
 
https://www.agroengineering.org/  

Note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any 
queries should be directed to the corresponding author for the article. 
 
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made 
by its manufacturer is not guaranteed or endorsed by the publisher. 

__________________________________________________________________________ 

Sheep pose estimation via image analysis and body measurements 
derived from key points 

 

Cafer Tayyar Bati 

Department of Animal Science, Faculty of Agriculture, Van Yuzuncu Yil University, 
Van, Turkey 
 
Corresponding author: Cafer Tayyar Bati, Department of Animal Science, Faculty of 
Agriculture, Van Yuzuncu Yil University, Van, Turkey.  E-mail: cafertayyarbati@gmail.com 

_________________________________________________________________________ 

Publisher’s Disclaimer 
E-publishing ahead of print is increasingly important for the rapid dissemination of science. 

The Early Access service lets users access peer-reviewed articles well before print/regular issue 
publication, significantly reducing the time it takes for critical findings to reach the research 

community. 
These articles are searchable and citable by their DOI (Digital Object Identifier). 

 
Our Journal is, therefore, e-publishing PDF files of an early version of manuscripts that 

undergone a regular peer review and have been accepted for publication, but have not been 
through the typesetting, pagination and proofreading processes, which may lead to differences 

between this version and the final one. 
The final version of the manuscript will then appear on a regular issue of the journal. 

 

Please cite this article as doi: 10.4081/jae.2025.1719 

 

 ©The Author(s), 2025 
Licensee PAGEPress, Italy 

 
Submitted: 4 February 2025 
Accepted: 5 August 2025 



 
 

Sheep pose estimation via image analysis and body measurements derived from key 
points 

Cafer Tayyar Bati 

Department of Animal Science, Faculty of Agriculture, Van Yuzuncu Yil University, Van, 
Turkey 

 

Corresponding author: Cafer Tayyar Bati, Department of Animal Science, Faculty of 
Agriculture, Van Yuzuncu Yil University, Van, Turkey.  E-mail: cafertayyarbati@gmail.com 

 

Conflict of interest: the author declares no competing interests. 
 
Abstract  
Pose estimation and body measurement in livestock play an important role in various 
agricultural applications such as health monitoring, breeding and management. In this study, 
we propose a novel approach for body measurement and pose estimation of sheep using object 
detection and supervised machine learning algorithms. From a dataset of sheep, 40 side-view 
videos for each class (grazing, standing, and sitting), each lasting approximately 8 seconds, are 
used for model training. Firstly, pose classification was performed on the sheep images using 
the YOLOv8 pose object detection framework. Simultaneously, keypoint training was 
performed on the images to detect key points for anatomical landmarks. Then, using these 
keypoints, various body measurements of the sheep in the images were measured and a 
comprehensive dataset was created. Six different supervised machine learning algorithms were 
trained on this dataset to further improve pose estimation. Furthermore, the models were tested 
on frontal images to evaluate their performance against different image angles and dataset 
feature. The experimental results show that the supervised machine learning algorithms trained 
on the body measurement data perform better for both side and frontal images (mAP; K nearest 
neighbour algorithm 1.00 for side images, Support vector machines 0.94 for frontal images) 
outperform state-of-the-art networks such as YOLOv8 (mAP; 0.94, 0.89 for side and frontal 
images respectively), EfficientNet (mAP; 0.93, 0.91), RetinaNet (mAP; 0.91, 0.88) and Faster 
R-CNN (mAP; 0.89, 0.87) based on image data only. This approach can play an important role 
in improving the accuracy and efficiency of livestock management systems by supporting 
practical applications such as animal welfare monitoring, herd health assessment, and precision 
agriculture through more accurate position estimation and body measurements. 
 
Keywords: Body measurement, keypoint detection, livestock management, object keypoint 
similarity, supervised machine learning 
 
Introduction 
By 2050, with the expected increase in the world population, the global demand for meat and 
animal products is expected to increase significantly. This emphasises the need for more 



 
 

efficient production methods in the livestock industry (Forslund et al., 2023). Therefore, there 
is a need to focus on the development of new and innovative solutions to utilise resources more 
efficiently (Hamadani and Ganai, 2023). Sheep farming has an important position among 
agricultural activities and animal welfare monitoring and evaluation is an important 
requirement in this industry. Although contact-based animal behaviour detection methods for 
sheep welfare monitoring are capable of high accuracy and fast data processing, they are not 
practical for sheep farming due to the increased cost associated with equipping each sheep with 
sensors. Furthermore, such sensors are not suitable for long-term group animal behaviour 
monitoring and require regular manual battery replacement (Xu et al., 2023). Machine learning 
techniques such as deep learning are gaining attention for their ability to automatically predict 
sheep posture and behavior. These methods offer an alternative to contact-based sensor 
technologies that can negatively impact animal welfare (Bati and Ser, 2023a). Recent studies 
have increasingly utilized machine learning approaches to monitor animal behavior and predict 
physical characteristics. These methods have shown promising results in tasks such as 
estimating body composition from images, predicting body condition from 3D scans, and 
classifying general sheep behavior under various environmental conditions (Jin et al., 2022; 
González-Baldizón et al., 2022; Stephansen et al., 2023; Shalaldeh et al., 2023). The common 
purpose of researchers and practitioners in studies such as this one in recent years is to be able 
to convert their attitudes towards the welfare of farm animals into practical improvements with 
remote monitoring capability. While these studies demonstrate the applicability of image-based 
analysis in animal science, they generally address posture recognition and body measurement 
as separate tasks. In this context, the current study presents a novel two-stage approach that 
combines supervised learning with deep learning-based keypoint detection to derive body 
measurements, thereby providing a hybrid and interpretable system for accurately classifying 
sheep poses. 

Accurately assessing sheep movements enables farmers to monitor performance non-
invasively. As the behaviour of farm animals has the potential to reflect their response to 
environmental and health conditions, enabling detailed observation of this behaviour is of 
significant value in animal science. For example, in hot weather, sheep may increase lying time 
(Pollard et al., 2004) and decrease walking speed (Horie et al., 2023), which may reduce feed 
intake and increase the probability of health problems (Schütz et al., 2024). Therefore, 
monitoring and analysing the behaviour of sheep allows their health and welfare to be 
determined and can help to take proper measures (Jin et al., 2022; Hu et al., 2023). The process 
of monitoring a sheep's behaviour can also involve the classification and segmentation of 
different activities. Monitored behaviours for sheep usually include grazing, lying, standing, 
walking, ruminating, running, etc. (Jin et al., 2022). For the detection of these behaviours, a set 
of key points and body measurements between these points are usually used. These key points 
represent different joints of the sheep and these key points and body measurements can be used 
for pose estimation. Pose parameters can be used as a tool for more detailed analyses and allow 
many sheep behaviour studies to be automated. For example, it is important to distinguish 
between grazing and resting behaviour of sheep and to analyse grazing behaviour. Because the 
identification and classification of grazing behaviour in free-ranging ruminants will help to 
improve the efficiency of animal production (Alvarenga et al., 2016). However, in the sheep 



 
 

industry, estimation of body measurements is very important as it provides a rough indication 
of the muscle and fat cover of the live animal. These measurements can influence the decision 
to sell or retain the animal and can help to estimate carcass yield and quality. Body 
measurements can also be used to calculate many growth traits that can help determine the 
productivity of animals and identify superior animals for breeding (Kenyon et al., 2014).  

While body measurements are so important in animal husbandry, taking these 
measurements manually, monitoring and analyzing animal behaviour using traditional methods 
can be intrusive, time-consuming and subjective, especially on large-scale farms (Meckbach et 
al., 2021; Stephansen et al., 2023; Gao et al., 2023). Therefore, the use of measurements 
obtained by image analysis (instead of traditional methods) to classify sheep posture and predict 
their pose has the potential to overcome the intrusive disadvantages of traditional measurement 
methods. Pose estimation on video sequences using machine learning methods is a relatively 
new research area. Body measurements taken via keypoints with image analysis offer a 
powerful way to easily and quickly observe animal movements in a natural environment, 
without the biases that human observation can introduce.  

Deep learning-based pose estimation, despite its widespread use in recent studies, most 
methods focus solely on visual features extracted from images without incorporating structural 
body measurements that could improve classification accuracy. Integrated systems that 
seamlessly combine pose classification with keypoint-based body measurements are still 
lacking. To address this gap, this study proposes a hybrid approach that leverages both image-
based detection and quantitative biometric features to enhance the robustness and accuracy of 
sheep pose predictions. In line with this motivation, this study presents a two-stage computer 
vision-based framework specifically designed for the identification and classification of sheep 
postures. First, a YOLOv8 pose-based network is trained to classify sheep behaviors and detect 
key points of the sheep's body. Second, a predictive, supervised machine learning model is 
designed to recognize animal behaviors based on the detected key points and automatically 
calculated body measurements. Furthermore, the proposed methodology is compared with 
recently used object detection models and comparative experiments are conducted. The 
methods proposed in the manuscript present an innovative approach to automate sheep posture 
classification and body measurements using computer vision techniques. 

 
Experimental setup 
In this section, the experimental datasets and each stage of the experimental setup are described 
in detail. The workflow of the study is given in Figure 1. 
 



 
 

Figure 1. Workflow of the study 
 
 
Video data  
In this study, a dataset consisting of 417 sheep videos covering five activity classes, including 
grazing, running, sitting, standing, and walking, was used (Khan and Kelly 2023a; 2023b). Each 
behaviour was recorded from front and side perspectives. Further information about the dataset 
can be found in Kelly et al. (2024) (see Figure 2 for example frames). 

 
 

 
Figure 2. Sample images from the dataset. a) grazing, b) running, c) sitting, d) standing, 
e) walking, 1) frontal, 2) side Kelly et al. (2024). 
 
 
Image processing and labelling  
In the experimental setup, a total of 120 videos were used by randomly selecting 40 side-
recording videos from each of the grazing, standing and sitting behaviour classes in the data 



 
 

set. Afterwards, 5 frames per second were captured from the videos, each of which lasted 8 
seconds on average. Thus, an image training dataset containing 5015 frames in total was 
created. Then, a test dataset consisting of frontal images was prepared in order to test the models 
on datasets with different features. The test set contains 1146 images (382 per class). Each high-
resolution image (3840x2160) occupied approximately 3 MB of memory. Considering the 
computer processing power during the labelling and analyses, each image was rescaled 
(800x450) and reduced to approximately 180 KB. Each of the images to be used for training 
and testing purpose was labelled as a class using the Computer Vision Annotation Tool (CVAT) 
(https://cvat.ai/) (Figure 3) and 13 different key points of each sheep were labelled (Figure 4). 
A total of 13 key points were selected based on distinct anatomical reference points that are 
typically visible in different poses of sheep and are necessary for both pose classification and 
the extraction of body measurements. These key points include the head, neck, shoulders, 
elbows, knees, heels, and tail base. The number and placement of these points were determined 
based on previous pose estimation studies and verified through visual inspection to ensure 
consistent visibility and sufficient anatomical coverage in various poses. 

 

 

   
Figure 3. Sample images from the labelling process of the dataset used in the study. a) grazing, 
b) standing, c) sitting 

 



 
 

 
Figure 4. Labelling of key points 
 

 

Body measurement from key points 
For the supervised machine learning analyses of the study, Euclidean distance was used to 
calculate body measurements over the images (Eq. 1). Some additional coding was made to the 
"predict" module of the YOLOv8 model for the detection of key points on the images and then 
automatic measurement of the determined distances. Accordingly, the measurements calculated 
for each image were recorded in an excel file respectively. Finally, this excel file was merged 
for all images and the body measurements data set was saved in .csv format. 

𝒅"𝑲𝒆𝒚𝒑𝒐𝒊𝒏𝒕𝒊, 𝑲𝒆𝒚𝒑𝒐𝒊𝒏𝒕𝒋, = ."𝒙𝒋 − 𝒙𝒊,
𝟐 + "𝒚𝒋 − 𝒚𝒊,

𝟐     (Eq. 1) 

 
Figure 5 shows the calculated body measurements of sheep. Accordingly, the measurement 
between Keypoint 1 and Keypoint 12 is Measurement 1 (M1), the measurement between 
Keypoint 2 and Keypoint 11 is M2, the measurement between Keypoint 4 and Keypoint 12 is 
M3, the measurement between Keypoint 5 and Keypoint 8 is M4, the measurement between 
Keypoint 10 and Keypoint 12 is M5, the measurement between Keypoint 6 and Keypoint 8 was 
assigned to variable M6, between Keypoint 10 and Keypoint 11 to variable M7, between 
Keypoint 6 and Keypoint 7 to variable M8, between Keypoint 11 and Keypoint 12 to variable 



 
 

M9 and between Keypoint 7 and Keypoint 8 to variable M10. Class values were assigned to 
these measurements obtained for all images and the data set in Table 1 was created. 

 
Figure 5. Body measurements calculated using key points 

 
 

Table 1. Body measurements data. 
Frame M1 M2 M3 … M9 M10 Class 

1 64.008 95.708 207.060 … 44.283 49.254 Grazing 

2 69.029 101.203 206.620 … 43.829 49.254 Grazing 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

2446 133.405 148.337 112.432 … 49.092 38.910 Sitting 

2447 134.848 147.574 110.345 … 49.163 39.812 Sitting 

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ 

5014 260.946 225.996 228.543 … 59.682 71.589 Standing 

5015 275.409 237.059 224.154 … 55.444 68.411 Standing 

 
 

Model configurations 
YOLOv8 for pose classification 
YOLOV8 pose model was used in the image analysis part of the study. The dataset is divided 
into 70% for training, 20% for validation and 10% for testing. Accordingly, 28 of the 40 videos 
in each class were used for training, 8 for validation and 4 for testing. As a result, a total of 
3561 side images were used for training, 954 validation data points for validation, and 500 data 
points for testing. The models have a batch size of 16, learning rate of 0.01, momentum of 
0.937, epoch of 100, image size of 640, and optimisation method of SGD. The training at this 
stage took approximately 3.5 hours. The hyperparameters used (e.g., batch size, learning rate, 



 
 

momentum) were initially selected based on the default YOLOv8 settings reported in the 
relevant literature and then fine-tuned using pre-validation experiments. For example, learning 
rates of 0.001, 0.005, and 0.01 were tested, and 0.01 provided the best balance between 
convergence speed and accuracy. During the training stage, default data augmentation 
techniques integrated into the YOLOv8 training pipeline were applied. These include random 
horizontal flipping, HSV color jittering, image scaling, and translation. No additional manual 
augmentations such as Gaussian noise or customized brightness/contrast changes were applied. 

 
Supervised machine learning algorithms for pose estimation based on body measurements 
Six different supervised machine learning algorithms were used in this part of the study. These 
are Support Vector Machines (SVM), Naïve Bayes (NB), Classification and Regression Tree 
(CART), K-Nearest Neighbors (KNN), Artificial Neural Networks (ANN) and Random Forest 
(RF) algorithms. In artificial neural networks, a hidden layer of size (128,128) was used, relu 
was used as the activation function and sgd was used as the optimisation method. In addition, 
gini index was used in CART and RF algorithms and rbf was used as the kernel in SVM. In the 
RF algorithm, the number of estimators was taken as 100, the minimum sample split was taken 
as 2 and the minimum number of sample leaf was taken as 1. In the KNN algorithm, the number 
of neighbours was taken as 5 and ‘minkowski’ was used as the metric. In the NB algorithm, the 
‘Gaussian Naive Bayes’ model and the variance smoothing value of 1e-9, which is the default 
value, were used. At this stage of the study, 10% of the data set was reserved for testing. In 
addition, 10-fold cross-validation was used in model analyses. The hidden layer size in the 
artificial neural network (128, 128) was experimentally determined by comparing several 
configurations (e.g., 64×64, 128×128, and 256×256). The selected size provides a balance 
between model complexity and performance. 

 
Performance evaluation metrics and system utilization 
The assessment methodology utilized to evaluate the effectiveness of the models encompasses 
Accuracy, Precision, Recall and mAP (mean average precision). These performance metrics 
are derived from the true positive (TP), true negative (TN), false positive (FP), and false 
negative (FN) values extracted from the confusion matrix, as outlined in Eq. 2 through 5 (Bati 
and Ser, 2023b). 

 
𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = 𝒕𝒑&𝒕𝒏

𝒕𝒑&𝒕𝒏&𝒇𝒑&𝒇𝒏
       (Eq. 2)

 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 𝒕𝒑
𝒕𝒑&𝒇𝒑

	        (Eq. 3) 

Recall = )*
)*&+,

             (Eq. 4) 

mAP = -
.
∑ AP/.
/0-     ,               where    AP: average precision     (Eq. 5) 

 
Object Keypoint Similarity (OKS) is widely regarded as the standard metric for keypoint 
evaluation, as noted by Maji et al. (2022). It is measured on a scale from 0 to 1, where higher 
scores correspond to a closer match between the predicted keypoints and the ground truth. In 



 
 

the context of pose estimation models, a prediction is classified as "positive" or accurate if the 
predicted keypoints lie within a predefined distance threshold from the actual ground truth 
keypoints (Jocher et al., 2023). The Keypoint Similarity (KS) for each keypoint is determined 
by applying the Euclidean distance between the predicted and ground truth keypoints to an 
unnormalized Gaussian distribution with a standard deviation of σ/.  

Formally, keypoint similarity for the i-th keypoint type can be expressed as in Eq. 6 
(Dutta and Dawn, 2023). 

KS/ = exp K− 1!
"

23"4!
"L            (Eq. 6) 

 
Where, 
d/ denotes the Euclidean distance between the ground truth and the predicted i-th keypoint, k is 
a constant associated with the i -th keypoint, 
s represents the scale of the ground truth object, such that s2 corresponds to the segmented area 
of the object. 

OKS is ultimately calculated as the arithmetic mean of all annotated keypoints in a given 
instance. 
The mathematical representation for OKS is provided in Eq. 7 (Dutta and Dawn, 2023). 

OKS = ∑ 67!! .9(;!<=)
∑ 9(;!<=)!

                        (Eq. 7) 

 
Where, 
KSİ denotes the Keypoint Similarity for the i-th type keypoint, 
v/ represents the ground truth visibility flag for the i-th keypoint, 
δ(v/ > 0) is the Dirac-delta function, which is 1 if the i-th keypoint is annotated and 0 
otherwise. Unannotated parts (where v/ = 0) do not affect the OKS calculation.  
The determination of true positives, false positives, and false negatives is based on an OKS 
threshold, analogous to the Intersection over Union (IoU) metric. A detection is considered a 
true positive if the OKS score between the ground truth and the prediction exceeds the OKS 
threshold; otherwise, it is counted as a false positive. All unmatched ground truths are 
considered false negatives (Ronchi and Perona, 2017; Dutta and Dawn, 2023). Similar to object 
detection, precision and recall values are calculated, followed by the computation of the final 
metric, mean average precision (mAP) (Dutta and Dawn, 2023). 
The open-source Python 3.8.3 (Van Rossum and Drake, 2009) package program and Pytorch 
1.11.0 (Paszke et al., 2019), a high-performance deep learning library for YOLO v8 pose, were 
used in deep learning analyses. The hardware features of the computer used in the study are as 
follows; processor: Intel Core i7-9750H, graphics: NVIDIA GeForce RTX 2070, 8 GB GDDR6 
Dedicated VRAM, and memory: 32 GB DDR4 2666 MHz.  

 
Results 
Evaluation of pose classification accuracy based on image analysis 
In the analyses for pose classification, the YOLOv8 pose model was trained for 100 epochs. 
The results obtained after 3.5 h of training are given in Figure 6 a,b) show the prediction-recall 
curves for class and keypoint prediction on the validation data, respectively. The model 



 
 

achieved a mean average precision (mAP) of 0.99 for pose classification and 0.96 for keypoint 
localization. When the accuracy measure is calculated for all classes, 881 of the total 954 
validation data points were correctly classified, and a classification accuracy of 93% was 
achieved (Figure 6 c-d). Figure 6e shows the accuracy, mAP and loss curves for the training 
and validation data recorded during the training process. 

 

 

  
(a) (b) 

  
(c) (d) 

 
(e) 

Figure 6. Results obtained during the training process for pose classification 
 



 
 

Model testing 
Test on side images: As shown in Figure 7a, the model achieved 94% overall accuracy on the 
side test images and demonstrated high performance across all classes. The precision-recall 
(PR) and OKS visualizations (Figures 7 b,c) show that most predictions achieved high key point 
similarity and that 99% (total 495) exceeded the 0.50 OKS threshold. Figure 8 presents the 
ground truth along with the various predictions made by the model for both keypoints and class 
labels, as well as the corresponding OKS values. 

In Figure 8, some OKS values are obtained depending on the keypoint placements of the model. 
The predicted frame for the sitting class, when compared with the ground truth, demonstrates 
highly accurate keypoint placement, as evidenced by an OKS value of 0.98, further supporting 
the precision of the prediction. In some cases, minor keypoint placement errors occurred (2nd 
and 3rd keypoints), but some keypoint placements even exceeded the ground truth (e.g., the 12th 
keypoint in the standing class). 



 
 

  
(a) (b) 

 
(c) 

Figure 7. Confusion matrix (a) and precision-recall curve (b) obtained from side view test 
images for the pose classification task, along with the graph of OKS values (c). 
 



 
 

 
Figure 8. Comparison of ground truth and predicted frames with some OKS values 
 

 

Test on frontal images 
In order to test the model on a different dataset, a dataset was created using the frontal images 
(Figure 2 - a1, c1, d1) of the sheep in the original dataset different from the training dataset. A 
total of 1146 images, 382 images of each class, were used as test data.  
Figure 9a presents the confusion matrix showing the performance of the YOLOv8 model on 
the frontal test images. The model achieved an overall accuracy of 89% on frontal images, with 
performance differences observed across classes. Figure 9b presents the precision-recall (PR) 
curve for the key points, while the OKS values are presented in Figure 9c. Figure 9c illustrates 
that 92% of the OKS values (1049 values in total) are higher than 0.50; these values are 
indicated by a transition from green to yellow. 



 
 

  
(a) (b) 

 
(c) 

 
Figure 9. Confusion matrix (a) and precision-recall curve (b) obtained from frontal view test 
images for the pose classification task, along with the graph of OKS values (c). 

 

  



 
 

 
Supervised machine learning pose estimation accuracy based on body measurements 
Figure 10 shows samples of images for the calculation of body measurements over images using 
keypoints and presents the box plot of the body measurements dataset. According to the graph, 
the mean values of M1, M2, M3 and M4 variables are higher, while the mean values of M7, 
M8, M9 and M10 variables are naturally lower. 

 

 

(a) 

 

(b) 

 

Figure 10. Sample images of body measurements automatically and instantly calculated using 
keypoints (a), and the box plot of the body measurements dataset (b). 

 

 

 



 
 

Figure 11 shows the pose estimation performances on the body measurements data set of 5015 
sheep. According to the training results, the two most successful models were RF and KNN. It 
is seen that the models other than NB have over 97% pose estimation success. 

 

  
Figure 11. Training performance of supervised machine learning algorithms 

 

 
Model testing 
Test on side images: Figure 12 and Table 2 show the test pose estimation results of the 
supervised machine learning algorithms on side images. As shown in Figure 12, KNN achieved 
the highest accuracy among the tested models, and most models performed above 97%. Table 
2 shows the confusion matrix and performance metric results of all models. As can be seen in 
Table 2, it is understood that the K Nearest Neighbour model correctly classifies all test sheep 
with 100% accuracy. 

 

 

Figure 12. Test performance of supervised machine learning algorithms on side images. 
 



 
 

Table 2. Performance metrics of supervised machine learning algorithms with confusion matrix 
on side images. 

Algorithms  Precision Recall F1-
score 

SVM 

 

Grazing 0.99 0.97 0.98 

Sitting 1.00 1.00 1.00 

Standing 0.96 0.99 0.97 

NB 

 

Grazing 0.95 0.78 0.85 

Sitting 0.98 0.95 0.96 

Standing 0.75 0.95 0.84 

CART 

 

Grazing 0.99 0.99 0.99 

Sitting 0.99 1.00 1.00 

Standing 0.99 0.99 0.99 

KNN 

 

Grazing 1.00 1.00 1.00 

Sitting 1.00 1.00 1.00 

Standing 1.00 1.00 1.00 

ANN 

 

Grazing 0.99 0.93 0.96 

Sitting 1.00 1.00 1.00 

Standing 0.92 0.99 0.95 

RF 

 

Grazing 0.99 0.99 0.99 

Sitting 1.00 1.00 1.00 

Standing 0.99 0.99 0.99 

 



 
 

Test on frontal images: In this section, the supervised machine learning algorithms are tested 
with a dataset of body measurements taken from frontal images with 1146 samples. The test 
performances of the models on this dataset are presented in Table 3. SVM achieved the highest 
performance (94%) on frontal images based on body measurements, outperforming models 
trained only on image data (Tables 3 and 4). 

 

 

Table 3. Performance metrics of supervised machine learning algorithms on frontal images 
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SVM 
(0.94) 

Grazing 0.82 1.00 0.90 
KNN 
(0.93) 

Grazing 0.85 0.90 0.88 
Sitting 1.00 0.84 0.92 Sitting 0.93 0.89 0.91 

Standing 1.00 1.00 1.00 Standing 1.00 1.00 1.00 

NB 
(0.90) 

Grazing 0.86 0.77 0.81 
ANN 
(0.93) 

Grazing 0.87 0.87 0.87 
Sitting 0.91 0.91 0.91 Sitting 1.00 0.91 0.95 

Standing 0.93 1.00 0.96 Standing 0.91 1.00 0.95 

CART 
(0.92) 

Grazing 0.84 0.87 0.86 
RF 

(0.93) 

Grazing 0.87 0.87 0.99 
Sitting 0.91 0.89 0.90 Sitting 0.91 0.91 0.91 

Standing 1.00 1.00 1.00 Standing 1.00 1.00 1.00 
 
 
Comparison with state of the art models 
Table 4 shows the performance comparison of the proposed methods with different state of the 
art algorithms. To ensure a fair and consistent comparison, all models were trained and tested 
on the same dataset. The input image size (640×640), batch size (16), number of epochs (100), 
and basic data augmentation techniques were standardized across all models. Since optimizers 
are the default SGD for many models, SGD was used for all models. Evaluation was performed 
using the same metrics under the same test conditions. 

 



 
 

Table 4. Performance comparison of different algorithms 

Algorithms 
Side Images  Frontal Images 

Accuracy Precision Recall  Accuracy Precision Recall 
        
Image-Based Models        

Faster R-CNN (Ren et al., 2015) 0.89 0.90 0.89  0.87 0.88 0.88 

RetinaNet (Lin et al., 2017) 0.91 0.91 0.90  0.88 0.88 0.87 

EfficientDet (Tan et al., 2020) 0.93 0.93 0.94  0.91 0.91 0.90 

YOLOv8 (Jocher et al., 2023) 0.94 0.94 0.93  0.89 0.88 0.89 
        
Measurable Parameter-Based 
Models 

       

YOLOv8 pose + KNN  1.00 1.00 1.00  0.93 0.93 0.93 

YOLOv8 pose + SVM  0.98 0.98 0.99  0.94 0.94 0.95 

 
 

Table 4 shows the performance comparison of Faster R-CNN (Ren et al., 2015), RetinaNet (Lin 
et al., 2017), EfficientDet (Tan et al., 2020) and YOLOv8 (Jocher et al., 2023) models with the 
models proposed in the paper. According to the table, all models have shown successful 
performances in sheep pose classification with a performance of 87% and above. The KNN 
algorithm trained with the body measurements dataset obtained with the YOLOv8pose model 
trained with side images was the most successful model and outperformed the other models by 
providing 100% pose accuracy on the side images. All models were tested on frontal images 
with weights trained on side images without training on frontal images. The results are shown 
in the frontal images section of Table 4. According to the results, it is understood that the models 
show a decrease in performance against a different data set. In the test we performed on the 
frontal images dataset, it was found that the models trained with measurable parameters 
performed better than the other state-of-the-art models. The SVM trained with measurable 
parameters outperformed the other models with an accuracy of 94% in sheep pose estimation.  
 
Discussion 

In this study, an image-based measurement system, developed to overcome the 
difficulties of traditional manual measurement methods, offers instant and effortless 
measurement to improve animal welfare and working conditions. The proposed methods 
performs pose estimation of sheep with automatically taken body measurements and introduces 
an important innovation to the existing literature in this respect. With this approach, pose 
estimation of sheep with non-contact measurements and estimation of additional parameters 
such as body weight are possible. This is a significant advantage with the potential to optimize 
animal welfare and farm management. 

In case recorded body weight data of sheep are available, models for body weight 
estimation can be developed and the performance of these models can be evaluated by using 
body measurements obtained with these data. In this context, the proposed methods are not only 
suitable for non-contact pose estimation, but also for body weight estimation, and are suitable 



 
 

for further development with further studies. In the sheep industry, body measurements are an 
important tool to assess the physical condition of animals. These measurements provide 
information on the relationship between the animal's muscle mass and fat cover, giving clues 
to the overall health and productivity status of the animal. This information is taken into account 
especially when making important decisions such as the sale or breeding of animals. It also 
plays an important role in estimating carcass yield and quality. Live weight is an important 
parameter in livestock management and is used to determine factors such as feeding, drug doses, 
mating timing. In addition, the study of the relationship between body measurements and live 
weight is important for the determination of genetic potential and breed standards and the 
development of breeding programmes (Castillo et al., 2023). Sowande and Sobola (2008) used 
body measurements of West African dwarf sheep for body weight estimation in their study. In 
the study, body measurements taken by hand were estimated by allometric and linear regression 
methods. In this study, the coefficient of determination of the allometric regression model was 
reported to be in the range of 0.87-0.99. He et al. (2023) proposed a sheep body weight 
estimation approach based on convolutional neural networks using RGB-D images. Using a 
dataset of 726 RGB-D images of sheep, they showed that a lightweight convolutional neural 
network model trained on RGB-D images can obtain an acceptable weight estimation result. In 
this study, as in our study, a non-contact approach is proposed.  

Deng et al. (2021) performed sheep pose estimation in their study. In this study, as in 
the present study, they classified the standing, grazing and lying behaviours of sheep. They 
obtained a mAP value of 0.93 in pose classification over 1500 images with YOLOv3. Hu et al. 
(2023), in their YOLOv5-based grazing sheep behaviour recognition study, classified standing, 
grazing and lying behaviours similar to our study and obtained a mAP value of 0.92. In this 
study, unlike the present study, both still and handheld camera images were used. At the same 
time, images from different times of the day were also included in the study. It is known that 
different features of the dataset improve the training performance of the models. In this study, 
although the original dataset contains both side and frontal images, only side profile images are 
used in the training stage, while frontal images are reserved for testing the model. The main 
reason for this approach is to enable the proposed models to be tested directly on the frontal 
images dataset without training with frontal images and to achieve the objectives of the study 
by comparing these results with existing state-of-the-art methods. Since the frontal images are 
different from the features of the training dataset, the model performances decreased slightly in 
the test on this dataset (Table 4). This is expected for the networks used. Because these networks 
are usually tested on images similar to the dataset they are trained on. Therefore, although the 
test performance of the models is high, they may not perform adequately on images with 
different features (Bati and Ser, 2024). Some researchers have stated that models should be 
trained with more diverse and different images to overcome this problem (Shorten and 
Khoshgoftaar 2019; Yang et al. 2022). It is thought that as the diversity in the training data of 
the model increases, the test performance will also improve. However, when the characteristics 
of the training and test data are different from each other, even increasing the size of the dataset 
may not be sufficient to achieve high accuracy and recall rates (Cheng et al. 2022). Although 
the models based on measurable parameters proposed in this study have some performance 
degradation on frontal images, they still perform acceptably and are quite successful compared 



 
 

to other state-of-the-art methods. This shows that the models have the generalisation capability 
and can be used in different data sets. 

The study's novelty lies in using contactless body measurements (e.g., M1, M2, M3) 
derived from keypoints for pose estimation, combined with supervised machine learning 
models. The correct placement of key points plays a major role in the success of pose 
estimation. When the pose PR curves of the test data are examined (Figure 7), it is seen that the 
mAP value is 0.99 in side images and 0.92 in frontal images in parallel with the OKS values. 
The correct placement of key points improves the quality of the dataset by increasing the 
accuracy of body measurements (M1, M2, ...). In such networks, as the quality of the data set 
increases, the results obtained are more successful. The positive relationship between keypoint 
placements and body measurements is similarly observed between these two factors and the 
pose estimates of supervised machine learning algorithms. While 99% correct keypoint 
placement was achieved in the side images, the KNN algorithm made pose estimation with 
100% accuracy (Figure 7 and Table 2). In the frontal images, 92% correct keypoint placement 
resulted in 94% accuracy of the SVM algorithm in pose estimation (Figure 9 and Table 3). 
These results show how the correct placement of keypoints improves the quality of the dataset 
by increasing the accuracy of the body measurements. Thus, it can be seen that the better the 
quality of the data set, the better the results obtained in such networks. 

In the test results on the frontal images, especially when the OKS values of the ‘sitting’ 
class are analysed (Figure 9c), it is seen that the model exhibits a lower precision (Figure 9b). 
This poor performance is related to the fact that many key points of the ‘sitting’ class are not 
visible in the frontal images, which leads to low OKS values. Due to the nature of the sitting 
position, the key points, especially in the leg and foot areas, are not visible, which may have 
contributed to this decrease in the model's performance. In order to increase the sensitivity to 
keypoint localisation error, it may be useful to adjust the sigma values used in the OKS 
calculation (Eq. 6). Too small sigma values mean that the model focuses on localising keypoints 
more precisely. However, this also requires the model to adhere to stricter constraints, which 
can complicate the training process (Jocher et al., 2023). 

The main similarity between the findings of the studies that perform pose classification 
over images and the present study is that although different object detection models are used, 
similar mAP values are generally obtained (YOLOv8 mAP 0. 94, Ren et al. (2015) Faster R-
CNN mAP 0.89, Lin et al. (2017) RetinaNet mAP 0.91, Tan et al. (2020) EfficientDet mAP 
0.93, Hu et al. (2023) YOLOv5 mAP 0.92 and Deng et al. (2021) YOLOv3 mAP 0.92 for side 
images). This makes it necessary to combine these object detection models with plug-ins or 
other models that can improve model performance. 

In the present study, the method, which is based on body measurements obtained from 
images with the use of key points, is not limited to measurements on images. At the same time, 
videos (Figure 10a) or real-time tracking can be used to quickly detect changes in the position 
of the sheep due to changes in measurements, so that unusual behaviour can be detected 
immediately. Furthermore, different measurements can be used to detect various specific 
behaviours. For example, the measurement value between points 1-9 (Figure 4 and Figure 5) 
can give an idea about a sheep's self-bending behaviour. Otherwise, changes in the behaviour 



 
 

of a pregnant ewe as parturition approaches (Waters et al., 2021) can be assessed based on 
measurements between different key points.   
The challenges and some limitations encountered in the study can be summarised as follows; 
the camera was not stable during the creation of the dataset used, which caused shaking, which 
caused difficulties especially in keypoint labelling. This may have led to some labelling errors 
in ground truth labelling (Figure 8). Furthermore, the change in performance of the models on 
datasets containing frontal images shows that the models are sensitive to different camera 
angles. In particular, it is clear that they perform better in side views where key points can be 
observed more clearly. In addition, since the distance of each sheep to the camera was not 
constant (some close to the camera and some far away), there may have been some fluctuations 
between sheep in the body measurements made on the images. However, this did not affect the 
ratio of body measurements for each sheep. In real-world scenarios, various practical challenges 
may arise, such as poor lighting, obstruction caused by swarming behavior, inconsistent camera 
angles, and motion blur caused by handheld cameras. These issues can reduce keypoint 
detection accuracy and, consequently, measurement accuracy. To mitigate these issues, future 
studies could benefit from additional training with augmented and diverse datasets, integration 
of depth or stereo vision systems, and the use of lightweight models on edge computing 
platforms. Additionally, incorporating small amounts of locally collected data for fine-tuning 
could help adapt the model to specific farm conditions. 

This study evaluated in detail the relationship between pose estimation and body 
measurements, as well as the performance of different supervised machine learning algorithms. 
The findings provide new ways for automatic identification and tracking of animal behaviour 
with image-based measurements and increase the potential of precision agriculture applications 
in livestock management. In future work, it is planned to further develop the current 2D 
keypoint-based approach to obtain 3D pose estimation and body measurements using stereo 
cameras or depth sensors (such as RGB-D cameras). These technologies will enable real-time 
tracking of animals in 3D space and more precise measurements. In this way, both pose 
estimation and body measurements will become more accurate and practical. Furthermore, by 
working on models that can distinguish behaviours such as walking and running, we aim to 
provide metric information such as running distance and walking distance. By incorporating 
additional functions such as weight estimation based on body measurements into our system, 
we plan to increase the use of this model in precision agriculture practices. These advances will 
expand and optimise the use of contactless measurement and tracking systems in the livestock 
industry. 

 
Conclusions 
This study presents a two-stage hybrid approach that integrates supervised learning on 
measurable anatomical parameters with keypoint-based image analysis to classify sheep poses. 
The proposed method outperforms traditional and deep learning-only models, achieving high 
classification accuracy across multiple postures and view angles. By incorporating body 
measurements into the learning process, the model enhances interpretability and generalization 
capabilities, offering a promising direction for automatic livestock monitoring. Beyond sheep 



 
 

pose classification, the developed system has practical potential in precision agriculture. Its 
contactless, continuous observation capability makes it suitable for early detection of 
musculoskeletal or behavioral abnormalities, body weight estimation, and overall health 
monitoring, thereby contributing to welfare-focused livestock management. From an economic 
perspective, the system can reduce labor costs by automating daily monitoring tasks and 
improve overall farm efficiency. The non-invasive nature of the solution, which operates 
without physical contact, ensures stress-free monitoring while protecting animal privacy, as 
data collection occurs in controlled farm environments. 
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