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Abstract 

This study compares three machine learning (ML) models -artificial neural networks (ANN), recurrent 
neural networks (RNN), and extreme gradient boosting (XGBoost)- for predicting the drying kinetics 
of wood biomass from the clearing of outdated apple and apricot orchards. The primary goal was to 
optimize and evaluate the performance of these models in predicting drying time and moisture 
content of the wood, which is crucial for improving energy efficiency in the drying process. 
Experiments were conducted under four temperature regimes (40°C, 50°C, 60°C, and 70°C) to 
simulate low- and high-temperature drying conditions. The models were trained and evaluated using 
statistical quality metrics such as root mean squared error (RMSE), mean absolute error MAE, and R². 
Results showed that all models performed with high accuracy, but XGBoost demonstrated the best 
statistical performance, exhibiting the lowest MAE and RMSE values. The RNN model exhibited the 
highest R² values and performed well in terms of MAE and RMSE, whereas the ANN model yielded 
slightly lower results. Despite small differences in performance, the models showed strong predictive 
capabilities and can be effectively used for modeling the drying process of moist wood biomass. This 
research emphasizes the significance of model optimization in enhancing the accuracy of drying 
time predictions and minimizing energy consumption in drying processes. 
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Introduction 
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Rational energy management with the use of renewable energy sources has become imperative in 
recent decades in order to achieve sustainable development and environmental protection. The 
uncontrolled depletion of fossil energy sources has made the effects of greenhouse gases more 
pronounced, and climate change more intense. In order to mitigate the negative environmental 
impacts, renewable sources are expected to take over two-thirds of the total energy consumption 
and 86% of power generation in the global energy transition in the coming years (IRENA, 2019). In 
transition countries and EU candidate countries, such as the Republic of Serbia, the household sector 
has the greatest potential to reduce energy consumption and increase the use of renewable energy 
sources, given that it traditionally relies on biomass for heating and cooking (Gonzalez-Salazar et 
al., 2014). According to data from the European Commission, for years, around 63% of total energy 
consumption in households goes to heating, where renewable energy sources are represented by 
about 22% (Eurostat, 2024). In the Republic of Serbia, the situation is different, with firewood being 
the main fuel source, accounting for 47%, and together with pellets and other wood fuels, it reaches 
50%. In households, the consumption of firewood is significantly higher, with a share of 77%, while 
in urban areas, where most are connected to the district heating system, this share is around 28%. 
Although firewood is an ecologically renewable energy source, environmentally friendly, easily 
accessible, and often a cheaper fuel compared to other sources, burning wood fuel can produce a 
significant amount of PM particles and CO2, which, during the winter months, particularly in urban 
areas, causes high levels of air pollution (IEA, 2024). Maximum efficiency and reduction of particle 
and smoke emissions are achieved only by burning dry wood, which also has higher thermal power 
than wet wood and burns longer. Therefore, it is necessary to ensure dry wood for efficient 
combustion, which has been properly stored. 
Due to its relatively low price on the market and easy availability, wood logs have been for decades 
the most common form of biomass used for heating, not only in the Republic of Serbia but also in 
other countries of the Western Balkans. The negative result of this positioning of wood logs on the 
energy market led, in the past decade, to the irrational and almost uncontrolled felling of forests. 
Serbia is considered a moderately forested country, in which forest biomass is the only type of 
biomass used for heating households, either in the form of wood logs or briquettes, chips, or pellets. 
This approach led to significantly reduced forest areas in the past decade. Fortunately, over the past 
ten years, the total forested area has increased from an estimated 2,645 million ha in 2012 to about 
3,025 million ha, according to the Organization of Forestry in Serbia in 2023, which represents a 
5% increase in forest land area (Derčan, 2012). Although there is significant potential in biomass 
generated as a result of fruit and vineyard production, unfortunately, it is rarely used. One of the 
main activities in fruit and vineyard production is pruning, which generates a significant amount of 
organic waste, about 50% of which could be used for heating and cooking (Ilic, 2024). On the other 
hand, there are a large number of old plantations, over 20 years old, which need to be cleared and 
replaced with new ones. According to data from the Statistical Office of the Republic of Serbia, in 
2017, the area under the most important fruit varieties: apples, pears, peaches, apricots, and 
nectarines were 56.41 thousand ha, with a total of 66.02 million trees. Of that, 42% of the area was 
covered by outdated plantations with a fund of 48% of the total number of trees (Statistical Office of 
the Republic of Serbia, 2024). Since there is no organized treatment of the waste generated from 
clearing old plantations, farmers are forced to handle the waste themselves, which could most easily 



be processed into wood chips, although this is the least used form for heating. The downside of wood 
chips is their relatively high moisture content, which can range from 20% to 30%, which, when 
burned, generates particles ranging from 8 to 30 PM. By drying this wood chips produced from old 
fruit plantations, it would become energy-efficient biomass suitable for heating, and at the same time, 
solving the waste problem would have a positive impact on environmental protection and 
sustainable development (Perić et al., 2020; Strehler, 2020). 
Wood drying is a key operation in the wood industry and woodworking, which primarily aims to 
reduce the moisture content in the wood while maintaining its physical integrity and stability. Due 
to poorly managed drying processes, uneven moisture content can occur inside the wood, leading 
to shrinking, warping, and even cracking of samples. This topic has been studied for the last 30 years. 
From examining drying at low or high temperature regimes, significant observations have been made 
regarding the drying process of wood samples (Simpson, 1983a), to the application of some modern 
drying methods, such as freeze drying, superheated drying, supercritical CO2 dewatering, vacuum 
drying, and others (Espinoza et al., 2016; Bovornset et al., 2007; Yang et al., 2020; Shaozhi et al., 
2016, Elustondo et al., 2023). Research on the process is generally based on determining empirical 
dependencies between drying time and dimensionless moisture content in the material, which are 
often of an exponential nature. 
The application of artificial intelligence (AI) in modeling drying processes in the food industry, 
especially artificial neural networks (ANN), has proven to be an accurate and reliable tool for 
predicting and studying drying processes. Various models and networks have been used to predict 
moisture content in materials or drying rates, based on experimental data sets, but based on image 
processing (Khan et al., 2022; Ropelewska et al., 2023; Aghbashlo et al., 2015; Martynenko et al., 
2018). The specificity in the case of wood drying is predicting the specific cracks that may appear 
during the drying process, for which networks that predict based on image analysis have proven to 
be exceptionally good (Morales-Reyes, 2023; Ji et al., 2024; Tian et al., 2023). Based on the idea 
that wood biomass from clearing old orchards could be used to produce wood chips, and that drying 
can significantly reduce moisture content in the material, the goal of this work is to model the 
prediction of drying rate for two samples -apple and apricot- using ANN networks and determine the 
most reliable model. Drying rate is the data on which the total mass of dried wood can be estimated, 
and based on that, energy consumption during the drying process can be predicted. The networks 
used in this experiment are the classic ANN network, recurrent neural networks (RNN), as well as 
very precise extreme gradient boosting (XGBoost) networks that can process data of different 
categories. The quality of the networks was determined through classical statistical parameters, such 
as R2, mean squared error (MSE), and root mean squared error (RMSE). 

 

Materials and Methods 

Preparation and drying of wood samples 

The goal of the experimental part of the research was to determine the drying rate depending on the 
sample mass, current moisture ratio, drying temperature, and sample type. Unlike standard 
procedures in modeling the drying kinetics of biological materials, where the moisture ratio is 
determined as a function of drying time, the drying rate is a parameter that can later be used to 



determine the total energy consumption during the drying process and evaluate the efficiency of the 
process relative to the increased thermal power of the wood biomass obtained after drying. 
The samples were taken from three plantations of old apple and apricot orchards. Branches of the 
same diameter were first cut from the trees, and then disks with a diameter of 100 mm and thickness 
of 20 mm were formed in the laboratory, as shown in Figure 1. One sample of each wood type was 
taken to determine the initial moisture content by drying at 105°C. 
 

 

 

Figure 1. Wood discs samples for experimental drying process. 

 

For all the samples, the drying conditions were set as follows: drying temperatures of 40°C, 50°C, 
60°C, and 70°C, with an air flow speed of 2 m/s. The drying process was stopped once the 
equilibrium moisture content was reached, when the sample mass did not change between two 
measurements. The experiment was carried out in an experimental convective dryer that is fully 
automated, with a movable platform that automatically places the tray with samples on a scale at a 
predetermined time when the measurement is taken, without disturbing the air flow (Milanović et 
al., 2022). 
The sampling time was set at the beginning of the experiment, and an interval of 15 min was taken 
in all experiments, depending on the material type being tested. 
The current moisture content in the drying material can be transformed into a dimensionless moisture 
content (Doymaz, 2012): 
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          (Eq. 1) 

Where Mt, M0, and Me are the moisture content at any time of drying, initial moisture content, and 
equilibrium moisture content (kg water/kg dry matter), respectively. 
The drying rate (DR) (kg water/min) is calculated using the following equation (Lerman et al., 2023). 
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         (Eq. 2) 



The total energy consumption was empirically determined based on the drying conditions for given 
temperatures(Rajković et al., 2023): 

𝑄& = 	𝑎 ∙ 𝜏 + 𝑏         (Eq. 3) 

Where τ is the drying time (min), and the coefficients a and b are empirically determined. 
The specific energy consumption qvq (kJ/kgw) is determined based on the total energy consumed 
during drying and the total moisture evaporated during the process: 

𝑞& =	
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           (Eq. 4) 

 

Application of artificial intelligence in the drying process 

Deep learning (DL), as a subset of artificial intelligence, has recently emerged in academic 
community as a scientific discipline that learns from complex structures within large real-world data 
sets. Based on simulating the work of the human brain, DL models are designed for computers to 
learn from provided data and independently find patterns between input and output parameters, with 
the ability to adjust their current parameters to correctly calculate the output. Traditional machine 
learning techniques such as regression or classification have limited data processing capabilities in 
some complex structures. This is particularly evident when there are different types of dependencies 
between output and input variables. On the other hand, the multiple layers between input and output 
data in DL models provide the possibility to transform the representation at a lower level to a higher 
level (Alsheikh et al., 2016; Arel et al., 2010; Samsonovich, 2020; Ryan et al., 2020). In this way, DL 
models offer endless possibilities for forming complex models that can represent processes such as 
drying in a qualitatively different manner. 
In the traditional way of determining the drying kinetics of wet materials, only the empirical 
dependency of dimensionless moisture ratio as a function of drying time is determined. Although 
other drying parameters are indirectly incorporated into these values, there is no possibility to 
observe the direct dependency, for example, of temperature or air flow rate on the drying process. 
On the other hand, DL models can link such quantities into models that will have dimensionless 
moisture ratio as an output, or even multiple output parameters. 
The most commonly used ANN, based on the structure of biological networks in the brain, consist 
of a large number of basic units—artificial neurons that are interconnected through weights, which 
are analogous to synapses. The ANN model learns by adjusting the weights through its layers. The 
simplest model consists of three layers: an input layer, a "hidden layer," and an output layer (Keskes 
et al., 2020; Haykin, 1999). For better model precision, input data are normalized within the range 
between 0 and 1. The output layer contains the corresponding number of output parameters that the 
model must predict. The number of hidden layers and the number of neurons within them depends 
on the complexity of the model and the problem being solved. These values are determined through 
a corresponding number of model simulations, along with model hyperparameters, to achieve the 
final model that provides the highest accuracy. ANNs have been successfully applied in drying 
processes, depending on whether they confirm the empirical relationship between moisture ratio 
and drying time or in more complex models where dependencies such as drying temperature, air 



flow rate, geometry, and material physical characteristics are examined (Kırbaşa et al., 2019; Xiao et 
al., 2010; Ghaderi et al., 2012; Złotek et al., 2019; Zhang et al., 2014). 
Recurrent neural networks (RNNs) are more complex models than ANNs. The advantage of these 
models is that they "learn" from previous layers. In ANN models, it can be assumed that the input 
and output data are independent of each other, as is the case in image detection applications. RNNs 
save the output of a layer and feed this output back into the input to better predict the outcome of 
the layer. The first layer in the RNN is quite similar to the feed-forward neural network, and the 
recurrent neural network starts once the output of the first layer is computed. After this layer, each 
unit will remember some information from the previous step so that it can act as a memory cell in 
performing computations (Günaydına et al., 2014; Li et al., 2022). 
Extreme gradient boosting (XGBoost) belongs to ensemble learning techniques, which iteratively 
passes through an ensemble of weak learners, usually with decision trees, to eventually generate a 
strong prediction model. The advantages of XGBoost models are high flexibility, strong predictive 
ability, high scalability, and high learning efficiency. These models have proven to be extremely 
successful in processing different types of data in both regression and classification models, as they 
use regularization to minimize the loss function. XGBoost models progressively correct prediction 
errors, using approximations through decision trees. The success of these networks lies in their ability 
to adapt to a wide range of applications. The current application of these models can be direct, 
through integration with other algorithms, and parameter optimization (Sagi et al., 2011). 
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The goal of this research is to apply ANN, RNN, and XGBoost models in predicting the drying rate 
of wood samples. In all models, the same input parameters were set: drying time, dimensionless 
moisture ratio, drying temperature, and sample type, with one output parameter. The choice of 
appropriate ANN and RNN networks was determined by optimizing the number of hidden layers, 
the number of neurons in the layers, and adjusting the hyperparameters, learning rate, and epochs, 
as well as the activation function in the ANN model. The XGBoost regression model was optimized 
according to its parameters: booster, learning rate, and objective. The model selection and final 
comparison of model efficiency were based on standard statistical metrics, such as the coefficient of 
determination, mean absolute error, and mean square error. 
 

 

Results and Discussion 



Experimental drying of wood disks 

The mass change of the material was recorded every 15 minutes using a balance placed under the 
drying chamber. The balance used was Kernel (Kernel S232) with an accuracy of ±0.01 g. The hot 
air temperature was measured and regulated by the PID temperature controller (REX C-100) with an 
accuracy of ±0.1°C, and the thermocouple also had an accuracy of ±0.1°C. Air velocity was adjusted 
with a frequency regulator attached to a fan, set at 2 m/s for all temperature regimes. The air velocity 
was verified using the hot wire anemometer AirflowTM TA35, with an accuracy of ±0.05 m/s. The 
temperatures of the hot air during the drying process ranged between 50°C and 70°C. The 
experiments are numbered as shown in Table 1, detailing the drying time and parameters. 

 

Table 1. List of performed drying experiments. 

Experiment Temperature 
(°C) 

Wood type Drying time 
(min) 

E400 40 Apple 3086 
E500 50 Apple 1540 
E600 60 Apple 414 
E700 70 Apple 404 
E401 40 Apricot 3025 
E501 50 Apricot 1791 
E601 60 Apricot 1543 
E701 70 Apricot 1228 

 

 

The moisture ratio-time drying curves, shown in Figure 2, depend on the temperature and the type 
of wood used for drying. 
Except for the 40°C temperature, where the drying of apricot was slightly faster, in all other 
experiments the drying time for apricot was longer. Apple wood performed excellently at higher 
temperatures, showing a noticeable reduction in drying time. The nature of all curves followed an 
exponential trend, which corresponds to the general drying kinetics of moist biological materials. In 
standard procedures for determining drying kinetics, all curves could easily be approximated using 
known empirical equations. 
Figure 3 shows the change in drying rate relative to drying time for both materials at various 
temperature regimes. The drying rate for apple showed more fluctuation across all regimes, whereas 
for temperatures of 40°C and 50°C, the drying rate followed a stable curve that asymptotically 
decreased. For apricot, fluctuations were less pronounced, but the diagrams clearly indicated a 
pattern relative to all temperature regimes. 
 
 



 

a) b)    
 

Figure 2. Moisture ratio (MR) – time drying curves depending on airflow speed: a) apple tree, b) 
apricot tree. 
 

 

a) b)    
 
Figure 3. Drying rate (DR) – time drying curves depending on airflow speed: a) apple tree, b) apricot 
tree. 
 
 

Selected models 

Through the optimization of the ANN model, a model with two hidden layers, each containing 50 
neurons, was selected. The activation function used was "tanh," the Adam optimizer was applied, 
and the learning rate was set to 0.004. The total number of parameters in the network was 8705, of 
which 2901 were trainable, and 5804 were optimizer parameters. 
The best RNN model had three hidden layers with 15 neurons in each layer. Like the previous model, 
"tanh" was used as the activation function, the Adam optimizer was chosen, and the learning rate 



was set to 0.0013. The total number of parameters in the network was 3605, with 1201 trainable 
parameters and 2404 optimizer parameters. 
Since this was a regression task, the XGBoost regression model was selected, with the "gbtree" 
booster parameter, "linear" objective, and a learning rate of 0.1. Considering that this research 
compared the three best models from different machine learning techniques, all models 
demonstrated statistically excellent results, as shown in Figures 4 and 5. 

 

  

a)  b)     c) 

Figure 4. Comparison of actual and model-predicted data. 

 

As seen in Figure 4, each model demonstrated high accuracy, with the graphical representation of 
actual and predicted data almost overlapping. From the graphical display alone, it is not possible to 
determine which model performed best, so statistical methods, shown in Table 2, were used. 

 

Table 2. Variation of RMSE, MAE, and R² values for different ML models.  

Model R2 MAE RMSE 
ANN 0.9999124 8.7587024e-05 0.009358793 
RNN 0.9999470 5.2956892e-05 0.007277149 
XGBoost 0.9995050 3.4891743e-06 0.001867933 

 

According to the statistical indicators, the XGBoost model had the lowest values for mean absolute 
error (MAE) and root mean square error (RMSE), with a 96.01% lower MAE and an 80% lower RMSE 
compared to the ANN model, and a 34% lower MAE and 74.3% lower RMSE compared to the RNN 
model. These are very small differences, considering that all three models showed high R² values, 
and MAE and RMSE were minimized. However, it can be concluded that XGBoost is slightly better. 
The RNN model had the highest R² value and performed 39.5% better in terms of MAE and 22% 
better in terms of RMSE compared to the ANN model. 
 

 



     

a)     b)    c) 

 

Figure 5. Actual drying rate data versus: a) ANN model predicted data, b) RNN model predicted 
data and c) AXGBoost model predicted data. 
 

Another indicator of the good training of the models is the dependency between actual and predicted 
values for all three models, shown in Figure 5. All three models demonstrate exceptional alignment, 
with no data points deviating from the true line for the validation data (Table 2). 

 

 

 

Figure 6. Correlation matrix between input data. 

 

The significance of optimizing ML models by varying hyperparameters is substantial, especially when 
the data is not highly correlated or exhibits a negative correlation, as is the case with the data used 
in the models examined (Figure 6). 
Almost all the data have a negative correlation with each other, which explains the choice of "tanh" 
as the activation function. Parameters that do not enter the empirical equations for drying kinetics, 
such as temperature and material type, have low correlation indices compared to the highly 



correlated time, mass, and dimensionless moisture ratio. Drying time is just one interpretation of the 
drying kinetics, and it has been previously shown that the shape of the curves is similar to that of the 
moisture ratio (MR). 
The quality of an ML model can also be presented using a confusion matrix (Figure 7). The confusion 
matrix is a standard procedure for performance measurement in machine learning classification. In 
cases where it is not a binary classification, as in the models under study, the actual and predicted 
data can be normalized to obtain the confusion matrix. The confusion matrix is a two-dimensional 
matrix with four elements: TP – true positive, TN – true negative, FP – false positive, and FN – false 
negative. Depending on how the model makes predictions, the quality metrics for the confusion 
matrix are as follows: 

• Accuracy – the proportion of correctly classified objects in the total number of objects. 
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		                                                  (Eq. 8) 

• Precision – the proportion of true positive predictions out of all positive predictions made by 
the model. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 		 !"
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		                                                            (Eq. 9) 

• Recall – the proportion of true positive predictions made by the model out of all actual 
positive samples in the dataset. 
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a)    b)     c) 
 
Figure 7. Confusion matrix for: a) ANN model, b) RNN model and c) XGBoost model. 

 



There were no significant deviations in the quality metrics values, as seen in Table 3, and it can be 
concluded that based on the slightly better overall prediction accuracy, the ANN model appears to 
be superior to the others. In this case, however, the XGBoost model provided the worst results, as it 
had the highest percentage of false positive and false negative values. 

 
 

Table 3. Confusion matrix quality metrics. 
Model Accuracy Recall Precision 
ANN 0.9900 0.9956 0.9898 
RNN 0.9770 0.9714 0.9956 
XGBoost 0.9870 0.9700 0.9908 

 
 
Conclusions 

The aim of this research was to compare three machine learning models that can generally be used 
for modeling the drying of moist materials, in this case, wood from the clearing of outdated apple 
and apricot orchards. Assuming that such wood, with a high moisture content exceeding 30%, is not 
suitable for further processing, the only acceptable option is to produce wood chips, which would 
be dried to specified moisture content, thereby increasing their calorific value. Drying rate is a 
measure that can indicate how the wood will dry, allowing for the determination of drying time for 
a given amount of moist material and, consequently, the total amount of energy needed to reduce 
moisture content to the required level. 
The material was dried under four temperature regimes, where temperatures of 40°C and 50°C 
should correspond to low-temperature drying (e.g., in solar dryers), without solar radiation 
conversion, and temperatures of 60°C and 70°C correspond to high-temperature drying, but using a 
renewable energy source for enhanced energy efficiency. 
The formation of ML models does not explicitly require knowledge of the studied domain, but later 
optimization processes are essential to identify dependencies between input and output variables. 
Machine learning models have become attractive in recent years because they can predict values 
with high accuracy. It is important to consider the type of ML model, whether it is general 
classification or regression, as these can often be very similar due to the data used. 
The example in the paper shows that frequently chosen models, such as ANN, RNN, and XGBoost, 
can be optimized to make accurate predictions. It is important to note that when optimizing the 
model, care must be taken to ensure that the statistical quality metrics provide the best results. This 
is often a long and tedious process, especially considering all the parameters that may change in a 
model. Although the optimizations of the models are not detailed in this paper due to the large 
amount of data, varying several hyperparameters results in a wide range of solutions. Models later 
analyzed match the initial characteristics of their respective groups. The RNN model, compared to 
the ANN model, has far fewer parameters that need to be trained, and always shows better accuracy 
than the ANN model, as seen in the results, where the RNN model is about 30% more accurate 
according to statistical quality metrics. 



In contrast to these two models, XGBoost, with its ability to adjust decision trees iteratively, provided 
the best statistical quality metrics. However, the confusion matrix, as one of the quality metrics, can 
also serve as a good indicator of the quality of an ML model. When data normalization is performed, 
formalizing each ML model to binary regression, the ANN model showed the best characteristics. 
All models showed almost no deviation in predicted values, but XGBoost had worse results in terms 
of accuracy compared to the other two models. The RNN model performed better in the middle 
range according to the confusion matrix quality metrics. When considering all the factors in this 
study, the RNN model was the best, followed by XGBoost and lastly ANN, with very small and 
practically negligible differences. Therefore, it can be concluded that the presented models can be 
used efficiently for predictions in drying wood biomass. 
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