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Abstract 

In this paper, an improved lightweight YOLOv8 method is proposed to detect the ripeness of 

tomato fruits, given the problems of subtle differences between neighboring stages of 

ripening and mutual occlusion of branches, leaves, and fruits. The method replaces the 
backbone network of the original YOLOv8 with a more lightweight MobileNetV3 structure 

to reduce the number of parameters of the model; at the same time, it integrates the 

convolutional attention mechanism module (CBAM) in the feature extraction network, which 

enhances the network's capability of extracting features of tomato fruits. At the same time, it 
introduces the SCYLLA-IoU (SIoU) as a bounded YOLOv8 frame regression loss function, 

effectively solving the mismatch problem between the predicted frame and the actual frame 

and improving recognition accuracy. Compared with the current mainstream models 

Resnet50, VGG16, YOLOv3, YOLOv5, YOLOv7, etc., the model is in an advantageous 
position regarding precision rate, recall rate, and detection accuracy. The research and 

experimental results show that the mean values of precision, recall rate, and average 

precision of the improved MCS-YOLOv8 model under the test set are 91.2%, 90.2%, and 

90.3%, respectively. The detection speed of a single image is 5.4ms, and the model occupies 
less memory by 8.7 M. The model has a clear advantage in both detection speed and 



 

 

precision rate and also shows that the improved MCS-YOLOv8 model can provide strong 

technical support for tomato-picking robots in complex environments in the field.  

 

Keywords: CBAM; loss function; MobileNetV3; ripening; tomato; YOLOv8. 

 

 

Introduction 

As one of the three major world trade vegetables, tomato is very popular in our country 

and worldwide. Currently, China plays an important role in the global tomato deep-

processing industry, both as a major supplier of tomato raw materials and a major exporter 

of tomato products. In 2022, the tomato planting area in China reached 1,169,200 hectares, 

and tomato production reached about 69,707,700 tons (Sun et al., 2023). Tomato picking 

has a large workload and, at the same time, faces a variety of problems, such as high labor 

costs, low efficiency and labor shortage. There is an urgent need to move towards automation 

and intelligence. Therefore, developing an automatic ripeness detection system with high 

accuracy is of great practical significance for identifying the different ripening stages of 

tomatoes and determining their distribution range, thus realizing the automation of tomato 

picking (Chen et al., 2023). 

At present, researchers at home and abroad have made outstanding achievements in 

fruit ripening, and along with the rapid development of deep learning technology and target 

detection algorithms, the application scope of machine vision in detection and classification 

has been gradually expanded. Scholars at home and abroad have used machine vision to 

realize the detection of fruit ripeness in mangoes, passion fruit, apple, and bananas (Mulyani 

et al., 2017; Mim et al., 2018; Mazen and Nashat, 2019; Luo et al., 2024). These studies 

have significantly improved the detection accuracy and efficiency by improving the target 

detection model. For example, Luo et al. (2024) proposed a model for strawberry fruit 

recognition in complex environments by enhancing the YOLOv8 neck network using 

methods such as SPD-Conv. The model achieves 93.5% recognition accuracy and 86.0% 

recall for strawberry fruits in complex scenes. Regarding computational efficiency, the model 

takes 17.2ms to detect a single strawberry image in a GPU environment, and the model 



 

 

volume is reduced to 66% of the original size after lightweight processing. Qiu et al. (2024) 

developed an accurate recognition model for dragon fruit fruits at different ripening stages. 

By optimizing the backbone network of YOLOv8 and incorporating the attention mechanism, 

the model's performance was significantly improved, and the mAP reached 90.9%, which 

effectively reduces misclassification and omission in complex environments. Li et al. (2023) 

proposed a tomato fruit ripeness grading and counting model, which improves the feature 

diversity extraction capability by improving the backbone network and introduces the MHSA 

attention mechanism in the YOLOv8 backbone network. The precision and recall of the 

improved model reached 80.6% and 80.7%, respectively. Although the precision and recall 

of the model are improved over the original model, the increase in model memory is not 

favorable for real-time detection applications.  

Zhao et al. (2023) proposed a lightweight, improved backbone network for RT-DETR to 

detect the ripeness of spike-harvested cherry tomatoes with an accuracy of 90%, which 

achieves fast detection (41.2 f/s). To solve the problem of low accuracy and slow detection 

of balsam pear recognition in unstructured environments. Tan et al. (2024) proposed a 

method based on improved YOLOv8. The method applies simSPPF to optimize the SPPF 

module and introduces PConv convolution and contribution weight parameters to achieve 

light-weighting of the detection head. The improved model has a recognition accuracy as 

high as 94.7%, which combines high recognition accuracy and detection speed, effectively 

improving the efficiency and accuracy of balsam pear recognition. Lv et al. (2024) proposed 

the green citrus ripeness detection based on the improved YOLOv5 in the field complex 

environment, the model through the improvement of the backbone network, and so on to 

realize the green citrus ripeness in the field complex environment to achieve fast and 

accurate detection, to provide technical support for the citrus harvesting robot in complex 

situations. Miao et al. (2023) introduced MobileNetV3 into the YOLOv7 model as the 

backbone feature extraction network, reducing the number of network parameters while 

improving the model accuracy and optimizing the model memory usage. 

Although existing research has achieved significant results in fruit ripeness detection, 

some urgent problems still need to be solved in the field of tomato ripeness detection. 

Currently, there are fewer studies for multi-stage tomato ripeness recognition, and the dense 



 

 

distribution of tomato fruits in complex natural environments in the field, the existence of 

mutual shading between fruits and branches and leaves, as well as light differences due to 

the shading of branches and leaves, and other problems. These problems seriously affect the 

detection accuracy and robustness of existing models. Therefore, developing a detection 

model that can efficiently and accurately recognize multi-stage tomato ripening under 

complex natural environments is of great practical significance. 

Accordingly, this paper proposes a tomato ripeness detection method based on 

improved YOLOv8, which improves the backbone network of YOLOv8 to achieve light 

weighting, selects an efficient attention mechanism, and also improves the bounding box 

regression function to improve the recognition accuracy and processing speed of the model 

while reducing the model complexity. The results of this research provide technical solutions 

for tomato-picking robots to carry out picking activities in complex environments on 

farmland. 

 

Image data acquisition and preprocessing 

Data set collection 

The images were collected from an agricultural planting base in Anyang City, Henan 

Province, and the image acquisition device was RedmiK60Ultra, which finally captured 

3255 tomato images in JPG format with a resolution of 3072 × 4096 pixels. The typical 

growth state of tomato is shown in Figure 1, and its growth in the field exists a variety of 

complex situations such as branch and leaf shading, fruit overlapping and backlighting. 

  



 

 

 

 

  

a. Shading by branches and foliage b. Shading by branches and foliage 

  

c. Unobstructed d. Backlighting 

 

Figure 1. Part of the captured image. 

 

Image data preprocessing 

In order to ensure that the tomato dataset has diversity, this study uses data enhancement 

methods to preprocess the captured tomato images, including mirroring horizontally, 

flipping vertically, randomly changing brightness, randomly changing contrast, and adding 

Gaussian noise. By expanding the dataset, the diversity of the images is enhanced and 

improved, thus improving the robustness of the model. 

The images also need to be labeled, and the image dataset was labeled through the 

online website Make Sense: five categories of labels were classified according to the color 

of the skin and flesh, i.e., unripe, discolored, first ripe, medium ripe, and ripe, which 

correspond to the five classes "0", "1", "2", "3", and "4", respectively. ", "2", "3" and "4", 

respectively. In view of the research focus on non-destructive detection of tomato ripeness 

in the hanging branch state, this paper classifies the peel color change into five classes of 

ripeness according to the actual growth and development of tomatoes (see Table 1). Since 

the ripening stage of a tomato has a significant impact on its processing, storage, and 

transportation methods, the selection of the appropriate picking time should be based on 



 

 

different purposes of use, which has a key role in maintaining the quality of the fruit and 

extending its shelf life. 

 

Table 1. Description of the 5 levels of tomato maturity. 

(Military) 
rank 

Maturity level Descriptive Picking situation 

0 Immature stage 
Fruits are set in size and green in 
color 

Fruits are not ripe and should 
not be picked 

1 
Commutation 

period 

Starts to change color around the 
umbilicus, gradually appears yellow 
or light red 

Can be harvested and stored 
for long distance 
transportation 

2 Early ripe 
Fruit surface red coverage has 
reached half, reddening rate 30% to 
60% 

Can be picked for artificial 
ripening 

3 Middle ripe 
The surface of the fruit is mostly red, 
with 60% to 90% reddish 
coloration. 

Ready to pick and sell fresh 
every other day 

4 Mature 
More than 90% of the surface of the 
fruit is red 

Available for picking and 
same day sale 

 

 

Analysis of data sets 

For the dataset augmented and expanded with 19530 images, it is divided into three 

mutually independent classifications of the training set, test set, and validation set according 

to 8:1:1. There are 15624 images in the training set, 1953 images in the testing set and 1953 

images in the validation set after the division. 

In this dataset, each image has more than one label, with 8,810 immature labels, 3,990 

labels at the color change stage, 4,760 labels at the first maturity stage, 9,670 labels at the 

medium maturity stage, and 4,410 labels at the ripening stage. 

 

YOLOv8 target detection algorithm 

In this paper, we use the YOLOv8 algorithm; after a long development period, the YOLO 

version has now been updated and iterated to YOLOv10 (Wang et al., 2024), and YOLOv8 

has a relatively lightweight network structure among many versions. The algorithm, released 

by Ultralytics in 2023, has high accuracy and fast inference speed, making it one of the best 



 

 

target detection models available today (Ge et al., 2021). This makes it more widely used in 

target detection and applicable to several vision tasks such as instance segmentation, target 

tracking, pose estimation and image classification. It provides five versions of 

YOLOv8n/s/m/l/x. Among them, YOLOv8s is specially optimized to fit NVIDIA Jetson 

Nanodevices. It has a balance of high accuracy and speed in embedded deployment 

scenarios, so YOLOv8s is used in this paper for tomato detection. 

The YOLOv8 model consists of 4 parts: input end, backbone network, neck network 

and head network. The mosaic data enhancement technique is used on the input side (Tian 

et al., 2024). In addition to this, YOLOv8 introduces more diverse enhancement strategies to 

enrich the diversity of the training set by mixing different images or cutting and pasting image 

blocks and dynamically adjusts the enhancement strategies according to the performance 

during the training process, which further improves the ability to detect small targets. The 

backbone layer consists of 5 convolutional blocks, 4 C2f blocks, and 1 SPPF block, which 

extract the features from the image. Compared with YOLOv5, YOLOv8 adopts a lighter-

weight C2 block instead of a C3 block while maintaining the advantages of the CSP network 

structure, effectively reducing the computational cost without sacrificing the quality of 

feature extraction (Xu et al., 2024). Regarding the feature fusion layer, Neck partially realizes 

the fusion of different layers of features through a path aggregation network combined with 

a feature pyramid network (PAN-FPN) (Roy et al., 2022). This design enhances the model's 

ability to handle diverse and complex tasks. Moreover, it enhances the global performance 

of target detection. The Head layer is responsible for the final target detection and 

classification task. The original coupled head structure is discarded, and the current 

mainstream decoupled head structure is adopted to handle the target detection and 

classification tasks separately. This makes the Head part more flexible and, at the same time, 

enables the model to better adapt to different detection tasks. 

 

Improvements to the YOLOv8 algorithm 

Detection of targets in complex environments in the field, both to ensure the rapidity of 

tomato fruit ripeness classification detection and to maximize the accuracy of the network 

for fruit recognition.YOLOv8, as a single-stage target detector, can be directly divided into a 



 

 

grid on the image, and the detection task is regarded as a regression task to achieve end-to-

end training. In this paper, the following improvements are made based on the YOLOv8 

model: 

(1) Replace the original model backbone network with the more lightweight 

MobileNetV3 structure. 

(2) Introducing CBAM (convolutional block attention module) attention mechanism in 

the backbone network. 

(3) Replace the bounding box loss function in the original model with a new loss 

function SIoU. 

The improved network is named MCS-YOLOv8 target detection network, which is 

mainly composed of four parts: the input layer, the backbone feature extraction network, the 

path aggregation network, and the output layer, and its network structure is shown in Figure 

2. First, the input layer receives a tomato image of 640 × 640 pixels; then, the image is fed 

into the backbone network for feature extraction, and the extracted tomato feature map is 

subsequently passed to the path aggregation network, where the shallow and deep features 

are effectively fused; finally, the fused feature maps are fed into the output layer to generate 

the prediction frames and to recognize the classes of tomatoes. 



 

 

 

 

Figure 2. Diagram of the improved YOLOV8 lightweight network model. Conv2d is 
convolution, Concat is feature fusion by adding the number of channels, BN is batch 
normalization, CBAM is convolutional attention block, MNVIR stands for MNIneck, and 
Upsample stands for upsampling. 

 

MobileNetV3 network architecture 

Google's MobileNetV3, introduced in 2019, is a convolutional neural network 

optimized for mobile devices, which effectively increases the depth and nonlinearity of the 

network by employing lightweight depth-separable convolutional and inverse covariance 
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modules while reducing the amount of computation and the number of parameters for 

lightweight (Qian et al., 2021). MobileNetV3 also introduces the Hard-swish (Peng et al., 

2023) activation function, an improvement of ReLU that enhances the model performance 

by enhancing the nonlinear characteristics.MobileNetV3 network combines the advantages 

of the previous two generations. It integrates the SE (Squeeze-and-Excitation) module on top 

of V2 (Sandler et al., 2018), and Depthwise Convolution (abbreviated as DwiseConv) is one 

of the key components in the MobileNetV3 family of models. It significantly reduces the 

computational complexity and the number of parameters by decomposing the standard 

convolution process into two steps while maintaining the model performance as much as 

possible. First, deep convolution applies a separate convolution kernel for each input 

channel, meaning convolution operations are performed independently for each input 

channel. This effectively reduces the large number of redundant computations processed 

simultaneously across all input channels in traditional convolutional methods. Second, 

point-by-point convolution further processes the results of the deep convolution using a 1x1-

sized convolution kernel. The primary purpose of this step is to adjust the number of output 

channels and integrate the different feature mappings generated by the deep convolution. In 

this way, point-by-point convolution enables the exchange of information between the 

different channels and allows precise control of the output dimension. This design allows 

MobileNetV3 to significantly reduce the computational requirements and model size while 

ensuring model accuracy and performance, particularly suitable for mobile devices and 

embedded systems application requirements. Its network structure parameters are shown in 

Table 2. 

The columns in the table represent the input vector size of the feature layer, the type of 

operation performed, the number of lift and output channels in the Bottleneck inverse 

residual structure, whether the SE module is included or not, the type of activation function 

used, and the step size of the convolution. Figure 3 shows the bneck structure in 

MobileNetV3. The operations in the network include ordinary convolution (Conv2d), inverse 

residual structure (benck, i.e., inverted residual blocks with linear bottlenecks), and pooling 

layer (pool). The processing flow of MobileNetV3 is as follows: the input image is first 

preprocessed by a 1×1 convolution and batch normalization, and then feature extraction is 



 

 

performed by the inverted residual structure with dimensionality reduction to reduce the 

amount of computation. Then, the feature map is globally pooled by the SE module, and 

finally, the Hard-Swish activation function is used instead of Swish to reduce the 

computation further and improve the performance. This design allows MobileNetV3 to 

improve accuracy and operation speed while keeping the model lightweight. MobileNetV3 

has two versions, MobileNetV3-large and MobileNetV3-small, which suit different 

application requirements. The paper adopts the MobileNetV3-small network structure as the 

backbone network of the YOLOv8 model for feature extraction. 

 

 

 

Figure 3. The bneck structure in MobileNetV3. 

  



 

 

Table 2. MobileNetV3 network parameters. 

Input Operator Exp size out SE NL s 

2242 × 3 conv2d, 3×3 - 16 - HS 2 
1122 × 16 bneck,3×3 16 16 √ RE 2 
562 × 16 bneck,3×3 72 24 - RE 2 
282 × 24 bneck,3×3 88 24 - RE 1 
282 × 40 bneck,5×5 96 40 √ HS 2 
142 × 40 bneck,5×5 140 40 √ HS 1 
142 × 40 bneck,5×5 140 40 √ HS 1 
142 × 40 bneck,5×5 120 48 √ HS 1 
142 × 48 bneck,5×5 144 48 √ HS 1 
142 × 48 bneck,5×5 288 96 √ HS 2 
72 × 96 bneck,5×5 576 96 √ HS 1 
72 × 96 bneck,5×5 576 96 √ HS 1 
72 × 96 conv2d,1×1 - 576 √ HS 1 
72 × 576 pool,7×7 - - - - 1 
12 × 576 conv2d 1×1,NBN - 1024 - HS 1 
12 × 1024 conv2d 1×1,NBN - k - - 1 

"√" indicates that the SE module has been introduced in this layer, and "×" indicates that the SE 
module has not been introduced in this layer. 

 

 

Mechanisms for increasing attention 

In tomato greenhouses, each tomato plant grows crosswise, and there is a certain degree 

of occlusion between fruits and fruits and between fruits and branches and leaves, which 

leads to the target detection algorithm not being able to correctly recognize tomato ripeness, 

so the convolutional attention mechanism module is added to the YOLOv8 model to 

dynamically adjust the input image features in order to obtain a higher recognition accuracy. 

The convolutional attention mechanism module (CBAM) is an attention module that 

combines the channel attention mechanism and the spatial attention mechanism (Long et 

al., 2023). CBAM is a lightweight generalization model (Woo et al., 2018) , which removes 

a large number of convolutional structures from its interior and retains only a small number 

of pooling layers and feature fusion operations. This design reduces the heavy burden 

brought by convolutional computation, thus reducing the complexity and computation of 

the module. Meanwhile, due to the simple and flexible mechanism of CBAM, it is very 

versatile and can be seamlessly integrated with any CNN structure for many different neural 

network structures. Due to the high efficiency of CBAM, it can be less computationally 



 

 

intensive for the network. 

The operation flow of the tomato feature map in CBAM is shown in Figure 4. The specific 

process of the operation flow of the tomato feature map in CBAM is divided into: first, the 

global maximum pooling and global average pooling of the tomato feature map are 

performed respectively, and the feature mapping generates two sets of feature representations 

with different dimensions by compressing them in two dimensions. 

After pooling, the feature maps share a multilayer perceptual network that is first 

downscaled by a 1×1 convolutional kernel and subsequently upscaled by another 1×1 

convolutional kernel. The two tomato feature maps are merged and stacked using the 

layers.add() function, and the feature map weights for each channel are normalized by a 

sigmoid activation function. The normalized weights are multiplied with the input feature 

maps, followed by spatial domain processing of the feature maps after processing by the 

channel attention mechanism. Specifically, the feature maps are subjected to maximum 

pooling and average pooling in the channel dimension, respectively, and then these two 

output feature maps are stacked in the channel dimension using the layers.concatenate() 

function. After that, the number of channels is adjusted by 1×1 convolution, and the weights 

are normalized by the sigmoid function. The normalized weights are multiplied by the input 

feature map. After the input feature map passes through the channel attention mechanism, 

the obtained weights are multiplied by the input feature map and then sent to the spatial 

attention mechanism. Finally, the normalized weights are multiplied by the input feature 

map of the spatial attention mechanism to get the final feature map. 



 

 

 

 

Figure 4. Convolutional attention mechanism module, 

 

Preferred loss function 

Traditional loss functions for target detection algorithms such as GIoU, ICIoU, and CIoU 

used in YOLOv8 (Rezatofighi et al., 2019; Wang et al., 2021; Zheng et al., 2021) etc., mainly 

focus on regression metrics such as the distance between the predicted frame and the real 

frame, the overlap region and the aspect ratio. However, these methods ignore the 

orientation mismatch between the predicted and real frames. This limitation may lead to the 

instability of the prediction frames during the model training process, which affects the 

convergence speed and detection efficiency, making the final model perform poorly. In order 

to solve this problem, and also for must-change overfitting, this study proposes the SIoU loss 

function to replace the traditional loss function. The SIoU loss function consists of four 

components: angular loss, distance loss, shape loss, and intersection-parallel ratio loss. 

(1) Angle loss refers to the deviation between the angle predicted by the model and the 

actual angle. Its calculation formula is shown below: 

  (Eq. 1) 
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  (Eq. 2) 

  (Eq. 3) 

  (Eq. 4) 

Where Λ is the angular loss,  denotes the center coordinate of the real frame, 

and  denotes the coordinates of the center point of the predicted frame. 

(2) Distance loss is the deviation between the predicted and actual position of the model, 

which is calculated as shown below: 

  (Eq. 5) 

  (Eq. 6) 

Where Δ denotes the distance loss,  ,  are the minimum outer rectangle width and 

height of the real and predicted frames. 

(3) Shape loss measures the similarity between the target area predicted by the gain/loss 

model and the real target shape. The calculation formula is shown below: 

  (Eq. 7) 

  (Eq. 8) 

  (Eq. 9) 

Where Ω denotes the shape loss, w and h are the width and height of the predicted 
frame, and denote the width and height of the real frame, respectively, andθcontrols the 

degree of attention to the shape loss. 

(4) The ratio of the intersection area of the model-predicted bounding box and the actual 

bounding box to their concatenation area is noted as the intersection-concatenation ratio 
loss, which is calculated using the formula shown below. 

  (Eq. 10) 

In summary, the edge loss function of SIoU is finally defined as 
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  (Eq. 11) 

Test environment and assessment indicators 

In this study, the hardware configurations of the testbed used for training and testing 

tomato data are: the CPU is Intel(R)i5-10400F@2.90GHz, the GPU is NVIDIA GeForce RTX 

3060ti (8G video memory), the RAM is 16GB, the operating system is Windows 10 (64-bit), 

the CUDA version is 12.1, compilation platform is Pycharm, compilation language is Python 

3.9, and Pytorch version is 2.2.2. 

All comparison tests in this paper are conducted in the same environment. YOLOv8s 

was chosen as the original model for target detection. The training configuration is as follows: 

the image size of the network input is 640×640 pixels, the stochastic gradient descent 

algorithm is used (Charkroun et al., 2017), the initial learning rate is set to 0.01, the 

momentum of the SGD optimizer is 0.937, the weight decay is 0.0005, and the epochs are 

set to 300. 

The target detection used in the paper grades tomato maturity using precision, recall, 

average precision (AP), mean average precision (mAP), model occupied memory, and 

detection speed as evaluation metrics. 

 

Results  

Improved YOLOv8 model test results 

In order to validate the performance of the improved YOLOv8 model, 1,953 tomato 

images in the test set were tested and analyzed. Table 3 shows the detection results of this 

paper's algorithm for tomatoes of different ripeness levels. As can be seen from Table 3, the 

average precision mean of this paper's algorithm can reach 90.3%, the precision rate is 

91.2%, and the recall rate is 90.2%. 

Some of the detection graphic examples are shown in Figure 4, from which it can be 

seen that the algorithm in this paper can more accurately detect tomatoes with different 

ripeness for the occlusion between fruit and fruit as well as the occlusion between branches 

and leaves and fruits in this paper recognition effect is also better. Due to the unsynchronized 

fruit ripening time, there are multiple ripening stages in the image; for the fruit that has just 

L 1
2box IoU D +W

= - +



 

 

entered the early ripening stage and the fruit trees that have already entered the middle 

ripening stage, their features do not differ much, and they are easy to be confused. Therefore, 

the improved algorithm is able to extract the subtle features of the shape of the fruit surface 

in order to recognize the different ripening stages of obsolescence accurately. Meanwhile, 

as seen in Figure 5, the improved YOLOv8 model is also able to detect both multi-targets 

and light effects with better results accurately. 

 

Figure 5. Improved YOLOv8 model detection 
results. 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Improved YOLOv8 algorithm different maturity detection results. 
 Precision/% Recall/% mAP@0.5/% 

Immature stage 90.3 89.9 87.5 
Commutation period 88.7 88.5 88.7 
Early ripe 90.5 89.6 89.9 
Middle ripe 92.9 91.1 92.7 
Mature 93.6 91.9 92.9 
Mean value 91.2 90.2 90.3 

 

 

Comparative analysis of different attention mechanism algorithms 

Respectively, based on the YOLOv8s original model to add mainstream attention 
mechanisms CBAM, EMA (Ouyang et al., 2023), CA (Hou et al., 2021), ECA (Wang et al., 



 

 

2020), GAM (Liu et al., 2021). After the comparison test with the original YOLOv8s, the 

comparative evaluation indexes are precision, recall, and mean average precision (mAP), 
and the algorithmic precision under this paper's dataset after the introduction of different 

attention mechanisms in YOLOv8s is shown in Table 4. 

 

Table 4. Comparative trials of different attention mechanisms. 

Model 
Precision 

/ % 
Recall / % mAP / % 

YOLOv8s 89.1 89.4 89.2 

YOLOv8s+CBAM 90.1 90.1 90.0 

YOLOv8s+EMA 89.9 89.6 89.3 

YOLOv8s+CA 89.9 89.5 89.7 

YOLOv8s+ECA 89.5 89.5 89.3 

YOLOv8s+GAM 89.7 89.5 89.7 

 

 

From this table, it can be seen that after introducing the attention mechanisms in 

YOLOv8s, the precision of each network is improved in different degrees compared to the 

original YOLOv8s network. Among the five attention mechanisms introduced, the CBAM 

attention mechanism has the most obvious improvement in precision, with a 1-percentage-

point increase in precision and a 0.8-percentage-point increase in recall; the EMA and CA 

attention mechanisms have the same improvement in precision with a 0.2-percentage-point 

increase in recall and a 0.1-percentage-point increase in recall, respectively, and the ECA 

attention mechanism has a smaller improvement in precision and recall compared with the 

original model, with a 0.4-percentage-point increase in precision and recall, and the GAM 

has a smaller improvement compared with the original model with a 0.4-percentage-point 

increase in precision and recall. Percentage points and GAM have an improvement of 0.6 

and 0.1 percentage points compared to the original model precision and recall, respectively. 

The average precision means CBAM, EMA, CA, ECA, and GAM attention mechanisms are 

improved by 1, 0.1, 0.5, 0.1, and 0.5 percentage points compared to the original model. It 

is concluded that adding the CBAM attention mechanism is the most effective way to 

improve the accuracy of tomato target detection. Therefore, the final decision was to 



 

 

introduce the CBAM attention mechanism into the YOLOv8s model. 

Improved model ablation test 

In order to verify the performance enhancement effect of the MCS-YOLOv8 model 

proposed in this study, the ablation test was designed by comparing the MCS-YOLOv8 with 

the original YOLOv8s in a step-by-step manner: 

1) the original YOLOv8s model; 2) replacing the backbone network with the 

MobileNetV3 backbone network based on YOLOv8s; 3) introducing the CBAM attention 

mechanism based on YOLOv8s; 4) modifying the loss function to the SIoU Loss Function 

based on YOLOv8s; and 5) making all three of these modifications simultaneously based on 

YOLOv8s by modifying the backbone network to MobileNetV3, introducing the CBAM 

attention mechanism, and modifying the loss function to two of the SIoU loss functions; 6) 

making all three modifications at the same time. 

According to the above design content, under the same experimental conditions, relying 

on this paper on the tomato dataset for the test, the test results are shown in Table 5. The 

table shows that using the original model of YOLOv8s, the average accuracy of the tomato 

fruit ripening classification recognition of the mean value is 89.2%. In the YOLOv8s model, 

the core feature extraction part is replaced with the lightweight MobileNetv3 architecture, 

whose detection accuracy is 89.1%, which shows that MobileNetv3 loses part of its 

detection accuracy for the purpose of lightweight. By introducing the CBAM attention 

mechanism on the original YOLOv8s model, the average accuracy of the model is improved 

by 0.8 percentage points. By replacing the backbone feature extraction network with 

MobileNetv3 while introducing the CBAM attention mechanism, the mean average accuracy 

is improved by 0.2 percentage points compared to the original model and by 0.3 percentage 

points compared to replacing only the backbone network with MobileNetv3, which 

indicates that the CBAM attention mechanism can be effective for feature extraction in 

complex environments. Replacing the backbone network of the original YOLOv8 model 

with the lightweight MobileNetv3 structure, introducing the CBAM attention mechanism, 

and replacing the bounding box loss function with the SIoU which has a faster convergence 

speed, the mean average accuracy is 90.3, which is 1.1 percentage points higher than the 

original model. is the highest in the ablation test. 



 

 

The above analysis of the experimental results confirms the significant effectiveness of 

the optimization model proposed in this study on the tomato dataset of this paper. 

 

 

Table 5. Ablation test. 

Mobile
Netv3 

CBAM SIoU 

Accura
cy 

precisi
on/% 

Recall/
% 

Average precision Averag
e 

Precisi
on 

Mean 

Immat
ure 

stage 

Comm
utation 
period 

Early 
ripe 

Middle 
ripe 

Mature 

× × × 89.1 89.7 81.6 89.9 90.8 92.6 91.2 89.2 

√ × × 88.3 88.5 85.9 88.6 87.6 91.1 92.6 89.1 

× √ × 90.1 90.1 88.9 88.6 87.9 92.0 92.6 90.0 

× × √ 89.9 89.9 87.2 87.8 88.3 92.1 91.5 89.4 

√ √ × 89.5 89.6 86.9 88.1 87.8 91.5 92.7 89.4 

√ × √ 87.9 89.1 86.3 88.2 87.4 91.8 91.9 89.1 

× √ √ 90.2 90.1 86.3 87.8 89.3 91.6 91.6 89.3 

√ √ √ 91.2 90.2 87.5 88.7 89.9 92.7 92.9 90.3 

"×" indicates that this improvement strategy is not used; "√" indicates that this improvement 
strategy is used. 
 
 

Comparison of different models 

In order to objectively present the advantages of the improved model proposed in this 

paper, the experiment compares and analyzes the improved model with many current 

mainstream models. The comparative models involved in the experiment include the two-

stage algorithm Faster R-CNN (Ren et al., 2016), in which the Resnet network (He et al., 

2016) and the VGG16 network (Simonyan and Zissermann, 2014) are based on the Faster R-

CNN implementation, YOLOv3tiny, YOLOv5s, YOLOv6n, YOLOv7tiny, YOLOv8m, 

YOLOv9 and YOLOv10. This paper's tomato dataset was comparatively analyzed under the 

same experimental conditions. The results of the comparative analysis of each model are 

shown in Table 4. 

From the data in Table 4, it can be seen that the average accuracy mean of MCS-

YOLOv8 compared to Faster R-CNN (Resnet), Faster R-CNN (VGG16), YOLOv3-tiny, 



 

 

YOLOv5s, YOLOv6, YOLOv7-tiny, YOLOv8s, YOLOv9, and YOLOv10 models ( mAP@0.5) 

is improved by 19.9, 18.6, 2.4, 0.9, 2.9, 0.9, 0.7, 0.3 percentage points, respectively. Both 

values of precision and recall are also higher than those of other mainstream models. MCS-

YOLOv8 improves precision by 2.1 percentage points and recall by 0.5 percentage points 

compared to the pre-improvement YOLOv8s and mAP@0.5 improved by 1.1 percentage 

points. Although the detection speed is slightly slowed, the memory occupied by the model 

is significantly reduced. The average precision mean (mAP@0.5) of the MCS-YOLOv8 model 

is improved to varying degrees compared to several other models. In terms of detection speed, 

MCS-YOLOv8 is 2.1ms slower at 5.4ms than the fastest YOLOv3tiny, but it still meets the 

requirements of real-time detection. 

 

Table 6. Comparison test between the model in this paper and other mainstream models. 

Model 
Accuracy 

/ % 
Recall 

rate / % 
mAP@0.5 

/ % 
mAP@0.5:0.95 

/ % 

Model 
memory 
usage / 

MB 

Detection 
speed / 

ms 
FPS 

Faster R-
CNN 
(VGG16) 

66.5 73.6 70.4 55.1 115.3 169 5.9 

Faster R-
CNN 
(Resnet50) 

67.5 75.7 71.7 56.3 98 187 5.3 

YOLOv3-
tiny 88.3 89.1 87.9 77.7 34.4 3.3 303 

YOLOv5s 89.6 89.9 89.4 81.1 18.5 4.4 227.2 

YOLOv6 86.7 86.1 87.4 77.1 8.7 15 66.7 

YOLOv7-
tiny 

88.7 88.7 89.4 80.2 12.3 5.1 196 

YOLOv8s 89.1 89.7 89.2 82.6 22.5 4.2 238 

YOLOv9 88.1 88.7 89.6 78.5 4.6 3.2 312.5 

YOLOv10 89.2 89.1 90.0 81.2 5.8 3.4 294 

MCS-
YOLOv8 91.2 90.2 90.3 82.2 13.8 5.4 185.1 

 

 

In order to fully illustrate the effectiveness of the improved model proposed in this paper, 

some test set images in Faster R-CNN (Resnet), Faster R-CNN (VGG16), YOLOv3tiny, 

YOLOv5s, YOLOv6, YOLOv7tiny, YOLOv8s, YOLOv9, and YOLOv10 were selected are 



 

 

compared with the improved model in MCS-YOLOv8 in this paper, and the results of the 

confidence score are used to demonstrate the detection performance of the detection model 
in this paper. The comparison results are shown in Figure 6. 

The recognition results in Figure 6 show that the MCS-YOLOv8 algorithm exhibits 

significant advantages in recognizing tomato ripeness in complex environments. In the case 

of branch and leaf occlusion (Figure 6a), MCS-YOLOv8 can distinguish tomatoes at different 
ripening stages more accurately, significantly improving recognition accuracy and 

confidence compared to other existing models. In fruit-obscured environments (Figure 6b), 

the YOLOv7tiny model suffers from leakage detection, while MCS-YOLOv8 still maintains a 

high confidence level thanks to its advanced network structure and optimization strategy. 
Even under more complex branch and fruit occlusion conditions (Figure 6c), MCS-YOLOv8 

achieves 93% recognition accuracy for medium-ripening tomatoes. Under backlighting 

(Figure 6d), YOLOv10 and YOLOv5s performed well, but MCS-YOLOv8 still outperformed 

the other models, albeit slightly. In addition, when processing tomato images mixed with 
different ripening stages (Figure 6e), MCS-YOLOv8 demonstrates excellent recognition 

accuracy with an average confidence level of more than 90%, showing its high reliability 

and accuracy in target detection tasks. 

The confidence scores from the test images in Figure 6 further validate the advantages 
of the improved network for tomato fruit detection in natural environments. 
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Figure 6. Comparison results of different target detection networks. 



 

 

Conclusions 

i) This study proposes an improved lightweight model MCS-YOLOv8s based on 

YOLOv8s for tomato fruit ripeness detection. The improvement measures are to replace the 

original model backbone network of YOLOv8s with a more lightweight structure, introduce 

the attention mechanism in the backbone network, and replace the bounding box loss 

function of the original model with the SIoU loss function. Not only can we fully utilize the 

global interaction features, but also effectively balance the problem between the computing 

speed of the network and the model complexity. 

ii) In order to verify the performance of the improved YOLOv8 model, this paper designs 

an ablation test to analyze eight sets of data quantitatively, and the mean values of precision, 

recall, and average precision of MCS-YOLOv8 have improved by 2.1, 0.5, and 1.1 

percentage points compared with YOLOv8s. The experimental results show that the 

improved MCS-YOLOv8 model is higher than other models in terms of model detection 

precision and model detection time. 

iii) Under the same test conditions, by comparing the two-stage detection algorithm 

Faster R-CNN (VGG16, Resnet) and several mainstream models such as the single-stage 

algorithms YOLOv3tiny, YOLOv5s, and YOLOv7, the average accuracy mean of the 

improved MCS-YOLOv8 achieves 19.9, 18.6, 2.4, 0.9, 0.9 percentage point improvement, 

the model memory is reduced by 30% compared to YOLOv8s, and the detection speed is 

5.4ms. The improved model achieves better results on the tomato dataset. The experimental 

results fully confirm that the lightweight model proposed in this study improves the 

evaluation indexes and achieves more satisfactory results in visual performance. 

iv) Although MCS-YOLOv8 performs well in tomato ripeness detection tasks, it may face 

multiple challenges in practical applications. For example, in complex natural environments, 

factors such as weather changes (e.g., rain, fog, snow), background disturbances (e.g., weeds, 

other plants), and differences in fruit sizes and shapes, in addition to light and shading, may 

have an impact on model performance. Considering the uncertainties in the agricultural 

operating environment, it is a great challenge for this study's subsequent work to consider 

the impact of environmental factors, optimize the algorithm for environmental uncertainties, 

and achieve the algorithmic assistance of piggybacked agricultural robots for the automated 



 

 

picking of tomatoes to increase the speed of tomato picking and to save the cost of workforce. 

Through this study, the ripeness detection technology can be applied to the intelligent 

picking of agricultural products, providing a basis for the subsequent work of visual 

recognition, target localization and grading of the picking robot. Moreover, by using the 

tomato target detection model, a more automated and efficient tomato-picking robot can be 

developed, which is of great significance and practical value for constructing intelligent 

modern tomato greenhouses.  
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