
Abstract  
The optimal management of cattle nutrition promotes animal 

health and welfare, increases livestock farms’ productivity and 
competitiveness, and enhances environmental sustainability prac-
tices. Animal feeding operations play a crucial role as many fac-
tors can drive the theoretical ration formulated by nutritionists far 
from the one the animals ingest. Precision feeding technologies 
(e.g., NIR sensors on the milling cutter of the chopper-mixer 
wagon; computer vision systems installed in the mixing tank) may 
allow for accurate and real-time analysis of the chemical and 
physical properties of total mixed ration (TMR) ingredients, 
reducing errors during its preparation and distribution. This work 
compares the physical quality and the length of the fibre of the 

TMR resulting from the chopping-mixing process of a conven-
tional mixing wagon, one machine-learning-assisted mixing 
wagon and an automatic feeding system under actual operating 
conditions. Between October 2021 and November 2022, TMR 
sampling occurred on four dairy farms and one fattening bulls 
farm in Northern Italy, specifically in the Brescia, Cremona, and 
Mantua districts. TMR samples underwent particle size analysis 
using the Penn State Particle Separator (PSPS) method and, once 
in the laboratory, moisture analysis and fibre length measurement. 
Concerning TMR particle size analysis, the PSPS method revealed 
that the machine learning-assisted mixing wagon provided TMR 
with physical features comparable to that from ordinarily run mix-
ing wagons. At the same time, the automatic feeding system 
resulted in TMR with finer particle size, following the farmers’ 
choice not to use long-stemmed forages. Regarding fibre length, 
only the TMR resulting from the operator-based mixing wagon 
aligned with the targeted fibre length of 5 cm, while the AFS and 
the ML-assisted mixing resulted in higher fibre lengths. Overall, 
the use of computer vision (CV) systems is helpful for the consis-
tency of the TMR and represents a valuable solution for animal 
farming, particularly when employing low- or inexperienced oper-
ators. Further studies are, however, needed to improve the training 
of the with elements that can replicate the operator experience. 

 
 
 

Introduction 
Cattle farming has undergone significant market demand-driv-

en changes, which have resulted in a rise in production, fewer but 
larger farms with higher livestock populations, and more spe-
cialised workers (Istituto Nazionale di Statistica, 2022). The dairy 
sector is adopting digitalisation by investing in automation, 
robots, and sensor technologies to ensure proper animal manage-
ment and improve animal welfare and production quality monitor-
ing (Berckmans, 2017). Precision feeding is a key part of this 
approach: it provides tailored and controlled rations that meet the 
specific nutritional needs of various cattle groups, helping to max-
imise animal welfare and productivity (González et al., 2018).  

In the 1960s, the total mixed ration (TMR) method was devel-
oped alongside mechanised farming (McCoy et al., 1966). In the 
TMR, all ingredients in cattle feed are weighed, chopped (when 
necessary) and mixed to provide cows with a balanced ration; 
however, errors or inaccuracies in TMR preparation result in dif-
ferences between the designed ration, the feed given, and what the 
cows consume, affecting feed digestion and animal productivity 
(Sova et al., 2013). Buckmaster (2009) outlines several factors 
contributing to the variance between designed and administered 
TMR, including i) operator-related errors, e.g. the order of ingre-
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dient loading, weighing, chopping-mixing time, and unloading in 
the feeding area; ii) the mixer wagon efficiency and maintenance 
level, e.g. the knife sharpness in the chopping-mixing chamber; iii) 
ingredient composition variability due to seasonal changes. In 
addition, Miller-Cushon and DeVries (2017) outline the role of 
animals’ preference for the TMR’s most palatable components.  

Automated feeding systems (AFS) with robotic technology 
have been gaining importance due to rising demands on perfor-
mance-related feeding of cows and animal welfare. These systems 
automate tasks like high-frequency filling, mixing, and distributing 
feed, ensuring cows receive a high-quality, consistent diet that 
meets their nutritional needs. AFS helps reduce the variability 
associated with manual ration preparation and distribution, leading 
to better cow health and milk production and fostering dairy farm-
ing competitiveness (Da Borso et al., 2017; Tangorra and Calcante, 
2018). Aside from TMR variations influenced by human factors, 
fluctuations in the chemical composition, particularly the dry mat-
ter (DM) content, inevitably occur in forage – particularly silages 
- and other ration ingredients throughout the day (Cherney et al., 
2021). Consequently, real-time monitoring of the qualitative and 
quantitative aspects of the TMR fed to animals becomes crucial, 
ensuring the distributed ration meets the nutritional requirements 
of the cow’s metabolism in relation to their physiological state. 
Various sensor solutions facilitate the chemical and physical char-
acterisation of the nutritional profile of TMR ingredients. For 
instance, near-infrared spectroscopy (NIR) utilises the interaction 
between matter and light radiation to non-destructively analyse the 
nutritional composition of the loaded ingredients and allow real-
time weighing adjustments to reduce the gap between the planned 
and the administered rations (Büscher et al., 2014; Yakubu et al., 
2022). Computer vision (CV) systems are increasingly prominent 
in precision feeding technologies: when placed within mixer wag-
ons, they enable visual analysis of the mixture homogeneity and 
average fibre length during chopping (Rahkonen, 2017). These 
sensors capture multiple ration images during the mixing and 
employ artificial intelligence (AI) or machine learning (ML) algo-
rithms to extract, process, and interpret data. CV has been expand-
ed into vast field areas, from recording raw data to extracting 
image patterns and information interpretation (Patel et al., 2012). 
It combines different concepts, including digital image processing, 
machine learning and pattern recognition. The benefits of these 
technologies are as follows: ration homogeneity (more consistent 

blending of the ingredients), optimised chopping-mixing time, 
reduced risk of over- or under-mixing, potential savings in time 
and energy consumption, and the possibility of hiring low-experi-
enced operators. However, to the authors’ best knowledge, there 
appears to be a gap in the scientific literature regarding studies that 
specifically focus on applying CV systems in ordinary operational 
conditions. This study aims to evaluate the functional operability 
of an optical sensor for the real-time estimation of the homogene-
ity of the ration and the average length of the fibre in ordinary con-
ditions of the mixing wagon filling, making a comparison with the 
physical quality of a ration prepared using the same mixing wagon 
without the use of this device and the ration resulting from the use 
of an AFS. 

 
 
 

Materials and Methods 
Optical sensor’s description, installation, and 
operation 

The tested sensor (Dinamica Generale, Poggio Rusco, MN, 
Italy) adopts CV technology. The system is installed on the lateral 
back side of the mixing chamber (Figure 1). It operates a digital 8-
megapixel sensor backlit camera that captures digital images of the 
TMR during the mixing process at 1080p resolution with a fre-
quency of 30 frames per second. The process of determining the 
fiber length starts with the segmentation of the image through 
binarisation to separate the TMR from its background and facilitate 
the measurement of the length between any two points within the 
object to consider. Homogeneity assessment calculates the homo-
geneity factor of an image based on its grey and colour value dis-
tribution. Statistical calculations of the standard deviation of each 
pixel from the mean grey value indicate low-variating pixel stan-
dard deviations for high homogeneity (Gonzalez and Woods, 
2008). Calibrating the measured pixels to a metric unit or to a ref-
erence standard pattern (i.e., comparing the image measurements 
with the farmers’ accepted standards) is necessary for ML software 
proper performance (Dormann, 2020). The manufacturer calibrat-
ed the sensor and the software following the farmer’s indications 
for fibre length (5 cm) and TMR uniformity before the beginning 
of the study. After loading the ingredients, the operator switches 
the device on and the image acquisition and processing start. Using 
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Figure 1. Details of the sensor installation for fibre length and TMR homogeneity assessment (on the left) and a screenshot of the captured 
image (on the right).



a Wi-Fi connection, the appliance sends data to a remote server that 
analyses and compares the acquired frames to assess the TMR uni-
formity and fibre length and check that these meet the farmer’s estab-
lished requirements. When the ML software detects the reaching of 
the targeted parameters, it indicates the stopping of the mixing. 

 
Description of the monitored farms 

Between October 2021 and November 2022, TMR sampling 
occurred on four dairy farms and one fattening bulls farm in 
Northern Italy, specifically in the Brescia, Cremona, and Mantua 
districts known for their specialised animal farming. All the ani-
mals in these farms were housed freely. The sampling followed all 
applicable animal welfare and biosafety codes and regulations. 
Table 1 summarises the characteristics of the monitored farms and 
the used machinery. Farms operating mixing wagons fed the TMR 
twice daily, typically between 5:00 and 6:00 AM and 4:00 and 5:00 
PM. In contrast, farms with AFS continuously fed TMR through-
out the day, with frequencies up to twelve distributions a day. The 
loading sequence for farms using mixing wagons was long-
stemmed hay requiring extended processing, grains or premixes, 
pre-processed forages (e.g. silages), minerals and vitamins, and 
finally, water and other liquid ingredients. Farmers relied on their 
experience to assess the mixing-chopping time required (when 
asked about it, they provided mixing-chopping times ranging from 
10 to 12 minutes); however, when operating the mixing of the 
TMR, the mixing time was measured with a digital chronometer. 

In farm 1, the trial considered the TMR resulting only from the 
32 m3 mixing wagon (Table 1) run both ordinarily and using the 
optical sensor calibrated according to the farmers’ standard (ML-
assisted procedure). The farmers with the AFS followed the same 
loading sequence during automatic filling; however, they did not 
use long-stemmed forage and based their TMR on silages and con-
centrated feed. For the AFS, the farmers set the mixing time to five 
minutes per wagon after the last loaded ingredient and before mov-
ing to ration administering. 

TMR sampling and analysis 
Fresh TMR dry matter content and particle size distribution in 

each farm were evaluated by sampling five representative TMR 
samples (500 gf.w. each) immediately after delivery along the feed 
bunks every 5 m of distance. For each sample, a fisrt subsample of 
approximately 300 gf.w. underwent particle size analysis on-site 
using a Penn State Particle Separator with screens of 19, 8, and 
1.18 mm, following the manual shaking procedure that Heinrichs 
(2013) outlined to determine the particle size of the administered 
TMR. Particle size distribution (%) resulted from equation 1: 

 

                                                     
(Eq. 1)

 
 
where Pi,j is the percentage weight of the particles that each sepa-
rator screen retained and Wi,j is the amount of TMR fraction that 
the 19, 8, and 1.18 mm screens (i = 1, 2, and 3) and the bottom pan 
(i = 4) intercepted for each jth sampling site along the feed bunk (j 
= 1, 2, 3, 4 and 5). 
A second subsample (approximately 200 gf.w.), promptly taken to 
the CREA laboratory in Treviglio for analysis, underwent dry mat-
ter measurement by drying it in a forced-air oven at 60°C until con-
stant weight. The results of this measurement have been expressed 
as a percentage of wet-based dry matter content (DMw.b., eq. 2): 
 
                                                                                                     

                                                     
(Eq. 2)

 
 

where Wf.s. and Wd.s. are the fresh and dry weights of the TMR sub-
sample. Subsequently, to ascertain the length of the fibres retained 
by the 19 mm sieve, 50 randomly sampled fibres per sub-sample 
were measured with a millimetre ruler. 
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Table 1. A brief description of the monitored farms. 

Farm      Lactating animals (no.)   TMR preparation and delivery system                  Feed pushing technology 

Farm 1                          1300                      24, 27 and 32 m3 self-propelled                                           The operators run a self-propelled feed pusher with 5 
                                                                     cutter mixing wagons                                                             hydraulically controlled rotating reels equipped with 
                                                                     (Rover Jumbo Up 24, Italmix Srl, Ghedi,                            brushes (Motobrush, Storti SpA, Belfiore, VR, Italy). 
                                                                     BS, Italy; SelfLine 500+ and Selfline 100+,  
                                                                     Siloking, Tittmoning, Germany) with vertical augers.  
                                                                     The 32 m3 mixing wagon hosts the optical sensor  
                                                                     for TMR homogeneity and fibre length assessment.             
Farm 2                           120                       The operator runs a trailed 20 m3 cutter mixing wagon      The operator runs a small tractor with a front-mounted 
                                                                     with horizontal augers (Samurai5, Seko Industries Srl,       rubber-coated metal mould to push feed leftovers back 
                                                                     Curtarolo, PD, Italy)                                                               into the feed bunk. 
Farm 3                           300                       Operators run one self-propelled 20 m3 cutter mixing        An automatic self-moving drum-pushing system  
                                                                     wagon with a vertical auger (Dobermann SW 220 evo,     (Ranger 2, Boumatic, Madison, WI, USA) pushes feed  
                                                                     Storti S.p.A., Belfiore, VR, Italy)                                         leftovers back into the feed bunk. 
Farm 4                           400                       One self-propelled and self-loading automatic feeding       When not delivering the feed, the AFS wagons act as 
                                                                     system (Vector, Lely, Maassluis, The Netherlands)             drum-pushing systems. 
                                                                     with two 2 m3 wagons with a vertical auger provides  
                                                                     for TMR preparation and distribution.                                    
Farm 5                         1100*                     One self-propelled and self-loading automatic feeding       When not delivering the feed, the AFS wagons act as  
                                                                     system (Vector, Lely, Maassluis, The Netherlands)             drum-pushing systems. 
                                                                     with two 2 m3 wagons with a vertical auger provides  
                                                                     for TMR preparation and distribution.                                   
TMR, total mixed rations; *housed fattening bulls. 



Data processing 
Data underwent statistical processing with Minitab 17 statisti-

cal software (Minitab Inc., 2010). Specifically, the Levene test 
(p<0.05) assessed the equality of variances within the dataset 
(Levene, 1960), and the Kolmogorov-Smirnov test (Massey, 1951) 
checked the assumption of normality distribution of the data. Next, 
an analysis of variance (ANOVA) was employed by using the gen-
eralised linear model (GLM) multivariate procedure (Hastie and 
Pregibon, 1992) followed by the Tukey post-hoc test (p<0.05) 
(Keselman and Rogan, 1977). The farms, PSPS screens (19, 8, and 
1.18 mm, bottom pan, labelled S1 to S4), and the presence or 
absence of ML-assisted technology during TMR preparation were 
considered as fixed factors, while the weight percentage that each 
separator screen retained (Si) served as the dependent variable in 
the study. 

Fibre length underwent analysis of the distribution for each 
TMR preparation and delivery system, reporting the minimum and 
maximum recorded lengths and calculating the average and the 
median values, the interquartile range (IQR), the skewness, and the 
kurtosis of a whole of 1750 replicates. Additionally, using the same 
software, TMR fibre lengths underwent the one-sample t-test 
(Ross and Willson, 2017) to compare the sample mean of each 
TMR preparation system to the 5.00 cm targeted fibre length value 
and examine whether the means resulting from the measurements 
are statistically different from it (p<0.05). 

Results and Discussion 
The TMR processing combines materials into animal feed pro-

portionally, involving several steps and unit machines. Table 2 
reports the average dry matter content of the rations freshly admin-
istered to animals. Such moistures range from 35.3 % for Farm 5 
to 52.7 % for Farm 1. 

The reason for these differences may rely on the use of long-
stemmed forages, which require adding water or other liquid ingre-
dients to the bulk of TMR to reduce the feed sorting activity 
(Heinrichs et al., 1999; Kudrna, 2003; Sova et al., 2014), while 
Farm 4 and Farm 5 do not use long-stemmed forages. All the 
recorded moistures are, however, in line with the optimised TMR 
moisture content between 60% and 50% (Havekes et al., 2020; 
Leonardi et al., 2005; Leonardi and Armentano, 2003; Miller-
Cushon and DeVries, 2009). 

Figure 2 reports the results of the GLM processing on the 
weight percentage distribution of the particles in the freshly 
administered TMR. The processing pointed out that the farm was 
not a significant factor. However, the interaction between the PSPS 
screens and TMR preparation technology was significant. When 
preparing the TMR with the AFS and the conventional mixing 
wagon without the optical sensor, the 8 mm screen (S2) intercepted 
the highest quantity of particles. In contrast, the TMR resulting 
from the mixing wagon with ML-assisted procedure resulted in 
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Table 2. Dry matter content of the freshly administered total mixed rations in each monitored farm (mean ±SD). The means not sharing a 
letter differ significantly (p<0.05). 

Farm                                 DMw.b. (%)                                                           Min                                                                           Max 

Farm 1                                         52.7±0.88a                                                                       51.2                                                                                      54.3 
Farm 2                                         52.0±3.22a                                                                       50.7                                                                                      53.4 
Farm 3                                         43.0±0.97b                                                                       42.1                                                                                      44.1 
Farm 4                                         40.9±1.22b                                                                       39.4                                                                                      42.0 
Farm 5                                         35.3±3.06c                                                                       31.2                                                                                      39.5 
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Figure 2. Weight per cent distribution of the freshly administered TMR fractions retained by the PSPS screens at varying TMR preparation 
and delivery technology. The means not sharing a letter differ significantly (p<0.05). TMR, total mixed ration; PSPS, Penn State Particle 
Separator; ML, machine learning. 



having the highest quantity of particles retained by the 1.18 mm 
screen (S3), meaning that the monitoring action of the image anal-
ysis software caused feed particles to undergo considerable size 
reduction as the weights of the fines fractions increased signifi-
cantly compared to the outcomes of ordinary mixing wagon and 
AFS. The TMR mixing time was 5 minutes for AFS and 10 to 12 
min for the operator-run mixing wagon. Running the mixing 
wagon under the ML assistance resulted in a comparable mixing 
time with a median value of 12 min (8.0-18 min range). 

Table 3 reports the result of the analysis of the fibre length dis-
tributions. Fibre lengths are all positively skewed, and most data 
points are close to the mean; however, the IQR of the measurement 
resulted in 2.80, 270, and 3.40 cm for AFS, conventional mixing 
and ML-assisted mixing wagon procedures, implying that the 
spread of the middle 50% of values is most prominent for the TMR 
samples resulting from ML-assisted mixing wagon. 

Table 4 reports the statistics of the comparisons of the mean 
values with the reference fibre length of 5.00 cm. In the literature, 
the 5 cm reference length is the stubble height recommended for 
forage production, which results in a high digestibility of silage 
(Holohan et al., 2021; O’Kiely, 2014). Here, it can be noticed that 
both AFS and the ML-assisted mixing wagon resulted in fibre 
lengths significantly different from the target. In contrast, this does 
not happen for the ordinary TMR preparation with the convention-
al mixing wagon: here, the 95% confidence interval includes the 
target value, meaning the farmer experience could better manage 
the variability of the ingredients throughout the monitoring period.  

CV enables systems to extract meaningful information from 
digital images, allowing for detection, identification, and automa-
tion through integrating inputs from the physical world: it com-
bines image processing and pattern recognition techniques, result-
ing in image understanding (Wiley and Lucas, 2018). However, 
computer vision cannot be expected to replicate like the human eye 
(Van Dyck et al., 2021). 

For cows to maintain proper rumen function, they must con-
sume forage particles of adequate length. The variability amongst 
TMR ingredients also includes the potential addition of longer 
fibre components in the case other ingredients are too finely 
chopped (Beauchemin et al., 2003): it is a balance between main-
taining proper rumen function (avoiding too fine particle size) and 
reducing as much as possible the animals’ feed sorting action, aim-
ing to a diet not different from the intended nutrition (Suarez-Mena 
et al., 2013). Currently, image vision software can hardly account 

for such a considerable variability of factors. 
The results of the particle size analysis show that all the tested 

TMR preparation systems resulted in granulometries that are in 
line with the values that Oetzel (2020) has outlined, meaning that 
the choice farmers made is in line with the overall consideration of 
the availability of forages and ingredients. However, the same 
results highlight the importance of the proper mixing time, follow-
ing the results of Marchesini et al. (2020). As mentioned above, 
running the mixing wagon following the indications of the CV 
algorithm resulted in comparable median mixing time but in a fibre 
length significantly different from the targeted (Table 4). Such an 
outcome may result from the impossibility of the ML algorithm to 
replicate the operator experience and consider other meaningful 
tool life functional factors (i.e. the sharpness of the auger’s 
knives), which hardly ever the ML training based on image recog-
nition includes, and that could result from raw-experimental data 
on purpose produced (Bustillo et al., 2022). 

 
 
 

Conclusions 
The study compares the particle size of the TMR resulting 

from AFS, an ordinarily run mixing wagon, and the same mixing 
wagon run following a computer vision ML-based appliance.  All 
the tested systems resulted in TMRs with comparable particle size 
distributions. However, when comparing the fibre length, only the 
TMR resulting from the operator-based mixing procedure resulted 
in line with the targeted measure, while the AFS and the  
ML-assisted mixing resulted in higher fibre lengths. Such results 
show that using CV systems is helpful for the consistency of the 
TMR and represents a valuable solution for animal farming, partic-
ularly when employing low- or inexperienced operators. Further 
studies are, however, needed to improve the training ML algorithm 
with elements that can better replicate the operator experience. 
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