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Abstract

In this paper, an improved lightweight YOLOv8 method is
proposed to detect the ripeness of tomato fruits, given the prob-
lems of subtle differences between neighboring stages of ripening
and mutual occlusion of branches, leaves, and fruits. The method
replaces the backbone network of the original YOLOvVS with a
more lightweight MobileNetV3 structure to reduce the number of
parameters of the model; at the same time, it integrates the convo-
lutional attention mechanism module (CBAM) in the feature
extraction network, which enhances the network’s capability of
extracting features of tomato fruits. At the same time, it introduces
the SCYLLA-IoU (SIoU) as a bounded YOLOVS frame regression
loss function, effectively solving the mismatch problem between
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the predicted frame and the actual frame and improving recogni-
tion accuracy. Compared with the current mainstream models
Resnet50, VGG16, YOLOv3, YOLOVS, YOLOV7, etc., the model
is in an advantageous position regarding precision rate, recall rate,
and detection accuracy. The research and experimental results
show that the mean values of precision, recall rate, and average
precision of the improved MCS-YOLOvVS model under the test set
are 91.2, 90.2, and 90.3%, respectively. The detection speed of a
single image is 5.4 ms, and the model occupies less memory by
8.7 M. The model has a clear advantage in both detection speed
and precision rate and also shows that the improved MCS-
YOLOv8 model can provide strong technical support for tomato-
picking robots in complex environments in the field.

Introduction

As one of the three major world trade vegetables, tomato is
very popular in our country and worldwide. Currently, China
plays an important role in the global tomato deep-processing
industry, both as a major supplier of tomato raw materials and a
major exporter of tomato products. In 2022, the tomato planting
area in China reached 1,169,200 hectares, and tomato production
reached about 69,707,700 tons (Sun et al., 2023). Tomato picking
has a large workload and, at the same time, faces a variety of prob-
lems, such as high labor costs, low efficiency and labor shortage.
There is an urgent need to move towards automation and intelli-
gence. Therefore, developing an automatic ripeness detection sys-
tem with high accuracy is of great practical significance for iden-
tifying the different ripening stages of tomatoes and determining
their distribution range, thus realizing the automation of tomato
picking (Chen et al., 2023).

At present, researchers at home and abroad have made out-
standing achievements in fruit ripening, and along with the rapid
development of deep learning technology and target detection
algorithms, the application scope of machine vision in detection
and classification has been gradually expanded. Scholars at home
and abroad have used machine vision to realize the detection of
fruit ripeness in mangoes, passion fruit, apple, and bananas
(Mulyani et al., 2017; Mim et al., 2018; Mazen and Nashat, 2019;
Luo et al., 2024). These studies have significantly improved the
detection accuracy and efficiency by improving the target detec-
tion model. For example, Luo et al. (2024) proposed a model for
strawberry fruit recognition in complex environments by enhanc-
ing the YOLOvV8 neck network using methods such as SPD-Conv.
The model achieves 93.5% recognition accuracy and 86.0% recall
for strawberry fruits in complex scenes. Regarding computational
efficiency, the model takes 17.2 ms to detect a single strawberry
image in a GPU environment, and the model volume is reduced to
66% of the original size after lightweight processing. Qiu et al.
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(2024) developed an accurate recognition model for dragon fruit
fruits at different ripening stages. By optimizing the backbone net-
work of YOLOVS and incorporating the attention mechanism, the
model’s performance was significantly improved, and the mAP
reached 90.9%, which effectively reduces misclassification and
omission in complex environments. Li et al. (2023) proposed a
tomato fruit ripeness grading and counting model, which improves
the feature diversity extraction capability by improving the back-
bone network and introduces the MHSA attention mechanism in
the YOLOVS8 backbone network. The precision and recall of the
improved model reached 80.6% and 80.7%, respectively. Although
the precision and recall of the model are improved over the original
model, the increase in model memory is not favorable for real-time
detection applications.

Zhao et al. (2023) proposed a lightweight, improved backbone
network for RT-DETR to detect the ripeness of spike-harvested
cherry tomatoes with an accuracy of 90%, which achieves fast
detection (41.2 f/s). To solve the problem of low accuracy and slow
detection of balsam pear recognition in unstructured environments.
Tan et al. (2024) proposed a method based on improved YOLOVS.
The method applies simSPPF to optimize the SPPF module and
introduces PConv convolution and contribution weight parameters
to achieve light-weighting of the detection head. The improved
model has a recognition accuracy as high as 94.7%, which com-
bines high recognition accuracy and detection speed, effectively
improving the efficiency and accuracy of balsam pear recognition.
Lv et al. (2024) proposed the green citrus ripeness detection based
on the improved YOLOVS in the field complex environment, the
model through the improvement of the backbone network, and so
on to realize the green citrus ripeness in the field complex environ-
ment to achieve fast and accurate detection, to provide technical
support for the citrus harvesting robot in complex situations. Miao
et al. (2023) introduced MobileNetV3 into the YOLOv7 model as
the backbone feature extraction network, reducing the number of
network parameters while improving the model accuracy and opti-
mizing the model memory usage.

Although existing research has achieved significant results in
fruit ripeness detection, some urgent problems still need to be
solved in the field of tomato ripeness detection. Currently, there are
fewer studies for multi-stage tomato ripeness recognition, and the
dense distribution of tomato fruits in complex natural environ-
ments in the field, the existence of mutual shading between fruits
and branches and leaves, as well as light differences due to the
shading of branches and leaves, and other problems. These prob-
lems seriously affect the detection accuracy and robustness of
existing models. Therefore, developing a detection model that can
efficiently and accurately recognize multi-stage tomato ripening
under complex natural environments is of great practical signifi-
cance.

Accordingly, this paper proposes a tomato ripeness detection
method based on improved YOLOVS, which improves the back-
bone network of YOLOV8 to achieve light weighting, selects an
efficient attention mechanism, and also improves the bounding box
regression function to improve the recognition accuracy and pro-
cessing speed of the model while reducing the model complexity.
The results of this research provide technical solutions for tomato-
picking robots to carry out picking activities in complex environ-
ments on farmland.

OPEN 8 ACCESS

Materials and Methods

Image data acquisition and preprocessing
Data set collection

The images were collected from an agricultural planting base
in Anyang City, Henan Province, and the image acquisition device
was RedmiK60Ultra, which finally captured 3255 tomato images
in JPG format with a resolution of 3072 x 4096 pixels. The typical
growth state of tomato is shown in Figure 1, and its growth in the
field exists a variety of complex situations such as branch and leaf
shading, fruit overlapping and backlighting.

Image data preprocessing

In order to ensure that the tomato dataset has diversity, this
study uses data enhancement methods to preprocess the captured
tomato images, including mirroring horizontally, flipping vertical-
ly, randomly changing brightness, randomly changing contrast,
and adding Gaussian noise. By expanding the dataset, the diversity
of the images is enhanced and improved, thus improving the
robustness of the model.

The images also need to be labeled, and the image dataset was
labeled through the online website Make Sense: five categories of
labels were classified according to the color of the skin and flesh,
i.e., unripe, discolored, first ripe, medium ripe, and ripe, which cor-
respond to the five classes “07, “17, “2”, “3”, and “4”, respectively.
In view of the research focus on non-destructive detection of toma-

(h) Sng by branches
and foliage

B

(d) Backlighting

(c) Unotrﬁ

Figure 1. Part of the captured image.
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to ripeness in the hanging branch state, this paper classifies the
peel color change into five classes of ripeness according to the
actual growth and development of tomatoes (Table 1). Since the
ripening stage of a tomato has a significant impact on its process-
ing, storage, and transportation methods, the selection of the
appropriate picking time should be based on different purposes of
use, which has a key role in maintaining the quality of the fruit and
extending its shelf life.

Analysis of data sets

For the dataset augmented and expanded with 19530 images, it
is divided into three mutually independent classifications of the
training set, test set, and validation set according to 8:1:1. There
are 15624 images in the training set, 1953 images in the testing set
and 1953 images in the validation set after the division.

In this dataset, each image has more than one label, with 8,810
immature labels, 3,990 labels at the color change stage, 4,760
labels at the first maturity stage, 9,670 labels at the medium matu-
rity stage, and 4,410 labels at the ripening stage.

YOLOVS target detection algorithm

In this paper, we use the YOLOVS algorithm; after a long
development period, the YOLO version has now been updated and
iterated to YOLOv10 (Wang ef al., 2024), and YOLOVS has a rel-
atively lightweight network structure among many versions. The
algorithm, released by Ultralytics in 2023, has high accuracy and
fast inference speed, making it one of the best target detection
models available today (Ge et al., 2021). This makes it more wide-
ly used in target detection and applicable to several vision tasks
such as instance segmentation, target tracking, pose estimation and
image classification. It provides five versions of
YOLOv8n/s/m/l/x. Among them, YOLOVSs is specially optimized
to fit NVIDIA Jetson Nanodevices. It has a balance of high accu-
racy and speed in embedded deployment scenarios, so YOLOv8s
is used in this paper for tomato detection.

The YOLOVS model consists of 4 parts: input end, backbone
network, neck network and head network. The mosaic data
enhancement technique is used on the input side (Tian et al., 2024).
In addition to this, YOLOVS introduces more diverse enhancement
strategies to enrich the diversity of the training set by mixing dif-
ferent images or cutting and pasting image blocks and dynamically
adjusts the enhancement strategies according to the performance
during the training process, which further improves the ability to
detect small targets. The backbone layer consists of 5 convolution-
al blocks, 4 C2f blocks, and 1 SPPF block, which extract the fea-
tures from the image. Compared with YOLOv5, YOLOvVS adopts
a lighter-weight C2 block instead of a C3 block while maintaining
the advantages of the CSP network structure, effectively reducing

Table 1. Description of the 5 levels of tomato maturity.

(Military) rank  Maturity level Descriptive

0 Immature stage

Commutation period

Fruits are set in size and green in color

Starts to change color around the umbilicus,
gradually appears yellow or light red

press

the computational cost without sacrificing the quality of feature
extraction (Xu et al., 2024). Regarding the feature fusion layer,
Neck partially realizes the fusion of different layers of features
through a path aggregation network combined with a feature pyra-
mid network (PAN-FPN) (Roy et al., 2022). This design enhances
the model’s ability to handle diverse and complex tasks. Moreover,
it enhances the global performance of target detection. The Head
layer is responsible for the final target detection and classification
task. The original coupled head structure is discarded, and the cur-
rent mainstream decoupled head structure is adopted to handle the
target detection and classification tasks separately. This makes the
Head part more flexible and, at the same time, enables the model
to better adapt to different detection tasks.

Improvements to the YOLOvVS algorithm

Detection of targets in complex environments in the field, both
to ensure the rapidity of tomato fruit ripeness classification detec-
tion and to maximize the accuracy of the network for fruit recog-
nition.YOLOVS, as a single-stage target detector, can be directly
divided into a grid on the image, and the detection task is regarded
as a regression task to achieve end-to-end training. In this paper,
the following improvements are made based on the YOLOVS
model:

i) Replace the original model backbone network with the more
lightweight MobileNetV3 structure.

ii) Introducing convolutional block attention module (CBAM)
attention mechanism in the backbone network.

ii) Replace the bounding box loss function in the original model
with a new loss function SloU.

The improved network is named MCS-YOLOVS target detec-
tion network, which is mainly composed of four parts: the input
layer, the backbone feature extraction network, the path aggrega-
tion network, and the output layer, and its network structure is
shown in Figure 2. First, the input layer receives a tomato image of
640 x 640 pixels; then, the image is fed into the backbone network
for feature extraction, and the extracted tomato feature map is sub-
sequently passed to the path aggregation network, where the shal-
low and deep features are effectively fused; finally, the fused fea-
ture maps are fed into the output layer to generate the prediction
frames and to recognize the classes of tomatoes.

MobileNetV3 network architecture

Google’s MobileNetV3, introduced in 2019, is a convolutional
neural network optimized for mobile devices, which effectively
increases the depth and nonlinearity of the network by employing
lightweight depth-separable convolutional and inverse covariance
modules while reducing the amount of computation and the num-
ber of parameters for lightweight (Qian ez al., 2021). MobileNetV3
also introduces the Hard-swish (Peng et al., 2023) activation func-

Picking situation

Fruits are not ripe and should not be picked

Can be harvested and stored for long distance
transportation

2 Early ripe Fruit surface red coverage has reached half, Can be picked for artificial ripening
reddening rate 30% to 60%

3 Middle ripe The surface of the fruit is mostly red, Ready to pick and sell fresh every other day
with 60% to 90% reddish coloration.

4 Mature More than 90% of the surface of the fruitisred  Available for picking and same day sale
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tion, an improvement of ReLU that enhances the model perform-
ance by enhancing the nonlinear characteristics.MobileNetV3 net-
work combines the advantages of the previous two generations. It
integrates the SE (Squeeze-and-Excitation) module on top of V2
(Sandler et al., 2018), and Depthwise Convolution (abbreviated as
DwiseConv) is one of the key components in the MobileNetV3
family of models. It significantly reduces the computational com-
plexity and the number of parameters by decomposing the standard
convolution process into two steps while maintaining the model
performance as much as possible. First, deep convolution applies a
separate convolution kernel for each input channel, meaning con-
volution operations are performed independently for each input
channel. This effectively reduces the large number of redundant
computations processed simultaneously across all input channels
in traditional convolutional methods. Second, point-by-point con-
volution further processes the results of the deep convolution using
a 1x1-sized convolution kernel. The primary purpose of this step is
to adjust the number of output channels and integrate the different
feature mappings generated by the deep convolution. In this way,
point-by-point convolution enables the exchange of information
between the different channels and allows precise control of the
output dimension. This design allows MobileNetV3 to significant-
ly reduce the computational requirements and model size while

ensuring model accuracy and performance, particularly suitable
for mobile devices and embedded systems application require-
ments. Its network structure parameters are shown in Table 2.

The columns in the table represent the input vector size of the
feature layer, the type of operation performed, the number of lift
and output channels in the Bottleneck inverse residual structure,
whether the SE module is included or not, the type of activation
function used, and the step size of the convolution. Figure 3 shows
the bneck structure in MobileNetV3. The operations in the network
include ordinary convolution (Conv2d), inverse residual structure
(benck, i.e., inverted residual blocks with linear bottlenecks), and
pooling layer (pool). The processing flow of MobileNetV3 is as
follows: the input image is first preprocessed by a 1x1 convolution
and batch normalization, and then feature extraction is performed
by the inverted residual structure with dimensionality reduction to
reduce the amount of computation. Then, the feature map is glob-
ally pooled by the SE module, and finally, the Hard-Swish activa-
tion function is used instead of Swish to reduce the computation
further and improve the performance. This design allows
MobileNetV3 to improve accuracy and operation speed while
keeping the model lightweight. MobileNetV3 has two versions,
MobileNetV3-large and MobileNetV3-small, which suit different
application requirements. The paper adopts the MobileNetV3-

CCB’H —D(_ Conv2d )—»(Eat chnor n‘Ed

(Conv —»(_Gonvad )—-(Ba:chmmed

Gzr —»(Gonv )—»(Goneat )—>(bot t1 enr ck)y»((Spl i ¢ HG’“‘T%

MW R »{(Gonv )->(Bat chnor n2)} =B “

Figure 2. Diagram of the improved YOLOv8 lightweight network model. Conv2d is convolution, Concat is feature fusion by adding the
number of channels, BN is batch normalization, CBAM is convolutional attention block, MNVIR stands for MNIneck, and Upsample

stands for upsampling.
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small network structure as the backbone network of the YOLOv8
model for feature extraction.

Mechanisms for increasing attention

In tomato greenhouses, each tomato plant grows crosswise,
and there is a certain degree of occlusion between fruits and fruits
and between fruits and branches and leaves, which leads to the tar-
get detection algorithm not being able to correctly recognize toma-
to ripeness, so the convolutional attention mechanism module is
added to the YOLOvVS8 model to dynamically adjust the input image
features in order to obtain a higher recognition accuracy.

The convolutional attention mechanism module (CBAM) is an
attention module that combines the channel attention mechanism
and the spatial attention mechanism (Long ef al., 2023). CBAM is
a lightweight generalization model (Woo et al., 2018), which
removes a large number of convolutional structures from its interi-
or and retains only a small number of pooling layers and feature
fusion operations. This design reduces the heavy burden brought
by convolutional computation, thus reducing the complexity and
computation of the module. Meanwhile, due to the simple and
flexible mechanism of CBAM, it is very versatile and can be seam-
lessly integrated with any CNN structure for many different neural
network structures. Due to the high efficiency of CBAM, it can be
less computationally intensive for the network.

e

The operation flow of the tomato feature map in CBAM is
shown in Figure 4. The specific process of the operation flow of
the tomato feature map in CBAM is divided into: first, the global
maximum pooling and global average pooling of the tomato fea-
ture map are performed respectively, and the feature mapping gen-
erates two sets of feature representations with different dimensions
by compressing them in two dimensions.

After pooling, the feature maps share a multilayer perceptual
network that is first downscaled by a 1x1 convolutional kernel and
subsequently upscaled by another 1x1 convolutional kernel. The
two tomato feature maps are merged and stacked using the
layers.add() function, and the feature map weights for each chan-
nel are normalized by a sigmoid activation function. The normal-
ized weights are multiplied with the input feature maps, followed
by spatial domain processing of the feature maps after processing
by the channel attention mechanism. Specifically, the feature maps
are subjected to maximum pooling and average pooling in the
channel dimension, respectively, and then these two output feature
maps are stacked in the channel dimension using the layers.con-
catenate() function. After that, the number of channels is adjusted
by 1x1 convolution, and the weights are normalized by the sig-
moid function. The normalized weights are multiplied by the input
feature map. After the input feature map passes through the chan-
nel attention mechanism, the obtained weights are multiplied by

Mobilenet V3 block

| P

Figure 3. The bneck structure in MobileNetV3.

Table 2. MobileNetV3 network parameters.

Input Operator Exp size Out SE NL J
2242 %3 conv2d, 3x3 - 16 - HS 2
1122 % 16 bneck,3x3 16 16 v 2
562 x 16 bneck,3%3 72 24 - RE 2
282 x 24 bneck,3%3 38 24 = 1
282 x 40 bneck,5x5 96 40 v HS 2
142 x 40 bneck,5%5 140 40 v HS 1
142 x 40 bneck,5%5 140 40 V HS 1
142 x 40 bneck,5%5 120 48 v HS 1
142 x 48 bneck,5%5 144 48 v HS 1
142 x 48 bneck,5%5 288 96 x/ HS 2
72 x 96 bneck,5%5 576 96 N HS 1
72 % 96 bneck,5%5 576 96 \ HS 1
72 x 96 conv2d,1x1 - 576 v HS 1
7% x 576 pool,7x7 - - - - 1
12 x 576 conv2d 1x1,NBN - 1024 - HS 1
12 x 1024 conv2d 1x1,NBN - k - - 1

v indicates that the SE module has been introduced in this layer; x indicates that the SE module has not been introduced in this layer.

[Journal of Agricultural Engineering 2025; LVI:1732]
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the input feature map and then sent to the spatial attention mecha-
nism. Finally, the normalized weights are multiplied by the input
feature map of the spatial attention mechanism to get the final fea-
ture map.

Preferred loss function

Traditional loss functions for target detection algorithms such
as GloU, ICIoU, and CloU used in YOLOVS (Rezatofighi et al.,
2019; Wang et al., 2021; Zheng et al., 2021) etc., mainly focus on
regression metrics such as the distance between the predicted
frame and the real frame, the overlap region and the aspect ratio.
However, these methods ignore the orientation mismatch between
the predicted and real frames. This limitation may lead to the insta-
bility of the prediction frames during the model training process,
which affects the convergence speed and detection efficiency,
making the final model perform poorly. In order to solve this prob-
lem, and also for must-change overfitting, this study proposes the
SIoU loss function to replace the traditional loss function. The
SIoU loss function consists of four components: angular loss, dis-
tance loss, shape loss, and intersection-parallel ratio loss.

Angle loss refers to the deviation between the angle predicted
by the model and the actual angle. Its calculation formula is shown
below:

A=1-2sin? (arcsin{x)—%) (Eq. 1)
= & =s5i

x=t sin(a)| (Eq. 2)

o= ¥ -b,) +(¥-b,) (Eq. 3)

¢, =max(b¥ b, )~ min(b?",b, ) (Eq. 4)

where: A is the angular loss, denotes the center coordinate of the
real frame; (be , bc ) denotes the coordinates of the center point of
the predicted frame.

Distance loss is the deviation between the predicted and actual
position of the model, which is calculated as shown below:

A=2-¢"—¢7® (Eq. 5)

=2-A (Eq. 6)

bf _bc
pr=(—=
¢

2 bf_bc. 2
) )py:(f) ¥

wh L

where: A denotes the distance loss; ¢yp, cpp are the minimum outer
rectangle width and height of the real and predicted frames.

Shape loss measures the similarity between the target area pre-
dicted by the gain/loss model and the real target shape. The calcu-
lation formula is shown below:

Q=Y -’ (Eq. 7)
_wem] (Eq. 8)
" max(w,w,)
- |"l - f’m|
%= ) (Eq. 9)

where: Q denotes the shape loss, w and 4 are the width and height
of the predicted frame, and denote the width and height of the real
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Figure 4. Convolutional attention mechanism module.
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frame, respectively, andOcontrols the degree of attention to the
shape loss.

The ratio of the intersection area of the model-predicted
bounding box and the actual bounding box to their concatenation
area is noted as the intersection-concatenation ratio loss, which is
calculated using the formula shown below.

_ IntersectionA

ToU —
UnionB

(Eq. 10)

In summary, the edge loss function of SloU is finally defined as

L, =1-IoU+2+% (Eq. 11)

Test environment and assessment indicators

In this study, the hardware configurations of the testbed used
for training and testing tomato data are: the CPU is Intel(R)i5S-
10400F @2.90GHz, the GPU is NVIDIA GeForce RTX 3060ti (8G
video memory), the RAM is 16GB, the operating system is
Windows 10 (64-bit), the CUDA version is 12.1, compilation plat-
form is Pycharm, compilation language is Python 3.9, and Pytorch
version is 2.2.2.

All comparison tests in this paper are conducted in the same
environment. YOLOvV8s was chosen as the original model for tar-
get detection. The training configuration is as follows: the image
size of the network input is 640x640 pixels, the stochastic gradient
descent algorithm is used (Charkroun et al., 2017), the initial learn-
ing rate is set to 0.01, the momentum of the SGD optimizer is
0.937, the weight decay is 0.0005, and the epochs are set to 300.

The target detection used in the paper grades tomato maturity
using precision, recall, average precision (AP), mean average pre-
cision (mAP), model occupied memory, and detection speed as
evaluation metrics.

Table 3. Improved YOLOVS algorithm different maturity detection results.

Results

Improved YOLOvVS8 model test results

In order to validate the performance of the improved YOLOVS
model, 1,953 tomato images in the test set were tested and ana-
lyzed. Table 3 shows the detection results of this paper’s algorithm
for tomatoes of different ripeness levels. As can be seen from Table
3, the average precision mean of this paper’s algorithm can reach
90.3%, the precision rate is 91.2%, and the recall rate is 90.2%.

Some of the detection graphic examples are shown in Figure 4,
from which it can be seen that the algorithm in this paper can more
accurately detect tomatoes with different ripeness for the occlusion
between fruit and fruit as well as the occlusion between branches
and leaves and fruits in this paper recognition effect is also better.
Due to the unsynchronized fruit ripening time, there are multiple
ripening stages in the image; for the fruit that has just entered the
early ripening stage and the fruit trees that have already entered the
middle ripening stage, their features do not differ much, and they
are easy to be confused. Therefore, the improved algorithm is able
to extract the subtle features of the shape of the fruit surface in
order to recognize the different ripening stages of obsolescence
accurately. Meanwhile, as seen in Figure 5, the improved YOLOv8
model is also able to detect both multi-targets and light effects with
better results accurately.

Comparative analysis of different attention mech-
anism algorithms

Respectively, based on the YOLOVS8s original model to add
mainstream attention mechanisms CBAM, EMA (Ouyang et al.,
2023), CA (Hou et al., 2021), ECA (Wang et al., 2020), GAM (Liu
etal.,2021). After the comparison test with the original YOLOVSs,
the comparative evaluation indexes are precision, recall, and mean
average precision (mAP), and the algorithmic precision under this
paper’s dataset after the introduction of different attention mecha-
nisms in YOLOVS8s is shown in Table 4. From this table, it can be
seen that after introducing the attention mechanisms in YOLOVSs,

Precision (%) Recall (%) mAP@0.5 (%)
Immature stage 90.3 89.9 87.5
Commutation period 88.7 88.5 88.7
Early ripe 90.5 89.6 89.9
Middle ripe 92.9 91.1 92.7
Mature 93.6 91.9 92.9
Mean value 91.2 90.2 90.3
Table 4. Comparative trials of different attention mechanisms.
Precision (%) Recall (%) mAP (%)

YOLOV8s 89.1 89.4 89.2
YOLOv8s+CBAM 90.1 90.1 90.0
YOLOV8s+tEMA 89.9 89.6 89.3
YOLOV8s+CA 89.9 89.5 89.7
YOLOV8s+ECA 89.5 89.5 89.3
YOLOvV8s+tGAM 89.7 89.5 89.7

[Journal of Agricultural Engineering 2025; LVI:1732]
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the precision of each network is improved in different degrees
compared to the original YOLOv8s network. Among the five
attention mechanisms introduced, the CBAM attention mechanism
has the most obvious improvement in precision, with a 1-percent-
age-point increase in precision and a 0.8-percentage-point increase
in recall; the EMA and CA attention mechanisms have the same
improvement in precision with a 0.2-percentage-point increase in
recall and a 0.1-percentage-point increase in recall, respectively,
and the ECA attention mechanism has a smaller improvement in
precision and recall compared with the original model, with a 0.4-
percentage-point increase in precision and recall, and the GAM has
a smaller improvement compared with the original model with a
0.4-percentage-point increase in precision and recall. Percentage
points and GAM have an improvement of 0.6 and 0.1 percentage
points compared to the original model precision and recall, respec-
tively. The average precision means CBAM, EMA, CA, ECA, and
GAM attention mechanisms are improved by 1, 0.1, 0.5, 0.1, and
0.5 percentage points compared to the original model. It is con-
cluded that adding the CBAM attention mechanism is the most
effective way to improve the accuracy of tomato target detection.
Therefore, the final decision was to introduce the CBAM attention
mechanism into the YOLOv8s model.

Improved model ablation test

In order to verify the performance enhancement effect of the
MCS-YOLOVS model proposed in this study, the ablation test was
designed by comparing the MCS-YOLOvVS with the original
YOLOvVS8s in a step-by-step manner: i) the original YOLOv8s
model; ii) replacing the backbone network with the MobileNetV3
backbone network based on YOLOVSs; iii) introducing the CBAM
attention mechanism based on YOLOvVS8s; iv) modifying the loss
function to the SIoU Loss Function based on YOLOv8s; v) making
all three of these modifications simultaneously based on YOLOvVS8s
by modifying the backbone network to MobileNetV3, introducing
the CBAM attention mechanism, and modifying the loss function
to two of the SIoU loss functions; vi) making all three modifica-
tions at the same time.

According to the above design content, under the same exper-
imental conditions, relying on this paper on the tomato dataset for
the test, the test results are shown in Table 5. The table shows that
using the original model of YOLOVSs, the average accuracy of the
tomato fruit ripening classification recognition of the mean value
is 89.2%. In the YOLOVS8s model, the core feature extraction part
is replaced with the lightweight MobileNetv3 architecture, whose
detection accuracy is 89.1%, which shows that MobileNetv3 loses
part of its detection accuracy for the purpose of lightweight. By

Table 5. Ablation test.

introducing the CBAM attention mechanism on the original
YOLOVS8s model, the average accuracy of the model is improved
by 0.8 percentage points. By replacing the backbone feature
extraction network with MobileNetv3 while introducing the
CBAM attention mechanism, the mean average accuracy is
improved by 0.2 percentage points compared to the original model
and by 0.3 percentage points compared to replacing only the back-
bone network with MobileNetv3, which indicates that the CBAM
attention mechanism can be effective for feature extraction in com-
plex environments. Replacing the backbone network of the origi-
nal YOLOvV8 model with the lightweight MobileNetv3 structure,
introducing the CBAM attention mechanism, and replacing the
bounding box loss function with the SIoU which has a faster con-
vergence speed, the mean average accuracy is 90.3, which is 1.1

a. Shading by branches
and foliage

A

d. Backlighting

c. Unobstructed

Figure 5. Improved YOLOv8 model detection results.

MobileNetv3 CBAM SloU Accuracy  Recall Average precision Average
precision (%) Immature Commutation Early Middle Mature precision
(€0) stage period ripe  ripe mean
x x x 89.1 89.7 81.6 89.9 90.8 926 91.2 89.2
\ x x 88.3 88.5 85.9 88.6 87.6  91.1 92.6 89.1
x \ x 90.1 90.1 88.9 88.6 87.9 920 92.6 90.0
x x \ 89.9 89.9 87.2 87.8 883 921 91.5 89.4
\ \ x 89.5 89.6 86.9 88.1 878 915 92.7 89.4
\ x \ 87.9 89.1 86.3 88.2 874 918 91.9 89.1
x \ S 90.2 90.1 86.3 87.8 893 916 91.6 89.3
v \ \ 912 90.2 87.5 88.7 89.9 927 92.9 90.3

x, this improvement strategy is not used; \, this improvement strategy is used.
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(VGG16)

Faster R-CNN
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YOLOvV3-tiny
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YOLOv6

YOLOV7-tiny

Figure 6. Comparison results of different target detection networks.

Table 6. Comparison test between the model in this paper and other mainstream models.

Accuracy Recall rate mAP@0.5 mAP@0.5:0.95 Model memory Detection speed
(%) (%) (%) (&) usage (MB) (ms)
Faster R-CNN (VGG16) 66.5 73.6 70.4 55.1 1153 169 59
Faster R-CNN (Resnet50) 67.5 75.7 71.7 56.3 98 187 53
YOLOV3-tiny 88.3 89.1 87.9 77.7 34.4 33 303
YOLOVSs 89.6 89.9 89.4 81.1 18.5 44 227.2
YOLOv6 86.7 86.1 87.4 77.1 8.7 15 66.7
YOLOV7-tiny 88.7 88.7 89.4 80.2 12.3 5.1 196
YOLOVSs 89.1 89.7 89.2 82.6 22.5 42 238
YOLOV9 88.1 88.7 89.6 78.5 4.6 32 312.5
YOLOv10 89.2 89.1 90.0 81.2 5.8 34 294
MCS-YOLOVS 91.2 90.2 90.3 82.2 13.8 5.4 185.1
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percentage points higher than the original model. is the highest in
the ablation test.

The above analysis of the experimental results confirms the
significant effectiveness of the optimization model proposed in
this study on the tomato dataset of this paper.

Comparison of different models

In order to objectively present the advantages of the improved
model proposed in this paper, the experiment compares and ana-
lyzes the improved model with many current mainstream models.
The comparative models involved in the experiment include the
two-stage algorithm Faster R-CNN (Ren ef al., 2016), in which the
Resnet network (He et al., 2016) and the VGG16 network
(Simonyan and Zissermann, 2014) are based on the Faster R-CNN
implementation, YOLOvV3tiny, YOLOVSs, YOLOvo6n,
YOLOv7tiny, YOLOv8m, YOLOV9 and YOLOvV10. This paper’s
tomato dataset was comparatively analyzed under the same exper-
imental conditions. The results of the comparative analysis of each
model are shown in Table 6.

From the data in Table 6, it can be seen that the average accu-
racy mean of MCS-YOLOv8 compared to Faster R-CNN (Resnet),
Faster R-CNN (VGG16), YOLOv3-tiny, YOLOvSs, YOLOV6,
YOLOvV7-tiny, YOLOv8s, YOLOV9, and YOLOvVIO models
(mAP@Q0.5) is improved by 19.9, 18.6, 2.4, 0.9, 2.9, 0.9, 0.7, 0.3
percentage points, respectively. Both values of precision and recall
are also higher than those of other mainstream models. MCS-
YOLOv8 improves precision by 2.1 percentage points and recall
by 0.5 percentage points compared to the pre-improvement
YOLOv8s and mAP@0.5 improved by 1.1 percentage points.
Although the detection speed is slightly slowed, the memory occu-
pied by the model is significantly reduced. The average precision
mean (MAP@0.5) of the MCS-YOLOvV8 model is improved to
varying degrees compared to several other models. In terms of
detection speed, MCS-YOLOVS8 is 2.1 ms slower at 5.4 ms than the
fastest YOLOv3tiny, but it still meets the requirements of real-time
detection.

In order to fully illustrate the effectiveness of the improved
model proposed in this paper, some test set images in Faster R-
CNN (Resnet), Faster R-CNN (VGG16), YOLOv3tiny, YOLOVS5s,
YOLOv6, YOLOv7tiny, YOLOvV8s, YOLOV9, and YOLOVI0
were selected are compared with the improved model in MCS-
YOLOVS in this paper, and the results of the confidence score are
used to demonstrate the detection performance of the detection
model in this paper. The comparison results are shown in Figure 6.

The recognition results in Figure 6 show that the MCS-
YOLOV8 algorithm exhibits significant advantages in recognizing
tomato ripeness in complex environments. In the case of branch
and leaf occlusion (Figure 6a), MCS-YOLOVS8 can distinguish
tomatoes at different ripening stages more accurately, significantly
improving recognition accuracy and confidence compared to other
existing models. In fruit-obscured environments (Figure 6b), the
YOLOv7tiny model suffers from leakage detection, while MCS-
YOLOVS still maintains a high confidence level thanks to its
advanced network structure and optimization strategy. Even under
more complex branch and fruit occlusion conditions (Figure 6c),
MCS-YOLOVS achieves 93% recognition accuracy for medium-
ripening tomatoes. Under backlighting (Figure 6d), YOLOv10 and
YOLOVSs performed well, but MCS-YOLOVS still outperformed
the other models, albeit slightly. In addition, when processing
tomato images mixed with different ripening stages (Figure 6e),
MCS-YOLOv8 demonstrates excellent recognition accuracy with
an average confidence level of more than 90%, showing its high
reliability and accuracy in target detection tasks.

OPEN 8ACCESS

The confidence scores from the test images in Figure 6 further
validate the advantages of the improved network for tomato fruit
detection in natural environments.

Conclusions

This study proposes an improved lightweight model MCS-
YOLOvV8s based on YOLOv8s for tomato fruit ripeness detection.
The improvement measures are to replace the original model back-
bone network of YOLOv8s with a more lightweight structure,
introduce the attention mechanism in the backbone network, and
replace the bounding box loss function of the original model with
the SIoU loss function. Not only can we fully utilize the global
interaction features, but also effectively balance the problem
between the computing speed of the network and the model com-
plexity.

In order to verify the performance of the improved YOLOVS
model, this paper designs an ablation test to analyze eight sets of
data quantitatively, and the mean values of precision, recall, and
average precision of MCS-YOLOvV8 have improved by 2.1, 0.5,
and 1.1 percentage points compared with YOLOvVS8s. The experi-
mental results show that the improved MCS-YOLOVS model is
higher than other models in terms of model detection precision and
model detection time.

Under the same test conditions, by comparing the two-stage
detection algorithm Faster R-CNN (VGG16, Resnet) and several
mainstream models such as the single-stage algorithms
YOLOv3tiny, YOLOvVSs, and YOLOv7, the average accuracy
mean of the improved MCS-YOLOVS achieves 19.9, 18.6, 2.4,
0.9, 0.9 percentage point improvement, the model memory is
reduced by 30% compared to YOLOVSs, and the detection speed
is 5.4 ms. The improved model achieves better results on the toma-
to dataset. The experimental results fully confirm that the light-
weight model proposed in this study improves the evaluation
indexes and achieves more satisfactory results in visual perform-
ance. Although MCS-YOLOVS performs well in tomato ripeness
detection tasks, it may face multiple challenges in practical appli-
cations. For example, in complex natural environments, factors
such as weather changes (e.g., rain, fog, snow), background distur-
bances (e.g., weeds, other plants), and differences in fruit sizes and
shapes, in addition to light and shading, may have an impact on
model performance. Considering the uncertainties in the agricul-
tural operating environment, it is a great challenge for this study’s
subsequent work to consider the impact of environmental factors,
optimize the algorithm for environmental uncertainties, and
achieve the algorithmic assistance of piggybacked agricultural
robots for the automated picking of tomatoes to increase the speed
of tomato picking and to save the cost of workforce.

Through this study, the ripeness detection technology can be
applied to the intelligent picking of agricultural products, provid-
ing a basis for the subsequent work of visual recognition, target
localization and grading of the picking robot. Moreover, by using
the tomato target detection model, a more automated and efficient
tomato-picking robot can be developed, which is of great signifi-
cance and practical value for constructing intelligent modern toma-
to greenhouses.
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