides an overview of the entire ResNet blocks, 
including the arrangement of the residual blocks. As it can be 
appreciated, this structure begins with a 7×7 padded convolution 
layer with a stride of 2, followed by a 3×3 max pooling layer with 
the same stride. The subsequent structure comprises four consecu-
tive main blocks, each consisting of residual blocks with unique 
properties. These main blocks are connected to a fully connected 
layer, which is then linked to the output layer responsible for gen-
erating the final predictions. 

The presence of residual building blocks characterizes the 
ResNet module. Here, two types of residual blocks are utilized: the 
identity block (shown in Figure 4b) and the convolutional block 
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Table 1. Plant species of the experimental dataset and labels. 

Class                  Scientific name                                                                                  LBLS                                           LBLC 

Crop                        Zea mays                                                                                                            18,423                                                 18,423 
NLW                       Cynodon dactylon                                                                                              5,048                                                  18,636 
                                Eleusine indica                                                                                                   5,133                                                         
                                Digitaria sanguinalis                                                                                         3,401                                                         
                                Cyperus esculentus                                                                                             5,054                                                         
BLW                        Portulaca oleracea                                                                                             5,100                                                  22,622 
                                Tithonia tubaeformis (Jacq.) Cass.                                                                    5,027                                                         
                                Amaranthus spinosus                                                                                         7,388                                                         
                                Malva parviflora                                                                                                5,107                                                         
LBLS, labels per species; LBLC, labels per class. 

Table 2. Performance evaluation metrics for semantic segmentation models. 

TP, true positive; FP, false positive; TN, true negative; FN, false negative; C, number of classes. 



(depicted in Figure 4c). The identity block is employed when the 
input feature map (m) and the output feature map of the block 
(φ(m)) have the same dimensions. 

As illustrated in Figure 4b, the identity block consists of three 
stacked convolutions (1×1,3×3,and 1×1), each followed by a nor-
malization operation and a ReLU activation function. The resulting 
output is then element-wise added to the feature map (m) and fed 
into the residual block via a shortcut path. This addition yields the 
output H(m), which represents the underlying mapping. Notably, 
the number of kernels used in the identity block, denoted as “C1” 
and “C2”, varies depending on the specific main block (Block 1, 
Block 2, Block 3, or Block 4) within the ResNet architecture. For 
instance, in the first main block (Block 1), C1 = 64 and C2 = 256, 
while in the second main block (Block 2), C1 = 128 and C2 = 512, 
and so on. This variation allows the network to capture different 
levels of complexity and abstraction. 

Compared to conventional CNNs that stack convolutional lay-
ers to approximate the input, the advantage of using residual 
blocks is that the network learns the residual map, expressed as 
φ(m)=H(m)-m. This formulation helps to mitigate the vanishing 
gradient problem because if  tends to zero during back-propaga-
tion, the identity map m contributes to non-zero weights. 

Consequently, gradients can propagate to the initial layers of the 
network, allowing them to learn at a comparable rate to the final 
layers. This characteristic of residual blocks enables the training of 
deeper networks. 

In scenarios where the input and output have different dimen-
sions, the convolutional block is utilized. Unlike the identity block, 
the convolutional block incorporates a 1×1 convolutional layer in 
the shortcut path, in addition to the variation in the number of ker-
nels. Specifically, for the convolutional block, the values of (C1, 
C2) are chosen from the set {(128, 512), (256, 1024), (512, 2048)}. 
It is important to note that the convolutional block is not present in 
the first main block (Block 1). Including the 1×1 convolutional 
layer in the shortcut path allows for adapting the dimensions of the 
feature maps to match the desired output size. This additional con-
volutional layer helps incorporate richer spatial information and 
adapt the network’s capability to accommodate changes in spatial 
resolution throughout the network. However, in the first main 
block (Block 1), where the initial feature maps are obtained, the 
convolutional block is not required since the dimensions of the 
input and output feature maps are already compatible. 

A notable distinction between ResNet50 and ResNet101 lies in 
the number of residual blocks within the main Block 3. 
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Figure 4. Description of the Backbone adopted for the proposed residual U-Net architecture. a) Structure of the main blocks of both the 
ResNet50 and ResNet101. b) Identity residual block implemented. This block is used when the size of the feature maps is constant. c) 
Convolutional residual block employed for transition steps. This block is needed when the size of feature maps is reduced.



Specifically, ResNet50 incorporates five residual blocks, while 
ResNet101 includes twenty-two residual blocks. Consequently, 
considering the shared 7×7 convolutional and 3×3 max pooling 
layers in both networks, the total number of layers in ResNet50 
amounts to 50, whereas ResNet101 comprises 101 layers. The dis-
crepancy in the number of residual blocks between the two archi-
tectures significantly impacts their depth and ability to capture 
intricate patterns and features within the input data. With a larger 
number of layers and residual blocks, ResNet101 possesses a more 
extensive and expressive network structure, facilitating the repre-
sentation of increasingly complex relationships and enhancing its 
ability to learn hierarchical features. However, it is worth noting 
that the deeper architecture of ResNet101 may also introduce chal-
lenges, such as increased computational requirements and the 
potential risk of overfitting, especially in scenarios with limited 
training data. Consequently, the choice between ResNet50 and 
ResNet101 depends on the specific requirements of the task at 
hand, striking a balance between model complexity and computa-
tional efficiency. 

 
Mask R-CNN architecture 

Mask region-based convolutional neural network (Mask R-
CNN) is a deep-learning architecture used for performing instance 
segmentation. This network can detect objects and “accurately” 
perform pixel-level instance segmentation on them. The illustra-
tion of Mask R-CNN is depicted in Figure 5. 

The backbone of this network plays a critical role as it takes 
the input image and generates a feature map. Subsequently, a 

region proposal network (RPN) analyzes this feature map to gen-
erate rectangular region proposals. However, it should be noted 
that these proposed regions derived from the feature map may be 
misaligned with respect to the input image. Thus, an ROI align-
ment process is employed to align these ROIs based on the input 
image. These components can be collectively summarized as the 
mapping function (fθ) that transforms the input image into a fixed-
size feature map. The head of the Mask R-CNN architecture com-
prises two parallel branches. The first branch is a fully connected 
layer, denoted as f∅, responsible for predicting and classifying 
bounding boxes for each ROI. The second branch is an FCN, 
denoted as fg, which predicts a binary mask for each class indepen-
dently of the classification branch. The FCN consists of four con-
secutive 3×3 conv layers, followed by a 2×2 deconv layer with a 
stride of 2, and finally, a 1×1 conv layer. These hidden layers uti-
lize the ReLU activation function. This configuration allows the 
segmenting of the objects in the image. To summarize the overall 
process, from each input image , a feature map F=fθ (xi) is comput-
ed. This feature map serves as the input for both the fully connect-
ed layers for feature extraction, f∅ (fθ (xi)), and the FCN fγ (fθ (xi)). 

 
Mask R-CNN-ASPP architecture 

The Mask R-CNN network, which employs convolutions and 
deconvolution operations in its segmentation branch, may have 
limitations due to the inability of convolutions to capture complete 
spatial context information from feature maps alone. Such infor-
mation can be valuable for enhancing segmentation, particularly in 
scenarios with a high density of objects, as encountered in this 
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Figure 5. Illustration of the Mask R-CNN architecture for semantic segmentation of weed plants and corn crops. 



study. To address this challenge and enhance the segmentation of 
corn and weed plants, we integrate the Atrous Spatial Pyramid 
Pooling (ASPP) module within the FCN branch of the Mask R-
CNN architecture. The ASPP module leverages atrous convolu-
tions (also known as dilated convolutions), which perform convo-
lutions by incorporating pixels situated at a certain distance from 
the central pixel rather than using only adjacent pixels. This dis-
tance is defined by the dilatation rate . By employing atrous con-
volutions, the ASPP module enables the expansion of the filter’s 
field-of-view (Chen et al., 2017). For this comparison, we intro-
duce the ASPP module into the Mask R-CNN architecture, as illus-
trated in Figure 6. 

As depicted in Figure 6, the ASPP module takes as input each 
fixed-sized feature map (ROI) computed by the ROIAlign block. 
The ASPP block applies three dilated convolutions and a pooling 
operation to each input ROI. The dilated convolutions have dilata-
tion rates of one (r = 1), three (r = 3) and six (r = 3), respectively. 
Following the atrous convolutions, batch normalization and ReLU 
activation functions are applied. Additionally, the input ROI under-
goes a 2×2 average pooling operation, followed by upsampling by 
a factor of 2 using bilinear interpolation. The outputs of these oper-
ations are concatenated and then convolved with a 1×1 kernel, fol-
lowed by a ReLU activation function. This step results in a 
14×14×256 feature map. Subsequently, the remaining operations 
are consistent with the original FCN implementation of the Mask 
R-CNN architecture. 

 
Metrics 

A comprehensive set of metrics was employed to assess the 
overall performance of the networks, ensuring a thorough evalua-
tion. The metrics utilized in this study included Precision, Recall, 
Dice Similarity Coefficient (DSC), Intersection over Union (IoU), 
and mean Intersection over Union (mIoU). The definitions of these 
metrics are summarized in Table 2, providing a clear understand-
ing of how each metric contributes to the assessment process. 

In addition to these metrics, the number of correct and incor-
rect predictions was recorded and analyzed using the widely rec-
ognized representation of the confusion matrix. This matrix offers 
valuable insights into the performance of the models by categoriz-
ing predictions into true positives, true negatives, false positives, 
and false negatives. By examining these values, we can understand 
the accuracy and efficacy of the models in differentiating between 
classes. We evaluate the networks’ performance using various met-
rics and incorporating the confusion matrix representation. These 
evaluation measures provide valuable insights into the models’ 
abilities to accurately identify and classify the target objects, facil-
itating informed decision-making and further improvements in 
object segmentation and classification. 

 
 

Results 
In this section, the experimental results for the pixel-wise 

semantic segmentation, as well as the overall performance of the 
proposed residual U-Net model, are presented. In addition, a com-
parison between the residual U-Net model and the two Mask R-
CNN-based models is also shown. 

 
Experimental setup 

To evaluate the performance of the deep-learning models, a set 
of experiments, using our dataset, was carried out. Furthermore, to 
train the networks, the transfer learning method has been imple-
mented. Transfer learning refers to a method where a pre-trained 

model, developed for a similar task, is reused as the starting point 
for a new task, thus allowing rapid and improved performance. For 
this work, the pre-trained models of the ResNet50 and ResNet101 
networks in the well-known ImageNet dataset (Krizhevsky et al., 
2012) were used. It is worth mentioning that a desktop computer 
with an Intel Core i7 processor, NVIDIA GPU GeForce GTX 
1080Ti with 6 GB of VRAM, and 64 GB of RAM memory was 
used to re-train the models. The implementation was carried out in 
Python 3.8 and Keras framework with Tensorflow 2.4.0 as a back-
end. 

 
Training of the deep neural networks 

For training the models, we split the dataset into 70% for train-
ing, 20% for validation, and 10% for testing. It is worth mention-
ing that these images were randomly selected with uniform proba-
bility. Moreover, to ensure equal representation of instances per 
plant class, the dataset was balanced, resulting in 22,622 instances 
per class. Furthermore, a batch size of one and 200 epochs was 
established to train all models. 

 
Residual U-Net training 

For training this model, each input image, x∈I(n×m×3), was 
resized to a dimension of 512×512×3 (S:I(n×m×3)⟶ IS512×512×3).  

Subsequently, the image was mapped using the function L∶ 
IS512×512×3 ⟶ [0,1]512×512×3∩ R512×512×3, normalizing each pixel 
value to the range [0,1]∩R. 

In addition, the Stochastic Gradient Descent (SGD) optimizer 
with a learning rate of 0.0001 was configured. The dice loss func-
tion was implemented to calculate the error between the ground 
truth image and the predicted mask image. On the other hand, the 
focal loss function was used to compensate for the complicated 
finding of the NLW class pixels, since it usually occupies a big 
area but a low number of pixels in the image, due to the phenolog-
ical appearance of the plant species. 

The computation of dice loss is as follows, 
                                                                                                 

                                                        
(Eq. 1)

 
 
where y refers to the ground truth label and y* is the predicted value 
from the model. 

Respecting the categorical focal loss, it is computed as follows, 
                                                                                                 

                                               
(Eq. 2)

 
where αt∈[0,1]  is a vector of class weights which is computed as 
the inverse class frequency from the dataset labels, pt is a matrix of 
probabilities that each class has to be ground truth, and ϕ is the 
degree of modulating the pixels that are easy to classify (usually ϕ 
= 2). 

 
Mask R-CNN and Mask R-CNN-ASPP training 

Mask R-CNN and Mask R-CNN-ASPP are specialized in 
instance segmentation of objects. Each segmented object in our 
models is associated with its corresponding class (Crop, NLW, 
NLB) to ensure a clear image interpretation. In other words, if an 
image contains “n” objects, each object is classified as either crop, 
narrow-leaf weeds, or broad-leaf weeds. 

These architectures were configured to support input images  
x∈In×m×3 with maximum dimensions of 1024×1024×3. As some 
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images in the dataset contained around 250 labels, the Region 
Proposal Network (RPN) was trained with 500 anchor boxes and 
Regions of Interest (ROIs) per image. During training, the weight 
decay and the learning rate were 0.0001, with the optimizer chosen 
as SGD. 

To compute the suitable network parameters, the loss function 
proposed by He et al. (2017), has been used. This loss function is 
defined as follows: 

 

                                               
(Eq. 3)

 
 

where L represents the total loss function of the model, Lcls is the 
classification loss, Lbox is the bounding box regression loss, and 
Lmask is the average binary cross-entropy loss. Particularly, the 
classification loss (Lcls) is computed according to: 
 

                             
(Eq. 4)

 
 
where Ncls are the number of categories, pi is the probability that 
the i-th ROI is predicted to be the target. Here, when the predicted 
ROI is foreground , otherwise .  

On the other hand, the bounding box regression loss (Lbox) is 
computed by the following expression: 

 

                               
(Eq. 5)

 
 

where Nbox is the number of pixels in the feature map, R(·) is a 
smooth function, ti represents the four parameterized coordinate 
vectors of the predicted ROIs, and ti*  indicates the coordinate vec-
tor of the real label. 
Finally, the mask loss (Lmask) calculation is given by: 
 

 
(Eq. 6)

 
 

where N represents the number of pixels,  is the predicted k-th class 
in that pixel’s location, and p(yi) is the probability of the yi predict-
ed category. 

 

Behavior of loss functions and mIoU during training 
The behavior of the loss functions in the training stage for the 

deep learning models can be seen in Figure 7. The green and black 
curves show the training behavior of the proposed residual U-Net 
network with ResNet50 and ResNet101 backbones, respectively. 
The red and blue curves correspond to Mask R-CNN-ResNet50 
and Mask R-CNN-ResNet101, respectively. Similarly, the magenta 
and cyan curves represent Mask R-CNN-ASPP-ResNet50 and 
Mask R-CNN-ASPP-ResNet101, respectively. 

From Figure 7, it may be observed that the Mask R-CNN-
based architectures’ training and validation error curves oscillate a 
bit during the entire training process. In contrast, the error curves 
of the residual U-Net model present a monotonically decreasing 
behavior. Note that the oscillation error of the Mask R-CNN-based 
models may be attributed to the dependency on the mask, class, 
and box loss functions used during training, as these networks 
depend on the “correctly” detecting ROIs, which is carried out by 
the RPN block. 

According to Figure 7, it can also be observed that the overall 
error of the Mask R-CNN-ASPP architectures had a lower magni-
tude during all the training steps than the error of the original Mask 
R-CNN architectures. In particular, Mask R-CNN-ASPP-
ResNet50 had better loss behavior. 

On the other hand, the mIoU metric allows a straight evalua-
tion of a segmentation model’s performance because it indicates 
the overlap of the prediction mask over the ground truth. 
Therefore, the value of this metric over the validation data at each 
epoch was registered. Figure 8 shows the behavior of the mIoU 
metric. It can be appreciated that the highest value was given by 
residual U-Net-ResNet101 during the training process, followed 
by residual U-Net-ResNet50. The mIoU of the Mask R-CNN-
ASPP networks in all epochs was superior to that of the original 
Mask R-CNN architecture. 

 
Performance of deep learning models over the 
classes 

To evaluate the performance of each model, 10% of the data 
from the entire dataset was used. Note that none of these data was 
used during training. The classification results achieved by each 
model are presented in Table 3. 

From Table 3, it can be appreciated that the Mask R-CNN-
ASPP models have shown better Precision than the original Mask 
R-CNN models. Among classes, Mask R-CNN- ASPP-ResNet101 
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Figure 6. Illustration of the segmentation branch of the Mask R-CNN provided with ASPP to improve the segmentation of corn and weed 
plants.



depicted higher Precision values than Mask R-CNN-ASPP-
ResNet50, except for class soil, where Mask R-CNN-ASPP-
ResNet50 is slightly superior. In this way, the Precision shown by 
Mask R-CNN-ASPP-ResNet101 for the classes Crop, NLW, and 
BLW was 5.75%, 19.88%, and 20.39% higher, with respect to val-
ues obtained by the Mask R-CNN-ResNet50 model. However, the 
Precision values of the Mask R-CNN- ASPP models were also sur-
passed by those obtained by the residual U-Net model. The best 
residual U-Net model was the one whose backbone was 
ResNet101, whose Precision was 7.13%, 19.34%, and 1.94% high-
er than that of Mask-R-CNN-ASPP-ResNet101 for the classes 
Crop, NLW, and BLW, accordingly. 

Regarding the Recall metric among the plant classes, the Mask 
R-CNN-ASPP-ResNet50 model has performed better than the 
Mask R-CNN-ASPP-ResNet101 model, except for the class NLW. 
In the case of the Mask R-CNN models, this metric was better 
yielded by Mask R-CNN-ResNet50. Nevertheless, the Recall 
value depicted by Mask R-CNN-ASPP-ResNet50 for the classes 
Crop, NLW, and BLW was 22.18%, 19.28%, and 5.83% superior, 
respectively, to that shown by Mask R-CNN-ResNet50. However, 
as observed in Table 3, the Recall exhibited by residual U-Net-
ResNet101 surpassed that of the Mask R-CNN-ASPP-ResNet50 
model in the three plant classes. Then, residual U-Net-ResNet101 
exhibited 23.28%, 38.03%, and 14.08% higher Recall rates than 
Mask R-CNN-ASPP-ResNet50 for the Crop, NLW, and BLW 
classes respectively. 

Concerning the behavior of the DSC metric, the two Mask R-
CNN-ASPP models have obtained higher DSC values than the 
Mask R-CNN models. However, the performance of the two 
Mask-R-CNN-ASPP models was surpassed by the residual U-Net 
models. The DSC of Mask R-CNN-ASPP-ResNet50, which was 
better than Mask-R-CNN-ASPP- ResNet101, was 20.88%, 
19.75%, 2.64% superior for the classes, Crop, NLW, and BLW, 
accordingly, than that obtained by Mask R-CNN-ResNet50, which 
was better than Mask R-CNN-ResNet101. Nevertheless, residual 
U-Net-ResNet101, which was better than residual U-Net-
ResNet50, manifested a superior DSC in 17.33%, 31.15%, and 
17.78% for the classes Crop, NLW, and BLW, respectively, than 
that of Mask R-CNN-ASPP-ResNet50. 

Finally, Mask R-CNN-ResNet50 obtained better IoU than 

Mask R-CNN-ResNet101 for all the plant classes. However, both 
overcame Mask R-CNN-ResNet50, the Mask R-CNN-ASPP-
ResNet50, and the Mask R-CNN-ASPP-ResNet101 models. The 
IoU metric, obtained by Mask R-CNN-ASPP-ResNet50, demon-
strated a significant increase in performance compared to Mask R-
CNN-ResNet50. Specifically, we observed an increase of 22.88%, 
17.04%, and 3.63% for the Crop, NLW, and BLW classes, respec-
tively. Nevertheless, similar to the other metrics, the IoU of the 
residual U-Net models was better than that of the Mask R-CNN-
ASPP-based models for all the plant classes. In this way, the IoU 
obtained by residual U-Net-ResNet101 was 25.73%, 39.16%, and 
17.93% better for the classes Crop, NLW, and BLW, respectively, 
than that obtained by Mask R-CNN-ASPP-ResNet50. 

The suggested Mask R-CNN-ASPP models generally perform 
better than the Mask R-CNN models. Nevertheless, the perfor-
mance of Mask R-CNN-ASPP-based models was overcome by the 
proposed residual U-Net models. 

 
Semantic segmentation comparison 

The performance of the trained model can be summarized by 
the confusion matrices in Figure 9. As it can be appreciated, all the 
models have generally classified the soil with a classification rate 
of over 97%. This behavior may be attributed to their predomi-
nance in the images. 

Regarding the pixel classification of Crop, NLW, and BLW, 
pixels belonging to the class BLW were the best classified by all 
the models, and the worst was the NLW class’s pixels. The high 
classification rate of the pixels belonging to the class BLW is 
attributed to the phenological appearance of the plant species that 
integrate this group. Note that this class differs morphologically 
from the plant species that integrate Crop and NLW. In contrast, 
the low-rate classification of the pixels belonging to the class NLW 
is also attributed to the phenological appearance of the plant that 
integrates the group because they are narrow and occupy a low 
area in the images, often classified as soil pixels. 

It is also observed from Figure 9, that Mask R-CNN-ResNet50 
classified the pixels of the three plant classes better than Mask R-
CNN-ResNet101. On the other hand, the Mask R-CNN-ASPP-
ResNet50 model has classified the pixels of the classes Crop and 
BLW better than the Mask R-CNN-ASPP-ResNet101 but not the 
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Table 3. Performance of the networks on classifying the classes under study. 

Class               Metric                                Mask R-CNN                             Mask R-CNN-ASPP                     Residual U-Net 
                                                                  RN50        RN101                              RN50             RN101                      RN50           RN101 

Crop                    Pr (%)                                     66.62            65.85                                     83.95                 86.50                            91.15                93.63 
                            Re(%)                                     45.52            36.41                                     67.70                 62.95                            88.53                90.98 
                            DSC (%)                                 54.08            46.89                                     74.96                 72.87                            89.82                92.29 
                            IoU(%)                                    37.06            30.62                                     59.94                 57.32                            81.52                85.67 
NLW                   Pr (%)                                     51.49            36.84                                     71.45                 71.88                            87.02                91.22 
                            Re(%)                                     29.60            15.93                                     47.88                 48.62                            83.88                85.91 
                            DSC (%)                                 37.59            22.59                                     57.34                 58.00                            85.42                88.49 
                            IoU(%)                                    23.15            12.51                                     40.19                 40.85                            74.55                79.35 
BLW                   Pr (%)                                     83.85            83.38                                     82.65                 89.60                            88.32                91.54 
                            Re(%)                                     73.05            64.74                                     78.88                 63.69                            93.43                92.96 
                            DSC (%)                                 78.08            72.88                                     80.72                 74.46                            90.80                92.24 
                            IoU(%)                                    64.04            57.34                                     67.67                 59.31                            83.15                85.60 
Soil                      Pr (%)                                     96.36            94.59                                     95.51                 93.62                            98.61                98.79 
                            Re(%)                                     98.44            98.47                                     97.76                 98.54                            98.53                99.07 
                            DSC (%)                                 97.39            96.49                                     96.62                 96.01                            98.57                98.93 
                            IoU(%)                                    94.91            93.22                                     93.47                 92.34                            97.18                97.88 
RN50, ResNet50; RN101, ResNet101. 
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pixels of the class NLW. 
In the case of the proposed residual U-Net networks, when the 

ResNet50 is used as the backbone, the model correctly classified 
the pixels of the class BLW. Nevertheless, in the case of 
ResNet101, the model better classified the pixels of the classes 
Crop and NLW. It is appreciated that Mask R-CNN-ASPP-
ResNet50 was 5.83% higher at recognizing BLW pixels than Mask 
R-CNN-ResNet50, contrasting the better model from each of the 
three groups on classifying the pixels. However, residual U-Net-
ResNet50 was 14.54% better at classifying the pixels of BLW than 
Mask R-CNN-ASPP-ResNet50. Mask R-CNN-ASPP-ResNet50 
was 22.18% superior at recognizing Crop pixels as such than Mask 
R-CNN-ResNet50. However, residual U-Net-ResNet101 sur-
passed in 23.28% the recognition of the pixels of this class than 
Mask R-CNN-ASPP-ResNet50. Finally, residual U-Net-
ResNet101 classified 56.31% and 37.29% better the class NLW, 
compared to Mask R-CNN-ResNet50 and Mask R-CNN-ASPP-
ResNet101, accordingly. 

In summary, from Figure 9, it is observed that all the models, 
some in a high percentage, misclassified as soil the pixels of the 
plant classes. Also, all the models confused the pixels of the class 
Crop with that of the class NLW, and vice versa. This behavior 
may also be imputed to the phenological appearance of the plants; 
since they are monocotyledonous plants, as consequence they may 
share some features. 

 
Discussion 

The average performance of each model, regarding the evalu-
ation metrics, is shown in Figure 10. 

From all the evaluated metrics (precision, recall, DSC, and 
mIoU), the proposed residual U-Net networks outreached Mask R-
CNN-ASPP-based and Mask R-CNN-based networks on semantic 
segmentation of the classes Crop, NLW, BLW, and Soil of our 
dataset. Nonetheless, the two Mask R-CNN-ASPP-based models 
overcome the performance of the Mask R-CNN-based models. 
However, residual U-Net-ResNet101 achieved the highest values 
of all the metrics. 

Regarding the performance of Mask R-CNN-based models, 

Mask R-CNN-ResNet50 performs better than Mask R-CNN-
ResNet101, which also turned out to be the one with the lowest 
performance. Lastly, Mask R-CNN-ASPP-ResNet50, in general, 
segmented our dataset better than Mask R-CNN-ASPP-
ResNet101, as three out of the four metrics indicate. 

The residual U-Net-ResNet101 model achieved the highest 
precision value (93.79%). This was significantly greater than the 
Precision values of other models, including residual U-Net-
ResNet50, Mask R-CNN-ResNet50, Mask R-CNN-ResNet101, 
Mask R-CNN- ASPP-ResNet50, and Mask R-CNN-ASPP-
ResNet101, by 2.52%, 19.21%, 23.63%, 10.4%, and 8.39% 
respectively. The precision value is an important metric that indi-
cates the ability of the models to accurately classify each pixel of 
the images into the corresponding Crop, NLW, BLW, and soil 
ground truth. 

The best network model for Recall’s case was the residual U-
Net-ResNet101, achieving a remarkable value of 92.23%. Notably, 
the recall of this network was 19.18% and 30.58% higher than that 
obtained by R-CNN-ASPP-ResNet50 and R-CNN-ResNet50, 
respectively, which were the best-performing networks in their 
respective categories. Concerning the DSC metric, R-CNN-ASPP-
ResNet50 outperformed R-CNN-ResNet50 by 10.63%. 
Nevertheless, the residual U-Net-ResNet101 network, which per-
formed optimally overall, displayed a DSC value 15.37% superior 
to that of R-CNN-ASPP-ResNet50. Lastly, the mIoU of residual 
U-Net-ResNet101 was 32.34% and 31.8% better than that of Mask 
R- CNN-ResNet50 and R-CNN-ASPP-ResNet50, respectively, 
which were the most effective networks in their categories. 

 
Visualization of segmented classes 

The visualization of the segmentation output of any model 
reinforces the comprehension of the numerical metrics. Therefore, 
a qualitative comparison from the segmentation output of the Mask 
R-CNN-ResNet50, Mask R-CNN-ASPP-ResNet50, and residual 
U-Net-ResNet101, which were the network architectures with the 
best results, is presented in Figure 11. In the first row, the input 
image is shown (Figure 11a). The second row (Figure 11b) shows 
the ground truth in which the colors green, red, and blue represent 
the Crop, NLW, and BLW classes, respectively. Subsequently, the 
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Figure 7. Total loss function behavior of the networks during the 
training process.

Figure 8. mIoU behavior at each epoch of the networks during the 
training process.



third row (Figure 11c) presents the segmentation output of the 
Mask R-CNN-ResNet50 model, whereas the fourth row (Figure 
11d) shows the segmentation carried out by the Mask R-CNN-
ASPP-ResNet50 model, and finally, in the last row (Figure 11d) 
the segmentation output of residual U-Net-ResNet101 model is 
shown. 

As can be observed, the three models have segmented each 
class correctly when the plants are “separated” from each other and 
when the objects in the image are big enough. These conditions 
commonly occur when the image has been captured at a short dis-
tance, as is depicted in the first column of Figure 11. Regarding the 
segmentation performed by the Mask R-CNN-ResNet50 and Mask 
R-CNN-ASPP-ResNet50, it can be noticed that both models tend 
to fail when there are more than two plant classes, when the plants 

are close to each other and when plants appear small in the images, 
as may be observed in the second, third and fourth column of 
Figure 11c and Figure 11d. Also, these images give an insight into 
how the Mask R-CNN-ResNet50 and Mask R-CNN-ASPP-
ResNet50 models commonly confuse pixels belonging to the class 
NLW with the Soil class. Nonetheless, in the image of the fourth 
column of Mask R-CNN-ASPP-ResNet50 model, the class NLW 
has been correctly segmented, attributed to the ASPP module 
implemented in its segmentation branch. The compilation of 
images presented here demonstrates that the residual U-Net-
ResNet101 model yields superior segmentation outcomes, as evi-
denced by the near-perfect fit of its output masks with the ground 
truth data acquired in real-world field settings. 
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Figure 9. Confusion matrices showing the deep learning models’ classification performance. a,b) Confusion matrices corresponding to 
the R-CNN-based networks. c,d) Confusion matrices corresponding to the R-CNN-ASPP networks. e,f) Confusion matrices for the resid-
ual U-Net networks.



Comparison with state-of-the-art methods 
Even though detecting common weeds that grow in corn fields 

is challenging, scarce works have been reported in natural condi-
tions at high-density plants and addressed by semantic segmenta-
tion approaches. In the work of Fawakherji et al. (2020), the orig-
inal U-Net architecture (Ronneberger et al., 2015) and U-Net with 
VGG16 network (Simonyan and Zisserman, 2015) as the backbone 
(U-Net-VGG16) were evaluated. They reported a mIoU of 62% 
and 64%, for U-Net and U-Net-VGG16 respectively, when these 
models were trained with a Sunflower dataset and tested over the 
combined datasets Carrots and SugarBeets. The classes were crop, 
weed, and soil. Then, they evaluated the U-Net-VGG16 over the 
individual datasets SugarBeets, Stuttgart, Carrots, and Sunflower, 
reporting 71%, 45%, 35%, and 39% of mIoU, respectively. 
Although this work has not been done in corn crops, the databases 
were generated under natural conditions. In this way, the mIoU of 
our best model, residual U-Net–ResNet101, is 16.12% higher than 
the U-Net-VGG16 model reported in Fawakherji et al. (2020). 

Other related works on semantic segmentation of crop plants 
and weeds are presented in Table 4. Even though the crops and 
trained architectures differ from ours, they also share the complex-
ity of training the deep learning models using datasets acquired in 
natural environments. Therefore, the parameters dataset size, num-
ber of plant species in the dataset, DSC, and the mIoU have been 
highlighted to contrast them with our work. In this case, our work 
stands out from the others because a dataset with 10,200 images 
and nine plant species has been used. Furthermore, our proposed 
model has achieved superior performance compared to the most 
related state-of-the-art works, as demonstrated by the DSC and 
mIoU metrics. Table 4 shows that the datasets of the related works 
contain fewer images than our dataset. Increasing the number of 
images and plant species also increases the number of features the 
models need to learn, making the task more challenging. Our 
mIoU was 25.32% higher than that reported by Ma et al. (2019), 
despite their dataset being smaller. Khan et al. (2020) also used a 
reduced dataset with two plant species; their reported DSC and 
mIoU were 12.9% and 16.07% lower than those obtained by our 
best model. Among the works listed in Table 4, Zenk et al. (2022) 
reported the highest metric values; however, they only segmented 
wheat crops. Additionally, although Kamath et al. (2022) and 
Picon et al. (2022) increased their datasets, however, these are on 

average 80% smaller than ours. The mIoU obtained by Kamath et 
al. (2022) was 24.69% lower than ours. Conversely, the DSC of 
Picon et al. (2022), whose dataset contains seven classes, was 
67.66% lower than that reached by our model.  

 
 
 

Conclusions 
This work proposes a residual U-Net network for semantic 

segmentation of crop and weed plants under real natural field con-
ditions. The implemented residual U-Net network was built using 
a ResNet-based block in the encoding stage (backbone). 

The experimental dataset used is made up of 10,200 images 
containing 59,681 labels, from which 18,423 are Crop, 18,636 are 
BLW, and 22,622 are NLW. These images have been captured 
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Table 4. Performance of related works upon semantic segmentation of crop/weed in natural environments. 

Reference                 Model                                      Classes                                                         DS              NPS              DSC         mIoU 
                                                                                                                                                                                                    %              % 

 
Our work                      Residual U-Net (ResNet101)        Corn plants                                                         10,200                 9                    92.98            87.12 
                                                                                              Narrow-leaf weeds                                                                                                                         
                                                                                              Broad-leaf weeds                                                                                                                           
Ma et al. (2019)            SegNet (VGG16)                          Rice seedling weeds                                              28                     -                        -                 61.8 
Khan et al. (2020)         CED-Net                                        Rice                                                                        24                    2                    80.08            71.05 
                                                                                              Sagitaria trifolia                                                                                                                             
Zenk et al. (2022)         DeepLab V3+ (ResNet50)            Wheat crop                                                            190                    -                     86.3              77.5 
Kamath et al. (2022)     PSPNet (ResNet50)                      Paddy crop                                                           1,690                  -                        -                62.43 
                                                                                              Broadleaved weed                                                                                                                          
                                                                                              Sedges                                                                                                                                             
Picon et al.(2022)          PSPNet                                          Corn plants                                                          1,679                  7                    25.32               - 
                                                                                              Grass-leaved weeds                                                                                                                        
                                                                                              Broadleaf weeds                                                                                                                             
DS, dataset size (number of images); NPS, number of plant species; DCS, dice coefficient; mIoU, mean intersection over union. 
 

Figure 10. Average performance metrics of the trained networks 
Mask R-CNN, Mask R-CNN-ASPP, and residual U-Net. 
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under non-controlled conditions and have also been manually 
annotated. 

For comparison purposes, two different deep learning models 
with corresponding variations have been used to analyze the exper-
imental dataset, including Mask R-CNN and an enhanced mask R-
CNN. The enhanced Mask R-CNN (denoted as Mask R-CNN-
ASPP) uses an atrous spatial pyramid pooling (ASPP) module 
implemented over the segmentation branch of the Mask R-CNN 
model. Mainly, ResNet50 and ResNet101 were the used architec-

tures. Hence, six different networks have been implemented: the 
two proposed models, residual U-Net-ResNet50 and residual U-
Net-ResNet101, together with four models used for comparisons: 
mask R-CNN-ResNet50, mask R-CNN-ResNet101, mask R-
CNN-ASPP-ResNet50, and mask R-CNN-ASPP-ResNet101. 

Experimental results have shown that the performance of the 
two mask R-CNN-ASPP models overcomes the performance of 
the mask R-CNN models. Nonetheless, the performance of the two 
mask R-CNN-ASPP models has also been outreached by the per-
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Figure 11. AA visual comparison of the segmentation work done by the better three models in each network configuration. 
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formance of the two proposed residual U-Net models. In particular, 
residual U-Net-ResNet101 was the best network, achieving a per-
formance of 92.98% and 87.12% in terms of the metrics dice coef-
ficient (DSC) and mean intersection over Union (mIoU), respec-
tively. These results are 15.57% and 21.8% better than the reached 
by the mask R-CNN-ASPP-ResNet50 network, which was the sec-
ond-best mask R-CNN-ASPP-based model. 

Regarding the plant classes, the experimental results have con-
sistently demonstrated that the models achieved the highest accu-
racy in classifying pixels belonging to the broad-leaf weeds (BLW) 
class. In particular, the pixels representing NLW were often mis-
classified as Soil pixels, indicating a higher degree of confusion 
between these two classes compared to the other classes. 

In future work, an increase in the number of elements of the 
dataset, with annotated labels, will be made so that it is possible to 
have a balanced dataset (same amount of data per class) and thus 
avoid using the data augmentation technique. 
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