
Abstract 
In this paper, an improved lightweight YOLOv8 method is 

proposed to detect the ripeness of tomato fruits, given the prob-
lems of subtle differences between neighboring stages of ripening 
and mutual occlusion of branches, leaves, and fruits. The method 
replaces the backbone network of the original YOLOv8 with a 
more lightweight MobileNetV3 structure to reduce the number of 
parameters of the model; at the same time, it integrates the convo-
lutional attention mechanism module (CBAM) in the feature 
extraction network, which enhances the network’s capability of 
extracting features of tomato fruits. At the same time, it introduces 
the SCYLLA-IoU (SIoU) as a bounded YOLOv8 frame regression 
loss function, effectively solving the mismatch problem between 

the predicted frame and the actual frame and improving recogni-
tion accuracy. Compared with the current mainstream models 
Resnet50, VGG16, YOLOv3, YOLOv5, YOLOv7, etc., the model 
is in an advantageous position regarding precision rate, recall rate, 
and detection accuracy. The research and experimental results 
show that the mean values of precision, recall rate, and average 
precision of the improved MCS-YOLOv8 model under the test set 
are 91.2, 90.2, and 90.3%, respectively. The detection speed of a 
single image is 5.4 ms, and the model occupies less memory by 
8.7 M. The model has a clear advantage in both detection speed 
and precision rate and also shows that the improved MCS-
YOLOv8 model can provide strong technical support for tomato-
picking robots in complex environments in the field.  

 
 
 

Introduction 
As one of the three major world trade vegetables, tomato is 

very popular in our country and worldwide. Currently, China 
plays an important role in the global tomato deep-processing 
industry, both as a major supplier of tomato raw materials and a 
major exporter of tomato products. In 2022, the tomato planting 
area in China reached 1,169,200 hectares, and tomato production 
reached about 69,707,700 tons (Sun et al., 2023). Tomato picking 
has a large workload and, at the same time, faces a variety of prob-
lems, such as high labor costs, low efficiency and labor shortage. 
There is an urgent need to move towards automation and intelli-
gence. Therefore, developing an automatic ripeness detection sys-
tem with high accuracy is of great practical significance for iden-
tifying the different ripening stages of tomatoes and determining 
their distribution range, thus realizing the automation of tomato 
picking (Chen et al., 2023). 

At present, researchers at home and abroad have made out-
standing achievements in fruit ripening, and along with the rapid 
development of deep learning technology and target detection 
algorithms, the application scope of machine vision in detection 
and classification has been gradually expanded. Scholars at home 
and abroad have used machine vision to realize the detection of 
fruit ripeness in mangoes, passion fruit, apple, and bananas 
(Mulyani et al., 2017; Mim et al., 2018; Mazen and Nashat, 2019; 
Luo et al., 2024). These studies have significantly improved the 
detection accuracy and efficiency by improving the target detec-
tion model. For example, Luo et al. (2024) proposed a model for 
strawberry fruit recognition in complex environments by enhanc-
ing the YOLOv8 neck network using methods such as SPD-Conv. 
The model achieves 93.5% recognition accuracy and 86.0% recall 
for strawberry fruits in complex scenes. Regarding computational 
efficiency, the model takes 17.2 ms to detect a single strawberry 
image in a GPU environment, and the model volume is reduced to 
66% of the original size after lightweight processing. Qiu et al. 
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(2024) developed an accurate recognition model for dragon fruit 
fruits at different ripening stages. By optimizing the backbone net-
work of YOLOv8 and incorporating the attention mechanism, the 
model’s performance was significantly improved, and the mAP 
reached 90.9%, which effectively reduces misclassification and 
omission in complex environments. Li et al. (2023) proposed a 
tomato fruit ripeness grading and counting model, which improves 
the feature diversity extraction capability by improving the back-
bone network and introduces the MHSA attention mechanism in 
the YOLOv8 backbone network. The precision and recall of the 
improved model reached 80.6% and 80.7%, respectively. Although 
the precision and recall of the model are improved over the original 
model, the increase in model memory is not favorable for real-time 
detection applications.  

Zhao et al. (2023) proposed a lightweight, improved backbone 
network for RT-DETR to detect the ripeness of spike-harvested 
cherry tomatoes with an accuracy of 90%, which achieves fast 
detection (41.2 f/s). To solve the problem of low accuracy and slow 
detection of balsam pear recognition in unstructured environments. 
Tan et al. (2024) proposed a method based on improved YOLOv8. 
The method applies simSPPF to optimize the SPPF module and 
introduces PConv convolution and contribution weight parameters 
to achieve light-weighting of the detection head. The improved 
model has a recognition accuracy as high as 94.7%, which com-
bines high recognition accuracy and detection speed, effectively 
improving the efficiency and accuracy of balsam pear recognition. 
Lv et al. (2024) proposed the green citrus ripeness detection based 
on the improved YOLOv5 in the field complex environment, the 
model through the improvement of the backbone network, and so 
on to realize the green citrus ripeness in the field complex environ-
ment to achieve fast and accurate detection, to provide technical 
support for the citrus harvesting robot in complex situations. Miao 
et al. (2023) introduced MobileNetV3 into the YOLOv7 model as 
the backbone feature extraction network, reducing the number of 
network parameters while improving the model accuracy and opti-
mizing the model memory usage. 

Although existing research has achieved significant results in 
fruit ripeness detection, some urgent problems still need to be 
solved in the field of tomato ripeness detection. Currently, there are 
fewer studies for multi-stage tomato ripeness recognition, and the 
dense distribution of tomato fruits in complex natural environ-
ments in the field, the existence of mutual shading between fruits 
and branches and leaves, as well as light differences due to the 
shading of branches and leaves, and other problems. These prob-
lems seriously affect the detection accuracy and robustness of 
existing models. Therefore, developing a detection model that can 
efficiently and accurately recognize multi-stage tomato ripening 
under complex natural environments is of great practical signifi-
cance. 

Accordingly, this paper proposes a tomato ripeness detection 
method based on improved YOLOv8, which improves the back-
bone network of YOLOv8 to achieve light weighting, selects an 
efficient attention mechanism, and also improves the bounding box 
regression function to improve the recognition accuracy and pro-
cessing speed of the model while reducing the model complexity. 
The results of this research provide technical solutions for tomato-
picking robots to carry out picking activities in complex environ-
ments on farmland. 

 

Materials and Methods 
Image data acquisition and preprocessing 
Data set collection 

The images were collected from an agricultural planting base 
in Anyang City, Henan Province, and the image acquisition device 
was RedmiK60Ultra, which finally captured 3255 tomato images 
in JPG format with a resolution of 3072 × 4096 pixels. The typical 
growth state of tomato is shown in Figure 1, and its growth in the 
field exists a variety of complex situations such as branch and leaf 
shading, fruit overlapping and backlighting. 

 
Image data preprocessing 

In order to ensure that the tomato dataset has diversity, this 
study uses data enhancement methods to preprocess the captured 
tomato images, including mirroring horizontally, flipping vertical-
ly, randomly changing brightness, randomly changing contrast, 
and adding Gaussian noise. By expanding the dataset, the diversity 
of the images is enhanced and improved, thus improving the 
robustness of the model. 

The images also need to be labeled, and the image dataset was 
labeled through the online website Make Sense: five categories of 
labels were classified according to the color of the skin and flesh, 
i.e., unripe, discolored, first ripe, medium ripe, and ripe, which cor-
respond to the five classes “0”, “1”, “2”, “3”, and “4”, respectively. 
In view of the research focus on non-destructive detection of toma-
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Figure 1. Part of the captured image. 



to ripeness in the hanging branch state, this paper classifies the 
peel color change into five classes of ripeness according to the 
actual growth and development of tomatoes (Table 1). Since the 
ripening stage of a tomato has a significant impact on its process-
ing, storage, and transportation methods, the selection of the 
appropriate picking time should be based on different purposes of 
use, which has a key role in maintaining the quality of the fruit and 
extending its shelf life. 

 
Analysis of data sets 

For the dataset augmented and expanded with 19530 images, it 
is divided into three mutually independent classifications of the 
training set, test set, and validation set according to 8:1:1. There 
are 15624 images in the training set, 1953 images in the testing set 
and 1953 images in the validation set after the division. 

In this dataset, each image has more than one label, with 8,810 
immature labels, 3,990 labels at the color change stage, 4,760 
labels at the first maturity stage, 9,670 labels at the medium matu-
rity stage, and 4,410 labels at the ripening stage. 
 
YOLOv8 target detection algorithm 

In this paper, we use the YOLOv8 algorithm; after a long 
development period, the YOLO version has now been updated and 
iterated to YOLOv10 (Wang et al., 2024), and YOLOv8 has a rel-
atively lightweight network structure among many versions. The 
algorithm, released by Ultralytics in 2023, has high accuracy and 
fast inference speed, making it one of the best target detection 
models available today (Ge et al., 2021). This makes it more wide-
ly used in target detection and applicable to several vision tasks 
such as instance segmentation, target tracking, pose estimation and 
image classification. It provides five versions of 
YOLOv8n/s/m/l/x. Among them, YOLOv8s is specially optimized 
to fit NVIDIA Jetson Nanodevices. It has a balance of high accu-
racy and speed in embedded deployment scenarios, so YOLOv8s 
is used in this paper for tomato detection. 

The YOLOv8 model consists of 4 parts: input end, backbone 
network, neck network and head network. The mosaic data 
enhancement technique is used on the input side (Tian et al., 2024). 
In addition to this, YOLOv8 introduces more diverse enhancement 
strategies to enrich the diversity of the training set by mixing dif-
ferent images or cutting and pasting image blocks and dynamically 
adjusts the enhancement strategies according to the performance 
during the training process, which further improves the ability to 
detect small targets. The backbone layer consists of 5 convolution-
al blocks, 4 C2f blocks, and 1 SPPF block, which extract the fea-
tures from the image. Compared with YOLOv5, YOLOv8 adopts 
a lighter-weight C2 block instead of a C3 block while maintaining 
the advantages of the CSP network structure, effectively reducing 

the computational cost without sacrificing the quality of feature 
extraction (Xu et al., 2024). Regarding the feature fusion layer, 
Neck partially realizes the fusion of different layers of features 
through a path aggregation network combined with a feature pyra-
mid network (PAN-FPN) (Roy et al., 2022). This design enhances 
the model’s ability to handle diverse and complex tasks. Moreover, 
it enhances the global performance of target detection. The Head 
layer is responsible for the final target detection and classification 
task. The original coupled head structure is discarded, and the cur-
rent mainstream decoupled head structure is adopted to handle the 
target detection and classification tasks separately. This makes the 
Head part more flexible and, at the same time, enables the model 
to better adapt to different detection tasks. 

 
Improvements to the YOLOv8 algorithm 

Detection of targets in complex environments in the field, both 
to ensure the rapidity of tomato fruit ripeness classification detec-
tion and to maximize the accuracy of the network for fruit recog-
nition.YOLOv8, as a single-stage target detector, can be directly 
divided into a grid on the image, and the detection task is regarded 
as a regression task to achieve end-to-end training. In this paper, 
the following improvements are made based on the YOLOv8 
model: 
i) Replace the original model backbone network with the more 

lightweight MobileNetV3 structure. 
ii) Introducing  convolutional block attention module (CBAM) 

attention mechanism in the backbone network. 
ii) Replace the bounding box loss function in the original model 

with a new loss function SIoU. 
The improved network is named MCS-YOLOv8 target detec-

tion network, which is mainly composed of four parts: the input 
layer, the backbone feature extraction network, the path aggrega-
tion network, and the output layer, and its network structure is 
shown in Figure 2. First, the input layer receives a tomato image of 
640 × 640 pixels; then, the image is fed into the backbone network 
for feature extraction, and the extracted tomato feature map is sub-
sequently passed to the path aggregation network, where the shal-
low and deep features are effectively fused; finally, the fused fea-
ture maps are fed into the output layer to generate the prediction 
frames and to recognize the classes of tomatoes. 

 
MobileNetV3 network architecture 

Google’s MobileNetV3, introduced in 2019, is a convolutional 
neural network optimized for mobile devices, which effectively 
increases the depth and nonlinearity of the network by employing 
lightweight depth-separable convolutional and inverse covariance 
modules while reducing the amount of computation and the num-
ber of parameters for lightweight (Qian et al., 2021). MobileNetV3 
also introduces the Hard-swish (Peng et al., 2023) activation func-
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Table 1. Description of the 5 levels of tomato maturity. 

(Military) rank      Maturity level                            Descriptive                                                        Picking situation 

0                                   Immature stage                                  Fruits are set in size and green in color                     Fruits are not ripe and should not be picked 
1                                   Commutation period                         Starts to change color around the umbilicus,            Can be harvested and stored for long distance 
                                                                                                gradually appears yellow or light red                          transportation 
2                                   Early ripe                                           Fruit surface red coverage has reached half,             Can be picked for artificial ripening 
                                                                                                reddening rate 30% to 60%                                         
3                                   Middle ripe                                        The surface of the fruit is mostly red,                       Ready to pick and sell fresh every other day 
                                                                                                with 60% to 90% reddish coloration.                          
4                                   Mature                                               More than 90% of the surface of the fruit is red       Available for picking and same day sale 
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tion, an improvement of ReLU that enhances the model perform-
ance by enhancing the nonlinear characteristics.MobileNetV3 net-
work combines the advantages of the previous two generations. It 
integrates the SE (Squeeze-and-Excitation) module on top of V2 
(Sandler et al., 2018), and Depthwise Convolution (abbreviated as 
DwiseConv) is one of the key components in the MobileNetV3 
family of models. It significantly reduces the computational com-
plexity and the number of parameters by decomposing the standard 
convolution process into two steps while maintaining the model 
performance as much as possible. First, deep convolution applies a 
separate convolution kernel for each input channel, meaning con-
volution operations are performed independently for each input 
channel. This effectively reduces the large number of redundant 
computations processed simultaneously across all input channels 
in traditional convolutional methods. Second, point-by-point con-
volution further processes the results of the deep convolution using 
a 1x1-sized convolution kernel. The primary purpose of this step is 
to adjust the number of output channels and integrate the different 
feature mappings generated by the deep convolution. In this way, 
point-by-point convolution enables the exchange of information 
between the different channels and allows precise control of the 
output dimension. This design allows MobileNetV3 to significant-
ly reduce the computational requirements and model size while 

ensuring model accuracy and performance, particularly suitable 
for mobile devices and embedded systems application require-
ments. Its network structure parameters are shown in Table 2. 

The columns in the table represent the input vector size of the 
feature layer, the type of operation performed, the number of lift 
and output channels in the Bottleneck inverse residual structure, 
whether the SE module is included or not, the type of activation 
function used, and the step size of the convolution. Figure 3 shows 
the bneck structure in MobileNetV3. The operations in the network 
include ordinary convolution (Conv2d), inverse residual structure 
(benck, i.e., inverted residual blocks with linear bottlenecks), and 
pooling layer (pool). The processing flow of MobileNetV3 is as 
follows: the input image is first preprocessed by a 1×1 convolution 
and batch normalization, and then feature extraction is performed 
by the inverted residual structure with dimensionality reduction to 
reduce the amount of computation. Then, the feature map is glob-
ally pooled by the SE module, and finally, the Hard-Swish activa-
tion function is used instead of Swish to reduce the computation 
further and improve the performance. This design allows 
MobileNetV3 to improve accuracy and operation speed while 
keeping the model lightweight. MobileNetV3 has two versions, 
MobileNetV3-large and MobileNetV3-small, which suit different 
application requirements. The paper adopts the MobileNetV3-
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Figure 2. Diagram of the improved YOLOv8 lightweight network model. Conv2d is convolution, Concat is feature fusion by adding the 
number of channels, BN is batch normalization, CBAM is convolutional attention block, MNVIR stands for MNIneck, and Upsample 
stands for upsampling.



small network structure as the backbone network of the YOLOv8 
model for feature extraction. 

 
Mechanisms for increasing attention 

In tomato greenhouses, each tomato plant grows crosswise, 
and there is a certain degree of occlusion between fruits and fruits 
and between fruits and branches and leaves, which leads to the tar-
get detection algorithm not being able to correctly recognize toma-
to ripeness, so the convolutional attention mechanism module is 
added to the YOLOv8 model to dynamically adjust the input image 
features in order to obtain a higher recognition accuracy. 

The convolutional attention mechanism module (CBAM) is an 
attention module that combines the channel attention mechanism 
and the spatial attention mechanism (Long et al., 2023). CBAM is 
a lightweight generalization model (Woo et al., 2018), which 
removes a large number of convolutional structures from its interi-
or and retains only a small number of pooling layers and feature 
fusion operations. This design reduces the heavy burden brought 
by convolutional computation, thus reducing the complexity and 
computation of the module. Meanwhile, due to the simple and 
flexible mechanism of CBAM, it is very versatile and can be seam-
lessly integrated with any CNN structure for many different neural 
network structures. Due to the high efficiency of CBAM, it can be 
less computationally intensive for the network. 

The operation flow of the tomato feature map in CBAM is 
shown in Figure 4. The specific process of the operation flow of 
the tomato feature map in CBAM is divided into: first, the global 
maximum pooling and global average pooling of the tomato fea-
ture map are performed respectively, and the feature mapping gen-
erates two sets of feature representations with different dimensions 
by compressing them in two dimensions. 

After pooling, the feature maps share a multilayer perceptual 
network that is first downscaled by a 1×1 convolutional kernel and 
subsequently upscaled by another 1×1 convolutional kernel. The 
two tomato feature maps are merged and stacked using the 
layers.add() function, and the feature map weights for each chan-
nel are normalized by a sigmoid activation function. The normal-
ized weights are multiplied with the input feature maps, followed 
by spatial domain processing of the feature maps after processing 
by the channel attention mechanism. Specifically, the feature maps 
are subjected to maximum pooling and average pooling in the 
channel dimension, respectively, and then these two output feature 
maps are stacked in the channel dimension using the layers.con-
catenate() function. After that, the number of channels is adjusted 
by 1×1 convolution, and the weights are normalized by the sig-
moid function. The normalized weights are multiplied by the input 
feature map. After the input feature map passes through the chan-
nel attention mechanism, the obtained weights are multiplied by 

                 Article

[page 46]                                             [Journal of Agricultural Engineering 2025; LVI:1732]                                                             

Table 2. MobileNetV3 network parameters. 

Input                             Operator                        Exp size                    Out                    SE                                 NL                              s 

2242 × 3                             conv2d, 3×3                                  -                                16                          -                                        HS                                  2 
1122 × 16                             bneck,3×3                                  16                              16                          √                                       RE                                  2 
562 × 16                              bneck,3×3                                  72                              24                          -                                        RE                                  2 
282 × 24                              bneck,3×3                                  88                              24                          -                                        RE                                  1 
282 × 40                              bneck,5×5                                  96                              40                          √                                       HS                                  2 
142 × 40                              bneck,5×5                                 140                             40                          √                                       HS                                  1 
142 × 40                              bneck,5×5                                 140                             40                          √                                       HS                                  1 
142 × 40                              bneck,5×5                                 120                             48                          √                                       HS                                  1 
142 × 48                              bneck,5×5                                 144                             48                          √                                       HS                                  1 
142 × 48                              bneck,5×5                                 288                             96                          √                                       HS                                  2 
72 × 96                                 bneck,5×5                                 576                             96                          √                                       HS                                  1 
72 × 96                                 bneck,5×5                                 576                             96                          √                                       HS                                  1 
72 × 96                               conv2d,1×1                                  -                               576                         √                                       HS                                  1 
72 × 576                                pool,7×7                                     -                                 -                            -                                          -                                    1 
12 × 576                        conv2d 1×1,NBN                             -                              1024                        -                                        HS                                  1 
12 × 1024                      conv2d 1×1,NBN                             -                                 k                           -                                          -                                    1 
√ indicates that the SE module has been introduced in this layer; × indicates that the SE module has not been introduced in this layer. 

Figure 3. The bneck structure in MobileNetV3.



the input feature map and then sent to the spatial attention mecha-
nism. Finally, the normalized weights are multiplied by the input 
feature map of the spatial attention mechanism to get the final fea-
ture map. 

 
Preferred loss function 

Traditional loss functions for target detection algorithms such 
as GIoU, ICIoU, and CIoU used in YOLOv8 (Rezatofighi et al., 
2019; Wang et al., 2021; Zheng et al., 2021) etc., mainly focus on 
regression metrics such as the distance between the predicted 
frame and the real frame, the overlap region and the aspect ratio. 
However, these methods ignore the orientation mismatch between 
the predicted and real frames. This limitation may lead to the insta-
bility of the prediction frames during the model training process, 
which affects the convergence speed and detection efficiency, 
making the final model perform poorly. In order to solve this prob-
lem, and also for must-change overfitting, this study proposes the 
SIoU loss function to replace the traditional loss function. The 
SIoU loss function consists of four components: angular loss, dis-
tance loss, shape loss, and intersection-parallel ratio loss. 

Angle loss refers to the deviation between the angle predicted 
by the model and the actual angle. Its calculation formula is shown 
below: 
                                                                                                          

                                             (Eq. 1) 

                                                                                                          

                                             (Eq. 2) 

 

                                             (Eq. 3) 

                                             (Eq. 4) 

where: Λ is the angular loss, denotes the center coordinate of the 
real frame; (bcx, bcy) denotes the coordinates of the center point of 
the predicted frame. 

Distance loss is the deviation between the predicted and actual 
position of the model, which is calculated as shown below: 

                                                                                                    

                                             (Eq. 5) 

                            (Eq. 6) 

 
where: Δ denotes the distance loss; cwb, chb are the minimum outer 
rectangle width and height of the real and predicted frames. 

Shape loss measures the similarity between the target area pre-
dicted by the gain/loss model and the real target shape. The calcu-
lation formula is shown below: 

                                                                                                    

                                             (Eq. 7) 

                                                                                                    

                                             (Eq. 8) 

                                                                                                    

                                            (Eq. 9) 

 
where: Ω denotes the shape loss, w and h are the width and height 
of the predicted frame, and denote the width and height of the real 
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Figure 4. Convolutional attention mechanism module.



frame, respectively, andθcontrols the degree of attention to the 
shape loss. 

The ratio of the intersection area of the model-predicted 
bounding box and the actual bounding box to their concatenation 
area is noted as the intersection-concatenation ratio loss, which is 
calculated using the formula shown below. 

                                                                                                    

                                          (Eq. 10) 

 
In summary, the edge loss function of SIoU is finally defined as 
 

                                          (Eq. 11) 

 
Test environment and assessment indicators 

In this study, the hardware configurations of the testbed used 
for training and testing tomato data are: the CPU is Intel(R)i5-
10400F@2.90GHz, the GPU is NVIDIA GeForce RTX 3060ti (8G 
video memory), the RAM is 16GB, the operating system is 
Windows 10 (64-bit), the CUDA version is 12.1, compilation plat-
form is Pycharm, compilation language is Python 3.9, and Pytorch 
version is 2.2.2. 

All comparison tests in this paper are conducted in the same 
environment. YOLOv8s was chosen as the original model for tar-
get detection. The training configuration is as follows: the image 
size of the network input is 640×640 pixels, the stochastic gradient 
descent algorithm is used (Charkroun et al., 2017), the initial learn-
ing rate is set to 0.01, the momentum of the SGD optimizer is 
0.937, the weight decay is 0.0005, and the epochs are set to 300. 

The target detection used in the paper grades tomato maturity 
using precision, recall, average precision (AP), mean average pre-
cision (mAP), model occupied memory, and detection speed as 
evaluation metrics. 

 

Results  
 
Improved YOLOv8 model test results 

In order to validate the performance of the improved YOLOv8 
model, 1,953 tomato images in the test set were tested and ana-
lyzed. Table 3 shows the detection results of this paper’s algorithm 
for tomatoes of different ripeness levels. As can be seen from Table 
3, the average precision mean of this paper’s algorithm can reach 
90.3%, the precision rate is 91.2%, and the recall rate is 90.2%. 

Some of the detection graphic examples are shown in Figure 4, 
from which it can be seen that the algorithm in this paper can more 
accurately detect tomatoes with different ripeness for the occlusion 
between fruit and fruit as well as the occlusion between branches 
and leaves and fruits in this paper recognition effect is also better. 
Due to the unsynchronized fruit ripening time, there are multiple 
ripening stages in the image; for the fruit that has just entered the 
early ripening stage and the fruit trees that have already entered the 
middle ripening stage, their features do not differ much, and they 
are easy to be confused. Therefore, the improved algorithm is able 
to extract the subtle features of the shape of the fruit surface in 
order to recognize the different ripening stages of obsolescence 
accurately. Meanwhile, as seen in Figure 5, the improved YOLOv8 
model is also able to detect both multi-targets and light effects with 
better results accurately. 

 
Comparative analysis of different attention mech-
anism algorithms 

Respectively, based on the YOLOv8s original model to add 
mainstream attention mechanisms CBAM, EMA (Ouyang et al., 
2023), CA (Hou et al., 2021), ECA (Wang et al., 2020), GAM (Liu 
et al., 2021). After the comparison test with the original YOLOv8s, 
the comparative evaluation indexes are precision, recall, and mean 
average precision (mAP), and the algorithmic precision under this 
paper’s dataset after the introduction of different attention mecha-
nisms in YOLOv8s is shown in Table 4. From this table, it can be 
seen that after introducing the attention mechanisms in YOLOv8s, 
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Table 3. Improved YOLOv8 algorithm different maturity detection results. 
                                                 Precision (%)                                             Recall (%)                                                 mAP@0.5 (%) 

Immature stage                                         90.3                                                                    89.9                                                                         87.5 
Commutation period                                88.7                                                                    88.5                                                                         88.7 
Early ripe                                                  90.5                                                                    89.6                                                                         89.9 
Middle ripe                                               92.9                                                                    91.1                                                                         92.7 
Mature                                                      93.6                                                                    91.9                                                                         92.9 
Mean value                                               91.2                                                                    90.2                                                                         90.3 

Table 4. Comparative trials of different attention mechanisms. 
                                                  Precision (%)                                           Recall (%)                                                     mAP (%) 

YOLOv8s                                                   89.1                                                                  89.4                                                                         89.2 
YOLOv8s+CBAM                                    90.1                                                                  90.1                                                                         90.0 
YOLOv8s+EMA                                       89.9                                                                  89.6                                                                         89.3 
YOLOv8s+CA                                           89.9                                                                  89.5                                                                         89.7 
YOLOv8s+ECA                                        89.5                                                                  89.5                                                                         89.3 
YOLOv8s+GAM                                       89.7                                                                  89.5                                                                         89.7 
 

[page 48]                                             [Journal of Agricultural Engineering 2025; LVI:1732]                                                             



the precision of each network is improved in different degrees 
compared to the original YOLOv8s network. Among the five 
attention mechanisms introduced, the CBAM attention mechanism 
has the most obvious improvement in precision, with a 1-percent-
age-point increase in precision and a 0.8-percentage-point increase 
in recall; the EMA and CA attention mechanisms have the same 
improvement in precision with a 0.2-percentage-point increase in 
recall and a 0.1-percentage-point increase in recall, respectively, 
and the ECA attention mechanism has a smaller improvement in 
precision and recall compared with the original model, with a 0.4-
percentage-point increase in precision and recall, and the GAM has 
a smaller improvement compared with the original model with a 
0.4-percentage-point increase in precision and recall. Percentage 
points and GAM have an improvement of 0.6 and 0.1 percentage 
points compared to the original model precision and recall, respec-
tively. The average precision means CBAM, EMA, CA, ECA, and 
GAM attention mechanisms are improved by 1, 0.1, 0.5, 0.1, and 
0.5 percentage points compared to the original model. It is con-
cluded that adding the CBAM attention mechanism is the most 
effective way to improve the accuracy of tomato target detection. 
Therefore, the final decision was to introduce the CBAM attention 
mechanism into the YOLOv8s model. 

 
Improved model ablation test 

In order to verify the performance enhancement effect of the 
MCS-YOLOv8 model proposed in this study, the ablation test was 
designed by comparing the MCS-YOLOv8 with the original 
YOLOv8s in a step-by-step manner: i) the original YOLOv8s 
model; ii) replacing the backbone network with the MobileNetV3 
backbone network based on YOLOv8s; iii) introducing the CBAM 
attention mechanism based on YOLOv8s; iv) modifying the loss 
function to the SIoU Loss Function based on YOLOv8s; v) making 
all three of these modifications simultaneously based on YOLOv8s 
by modifying the backbone network to MobileNetV3, introducing 
the CBAM attention mechanism, and modifying the loss function 
to two of the SIoU loss functions; vi) making all three modifica-
tions at the same time. 

According to the above design content, under the same exper-
imental conditions, relying on this paper on the tomato dataset for 
the test, the test results are shown in Table 5. The table shows that 
using the original model of YOLOv8s, the average accuracy of the 
tomato fruit ripening classification recognition of the mean value 
is 89.2%. In the YOLOv8s model, the core feature extraction part 
is replaced with the lightweight MobileNetv3 architecture, whose 
detection accuracy is 89.1%, which shows that MobileNetv3 loses 
part of its detection accuracy for the purpose of lightweight. By 

introducing the CBAM attention mechanism on the original 
YOLOv8s model, the average accuracy of the model is improved 
by 0.8 percentage points. By replacing the backbone feature 
extraction network with MobileNetv3 while introducing the 
CBAM attention mechanism, the mean average accuracy is 
improved by 0.2 percentage points compared to the original model 
and by 0.3 percentage points compared to replacing only the back-
bone network with MobileNetv3, which indicates that the CBAM 
attention mechanism can be effective for feature extraction in com-
plex environments. Replacing the backbone network of the origi-
nal YOLOv8 model with the lightweight MobileNetv3 structure, 
introducing the CBAM attention mechanism, and replacing the 
bounding box loss function with the SIoU which has a faster con-
vergence speed, the mean average accuracy is 90.3, which is 1.1 
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Figure 5. Improved YOLOv8 model detection results.

Table 5. Ablation test. 
MobileNetv3        CBAM      SIoU        Accuracy      Recall                                                 Average precision                             Average 
                                                                  precision        (%)                Immature Commutation  Early  Middle    Mature       precision 
                                                                       (%)                                        stage             period          ripe       ripe                             mean 

×                                      ×                 ×                   89.1               89.7                         81.6                   89.9               90.8         92.6            91.2                 89.2 
√                                       ×                 ×                   88.3               88.5                         85.9                   88.6               87.6         91.1            92.6                 89.1 
×                                       √                 ×                   90.1               90.1                         88.9                   88.6               87.9         92.0            92.6                 90.0 
×                                       ×                 √                   89.9               89.9                         87.2                   87.8               88.3         92.1            91.5                 89.4 
√                                       √                 ×                   89.5               89.6                         86.9                   88.1               87.8         91.5            92.7                 89.4 
√                                       ×                 √                   87.9               89.1                         86.3                   88.2               87.4         91.8            91.9                 89.1 
×                                       √                 √                   90.2               90.1                         86.3                   87.8               89.3         91.6            91.6                 89.3 
√                                       √                 √                   91.2               90.2                         87.5                   88.7               89.9         92.7            92.9                 90.3 
×, this improvement strategy is not used; √, this improvement strategy is used. 
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Table 6. Comparison test between the model in this paper and other mainstream models. 
Model                                    Accuracy       Recall rate          mAP@0.5       mAP@0.5:0.95   Model memory    Detection speed    FPS 
                                                   (%)                   (%)                     (%)                      (%)                usage (MB)                 (ms)                  

Faster R-CNN (VGG16)                   66.5                     73.6                        70.4                          55.1                         115.3                            169                  5.9 
Faster R-CNN (Resnet50)                 67.5                     75.7                        71.7                          56.3                           98                              187                  5.3 
YOLOv3-tiny                                    88.3                     89.1                        87.9                          77.7                          34.4                             3.3                  303 
YOLOv5s                                          89.6                     89.9                        89.4                          81.1                          18.5                             4.4                 227.2 
YOLOv6                                            86.7                     86.1                        87.4                          77.1                           8.7                               15                  66.7 
YOLOv7-tiny                                    88.7                     88.7                        89.4                          80.2                          12.3                             5.1                  196 
YOLOv8s                                          89.1                     89.7                        89.2                          82.6                          22.5                             4.2                  238 
YOLOv9                                            88.1                     88.7                        89.6                          78.5                           4.6                              3.2                 312.5 
YOLOv10                                          89.2                     89.1                        90.0                          81.2                           5.8                              3.4                  294 
MCS-YOLOv8                                  91.2                     90.2                        90.3                          82.2                          13.8                             5.4                 185.1 
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Figure 6. Comparison results of different target detection networks.



percentage points higher than the original model. is the highest in 
the ablation test. 

The above analysis of the experimental results confirms the 
significant effectiveness of the optimization model proposed in 
this study on the tomato dataset of this paper. 

 
Comparison of different models 

In order to objectively present the advantages of the improved 
model proposed in this paper, the experiment compares and ana-
lyzes the improved model with many current mainstream models. 
The comparative models involved in the experiment include the 
two-stage algorithm Faster R-CNN (Ren et al., 2016), in which the 
Resnet network (He et al., 2016) and the VGG16 network 
(Simonyan and Zissermann, 2014) are based on the Faster R-CNN 
implementation, YOLOv3tiny, YOLOv5s, YOLOv6n, 
YOLOv7tiny, YOLOv8m, YOLOv9 and YOLOv10. This paper’s 
tomato dataset was comparatively analyzed under the same exper-
imental conditions. The results of the comparative analysis of each 
model are shown in Table 6. 

From the data in Table 6, it can be seen that the average accu-
racy mean of MCS-YOLOv8 compared to Faster R-CNN (Resnet), 
Faster R-CNN (VGG16), YOLOv3-tiny, YOLOv5s, YOLOv6, 
YOLOv7-tiny, YOLOv8s, YOLOv9, and YOLOv10 models 
(mAP@0.5) is improved by 19.9, 18.6, 2.4, 0.9, 2.9, 0.9, 0.7, 0.3 
percentage points, respectively. Both values of precision and recall 
are also higher than those of other mainstream models. MCS-
YOLOv8 improves precision by 2.1 percentage points and recall 
by 0.5 percentage points compared to the pre-improvement 
YOLOv8s and mAP@0.5 improved by 1.1 percentage points. 
Although the detection speed is slightly slowed, the memory occu-
pied by the model is significantly reduced. The average precision 
mean (mAP@0.5) of the MCS-YOLOv8 model is improved to 
varying degrees compared to several other models. In terms of 
detection speed, MCS-YOLOv8 is 2.1 ms slower at 5.4 ms than the 
fastest YOLOv3tiny, but it still meets the requirements of real-time 
detection. 

In order to fully illustrate the effectiveness of the improved 
model proposed in this paper, some test set images in Faster R-
CNN (Resnet), Faster R-CNN (VGG16), YOLOv3tiny, YOLOv5s, 
YOLOv6, YOLOv7tiny, YOLOv8s, YOLOv9, and YOLOv10 
were selected are compared with the improved model in MCS-
YOLOv8 in this paper, and the results of the confidence score are 
used to demonstrate the detection performance of the detection 
model in this paper. The comparison results are shown in Figure 6. 

The recognition results in Figure 6 show that the MCS-
YOLOv8 algorithm exhibits significant advantages in recognizing 
tomato ripeness in complex environments. In the case of branch 
and leaf occlusion (Figure 6a), MCS-YOLOv8 can distinguish 
tomatoes at different ripening stages more accurately, significantly 
improving recognition accuracy and confidence compared to other 
existing models. In fruit-obscured environments (Figure 6b), the 
YOLOv7tiny model suffers from leakage detection, while MCS-
YOLOv8 still maintains a high confidence level thanks to its 
advanced network structure and optimization strategy. Even under 
more complex branch and fruit occlusion conditions (Figure 6c), 
MCS-YOLOv8 achieves 93% recognition accuracy for medium-
ripening tomatoes. Under backlighting (Figure 6d), YOLOv10 and 
YOLOv5s performed well, but MCS-YOLOv8 still outperformed 
the other models, albeit slightly. In addition, when processing 
tomato images mixed with different ripening stages (Figure 6e), 
MCS-YOLOv8 demonstrates excellent recognition accuracy with 
an average confidence level of more than 90%, showing its high 
reliability and accuracy in target detection tasks. 

The confidence scores from the test images in Figure 6 further 
validate the advantages of the improved network for tomato fruit 
detection in natural environments. 

 
 
 

Conclusions 
This study proposes an improved lightweight model MCS-

YOLOv8s based on YOLOv8s for tomato fruit ripeness detection. 
The improvement measures are to replace the original model back-
bone network of YOLOv8s with a more lightweight structure, 
introduce the attention mechanism in the backbone network, and 
replace the bounding box loss function of the original model with 
the SIoU loss function. Not only can we fully utilize the global 
interaction features, but also effectively balance the problem 
between the computing speed of the network and the model com-
plexity. 

In order to verify the performance of the improved YOLOv8 
model, this paper designs an ablation test to analyze eight sets of 
data quantitatively, and the mean values of precision, recall, and 
average precision of MCS-YOLOv8 have improved by 2.1, 0.5, 
and 1.1 percentage points compared with YOLOv8s. The experi-
mental results show that the improved MCS-YOLOv8 model is 
higher than other models in terms of model detection precision and 
model detection time. 

Under the same test conditions, by comparing the two-stage 
detection algorithm Faster R-CNN (VGG16, Resnet) and several 
mainstream models such as the single-stage algorithms 
YOLOv3tiny, YOLOv5s, and YOLOv7, the average accuracy 
mean of the improved MCS-YOLOv8 achieves 19.9, 18.6, 2.4, 
0.9, 0.9 percentage point improvement, the model memory is 
reduced by 30% compared to YOLOv8s, and the detection speed 
is 5.4 ms. The improved model achieves better results on the toma-
to dataset. The experimental results fully confirm that the light-
weight model proposed in this study improves the evaluation 
indexes and achieves more satisfactory results in visual perform-
ance. Although MCS-YOLOv8 performs well in tomato ripeness 
detection tasks, it may face multiple challenges in practical appli-
cations. For example, in complex natural environments, factors 
such as weather changes (e.g., rain, fog, snow), background distur-
bances (e.g., weeds, other plants), and differences in fruit sizes and 
shapes, in addition to light and shading, may have an impact on 
model performance. Considering the uncertainties in the agricul-
tural operating environment, it is a great challenge for this study’s 
subsequent work to consider the impact of environmental factors, 
optimize the algorithm for environmental uncertainties, and 
achieve the algorithmic assistance of piggybacked agricultural 
robots for the automated picking of tomatoes to increase the speed 
of tomato picking and to save the cost of workforce. 

Through this study, the ripeness detection technology can be 
applied to the intelligent picking of agricultural products, provid-
ing a basis for the subsequent work of visual recognition, target 
localization and grading of the picking robot. Moreover, by using 
the tomato target detection model, a more automated and efficient 
tomato-picking robot can be developed, which is of great signifi-
cance and practical value for constructing intelligent modern toma-
to greenhouses.  
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