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Abstract 
Satellite remote sensing (RS) offers an efficient, large-scale approach for monitoring crop 
health, particularly in precise estimation of crop yields. Rice is a staple food for over three 
billion people worldwide, making it crucial to estimate rice yield promptly to ensure food 
security and support sustainable agriculture. However, traditional field survey methods for 
yield assessment, are often labor-intensive, and time-consuming. To address this challenge, 
we propose a novel approach that integrates Gaofen-1 (GF-1) and Gaofen-6 (GF-6) 
multispectral data for monitoring and evaluating rice crop yield under different wheat 
residue cover (WRC) percentages. This method employed three Remote Sensing (RS) based 
vegetation indices (VIs): i) enhanced vegetation index (EVI), ii) normalized difference 
vegetation Index (NDVI), and iii) green normalized difference vegetation index (GNDVI), 
with field data collected from 80 sampling points across paddy fields in the Changshu 
County, China. The results demonstrated that land use and land cover (LULC) mapping 
effectively classified paddy fields, covering 66% of the study area, with a classification 



accuracy of 88% (κ = 0.84). Among the relationships tested between VIs and WRC, NDVI 
showed the highest correlation (R² = 0.66), followed by EVI (R² = 0.60) and GNDVI (R² = 
0.51), confirming NDVI as the most effective index for yield modeling. The yield estimation 
model, based on peak NDVI values correlated with measured rice yield from the calibration 
dataset (n=52), achieved R² = 0.83, and validation with test data (n=28) showed high 
accuracy of R² = 0.88 with low error metrics (RMSE = 3.48% and MAPE = 2.35%). 
Additionally, the findings indicated that the highest rice yields (8.21-8.36 tons/ha) were 
observed at moderate WRC levels (60-75%) compared to other residue percentages. These 
outcomes suggest that an appropriate amount of WRC enhances rice yield by supporting 
moisture retention and nutrient availability, which optimizes overall crop performance. 
Therefore, we strongly recommend that the integration of Gaofen satellite data with NDVI 
could be a scalable, cost-effective solution for accurate yield prediction that supports 
sustainable residue management practices and precision agriculture.   
 
Key words: crop residue management; NDVI; precision agriculture; rice mapping; yield 
prediction. 
 
Introduction  
Rice (Oryza sativa) is one of the most important crops and is used as regular food for more 
than three billion people worldwide (Dong and Xiao, 2016). The crop is cultivated in over 
100 countries, covering about 164 million hectares and producing 510 million metric tons 
annually (Dorairaj and Govender, 2023). Recently, the U.S. Department of Agriculture 
(USDA) forecasted that the initial production of rice for the 2023/24 season would hit a 
record 520.5 million tons, representing a notable increase of 12.1 million tons compared to 
the previous year. However, China is one of the world’s largest producers and consumers of 
rice (Guo et al., 2017), with a production of 208.49 million tons in the year 2023 (National 
Bureau of Statistics of China, 2023). Despite the extensive area under rice cultivation and 
significant production worldwide, the total demands often exceed supply, with consumption 
projected to be 530 million tons in 2030 (Durand-Morat and Bairagi, 2021).  
This increase is driven by the expected to be more than ten billion in 2050, necessitating 
more production, while climate change further puts massive pressure on the global food 
demand. To address these challenges, it is important to adopt reliable methods for ensuring 
long-term sustainable rice crop yields. However, the retention of crop residue or straw plays 
an important role in replenishing soil nutrient stocks, increasing rice yield, improving soil 
structure, and enhancing soil total nitrogen (TN), available phosphorus (AP), and organic 
matter (OM) (Memon et al., 2018). Accordingly, the estimation of crop yield forecasting 
under different amounts of preceding crop residue is critical for providing reliable 
information to decision-makers, helping them develop policies to address food security 



challenges in cases of shortfall or surplus (Van Dijk et al., 2021) under conservation 
agricultural practices (Guo et al., 2023). Traditionally, crop yield information data has been 
gathered through agricultural statistics, which rely on large-scale field surveys and farmer 
interviews. Despite its invaluable role in understanding historical trends in rice cultivation, 
these techniques are time-consuming, imprecise, and labor-intensive (Wu et al., 2014), also 
the yield data is typically released to the stakeholders and government agencies several 
months after the crop has been harvested, and thus making it less useful for food security 
planning.  
Meanwhile, in recent years, RS-based techniques have rapidly provided land surface 
information across large areas, and with an increment in temporal and spatial resolution, 
satellite data is now freely available (Raza et al., 2024). The benefits of RS technology, such 
as efficient analysis and spatial coverage over a regional agroecosystem, are significant; it is 
available year-round at a relatively low cost through freely available optical and multi-
temporal satellites, such as Landsat, Sentinel, Gaofen, and MODIS. These satellites provide 
timely information and are capable of mapping detailed spatial distributions of different 
cropping regions. Moreover, for effective rice crop monitoring and yield estimation, remote 
sensing images are captured throughout the growing season at the critical growth stages 
(e.g., transplantation, tillering, panicle initiation, flowering). These images are then analyzed 
using NDVI to assess vegetation dynamics and predict yield outcomes. The NDVI values are 
initially low during the transplantation stage, progressively increasing through the vegetative 
and reproductive phases and gradually declining as the crop progresses towards the ripening 
phase (Figure 1). 

 
 
Figure 1. Illustration of rice growth cycle with different phases and stages. Blue-dotted line 
represents a temporal profile of NDVI associated with the growing stages of rice crops. 
(Modified after Mosleh et al., 2015; Aguilar, 2019; with permission). 



 
As the rice crop grows through different phenology, its reflectance characteristics change 
across spectral wavelengths. Several vegetation indices (VIs) have demonstrated a strong 
correlation with rice evolution parameters. Additionally, most studies have concentrated on 
utilizing advanced sensors or combining varying sensors to access land surfaces. Only a 
limited number of studies have explored using more than two satellite sensors to identify 
crop types through change detection features in a time series. Liu et al. (2018) used multi-
temporal data of Landsat-8 (OLI-TIRS), Sentinel-1a (MSI), and Sentinel-2b (MSI), combined 
with Random Forest (RF) algorithm to classify forest types, highlighting that integration of 
multi-spectral images can produce suitable results. 
Furthermore, China Aerospace Science and Technology Corporation launched a series of 
satellites under the Gaofen mission equipped with different optical and microwave sensors 
with distinct characteristics. Specifically, within this mission (Chen et al., 2024), two of the 
most important and high-resolution satellites primarily used for agricultural and forestry 
applications are Gaofen-1 (GF-1) and Gaofen-6 (GF-6). Consequently, fine-resolution 
satellite data alone is often insufficient for timely land surface analysis across such an 
extensive region. The integration of both GF-1 and GF-6 satellites is providing higher 
temporal resolution, enabling continuous agricultural monitoring at a regional scale. The 
main advantage of Gaofen satellites over other sensors, such as Landsat and Sentinel, is their 
combined higher spatial and temporal resolution. Moreover, the wide-angle sensors of 
Gaofen-1 and Gaofen-6 (800 km swath at 16 m resolution) allow for broader coverage, 
making them highly suitable for large-scale agricultural applications and frequent crop 
monitoring. This capability facilitates time series analysis and increases the likelihood of 
regular surface observations.  
In the present study, a satellite-based approach was developed to map and assess the yield 
performance of rice crops using RS vegetation indices. Thus, the specific objective of the 
current research was to integrate the capabilities of Gaofen-1 and Gaofen-6 satellites to 
develop a model for monitoring and estimating the rice crop yield under different 
percentages of wheat residue cover (WRC) during the growing season. This study is 
particularly significant as it enhanced rice crop mapping through the use of multi-sensors 
and multi-temporal data, which provides valuable insight for crop planting adjustment and 
yield performance under varying WRC percentages in large agricultural regions. 
 
Materials and Methods 
Overview of study site 
The research site is situated in one of the primary rice-wheat cropping regions, in Changshu 
County (31°39′54″N; 120°49′19″E) within the administration of Suzhou district in Jiangsu 
Province, P.R. China (Figure 2). The area lies within the Tai-Lake plain, part of the Yangtze 



River delta, spanning 1,276 km2 of which 386 km² consists of water bodies. The total arable 
land is 42,265 hectares, including 27,451 hectares of rice, 5,600 hectares of irrigated, and 
9,214 hectares of dry land (Memon et al., 2023). This region features a subtropical monsoon 
climate, with a mean annual temperature of 16 oC, and average yearly precipitation of 1,200 
mm. The mean annual number of sunshine hours is 2,000, corresponding to 46% sunshine 
per year (Chen et al., 2022). However, the dominant cropping system is rice (9.355 tons/ha) 
and wheat (5.03 tons /ha), along with some other agricultural products such as sorghum, 
maize, cocoon, vegetables, fruits, and medical herbs supported by abundant water 
resources. 

 

Figure 2. Study area location map with observation points on a Gaofen-1 (GF-1) satellite 
image (1st August 2019), displayed in a natural color composite: red (B3 band), green (B2 
band), and blue (B1 band) of rice growth cycle with different phases and stages. 

 

Field survey and measurement data 
A GNSS (Global Navigation Satellite System) based survey and field visit were conducted 
across 80 paddy fields within the study area during the key stages of rice crop, from June 16 
to November 30, 2019. The geographic distribution of location data points is depicted in 
Figure 2. However, the points were consistent with those utilized to access the wheat residue 
cover (WRC) percentages in our previous study, where the WRC levels were measured 
through the line transect method (Memon et al., 2023). Each sampled field spanned an area 



of about 1500 m2 and showed relatively uniform homogeneity. Moreover, in the current 
study, we utilized the wheat straw cover (WSC) data from our previously developed model, 
which accurately estimated using Sentinel-2 satellite imagery through Normalized 
Difference Tillage Index (NDTI), achieving a coefficient of determination (R2) of 0.85 and an 
RMSD of 6.49%. The measured rice crop yield and WRC percentage of each sampling point 
are presented in Table S1.  
 
Collection of secondary data for rice yield model   
In addition to the measured rice crop yield obtained from our field observation, we also 
collected annual production data from a secondary source, specifically the Statistical 
Yearbooks of Changshu District, Suzhou, 2020 (Statistics, 2020), which served as a crucial 
benchmark for analysis. These statistical data were employed to develop and refine the 
algorithm model, which aimed to precisely determine rice yield performance under various 
wheat residue cover percentages by integrating multisource Gaofen satellite data over a 
large scale.  
 
Remote sensing data   
Remote sensing (RS) offers a reliable method for assessing crop yield performance over large 
areas under different amounts of residue coverage percentage using various RS-based 
indices (Memon et al., 2019). In the present study, multispectral data (Figure 3) Gaofen-1 
(Xin, 2013) and Gaofen-6 satellites were utilized to estimate rice crop yield. The Gaofen 
(GF) is a series of Chinese civilian RS satellites developed under the state-sponsored China 
High-definition Earth Observation System (CHEOS) program. In particular, the GF-1 satellite 
is a crucial part of China's High-Resolution Earth Observation System and is specifically 
designed for detailed monitoring of vegetation and forests, inland water surveillance, and 
exploration of mineral resources. It has a multispectral wide-field-of-view camera sensor 
with four bands at a 16-meter spatial resolution. Meanwhile, the Gaofen-6 satellite is also 
primarily used for precision observation of agriculture, forestry resource surveying, and 
other industries. 
 

Figure 3. View of the 
deployed Gaofen satellites 
spacecraft: a) GF-1 and b) 
GF-6. Source: Krebs, 2022, 
2023. 

 

 

(a) (b) 



However, Gaofen-6 has multispectral capabilities with eight bands at a 16-meter spatial 
resolution, and the temporal resolution of both satellites is four days, which allows for 
frequent monitoring of crop conditions. Additionally, these satellites' digitization footprint, 
expressed in data volume, varies according to sensor resolution; the GF-1 satellite's sensors 
generate approximately 0.000745 MB/ha for multispectral data (Eoportal.org, 2024). This 
manageable digitization footprint and available efficient processing tools simplify large-
scale data handling and facilitate rapid agricultural data analysis. Gaofen satellite images 
(Level-1A) product were obtained from the China Resources Satellite Data and Application 
Center platform, accessible at https://data.cresda.cn/#/home (retrieved on 10 August 2024), 
and technical specifications of these satellites are detailed in Table S2.  
  
Image acquisition 

The study utilized GF-1 and GF-6 satellite images acquired during the rice growing season 
under different straw coverage percentages in the study area. The image acquisition dates 
were strategically selected with key phenological stages of the rice crop, such as the 
germination, heading, and grain-filling stages, which are critical for yield performance 
determination. A total of nine multispectral images (Table 1 and Figure S1) with minimal 
cloud cover were acquired from both the GF-1 and GF-6 satellites during the June to 
December 2019 period to assess the rice crop's performance.  

Table 1. Summary of GF-1 and GF-6 satellite images acquired during the rice crop season. 

 

 

 

 
 
 
 
 
 
 
 
 
Processing of satellite images 
All the acquired scenes from both satellites (GF-1 and GF-6) were processed using various 

No. 
Image 

Capture 
Dates 

Platform Sensor 
Day of Year 

(DOY) 
Scene Cloud 

Cover 

1.  5-June-2019 GF-1 WFV 156 1% 
2.  1-Aug-2019 GF-1 WFV 213 2% 
3.  21-Aug-2019 GF-1 WFV 233 3% 
4.  13-Sep-2019 GF-6 WFV 256 6% 
5.  23-Sep-2019 GF-1 WFV 266 2% 
6.  19-Oct-2019 GF-6 WFV 292 3% 
7.  11-Nov-2019 GF-6 WFV 315 0% 
8.  28-Nov-2019 GF-6 WFV 332 3% 
9.  6-Dec-2019 GF-6 WFV 340 0% 

https://data.cresda.cn/#/home


preprocessing methods, including geometric correction, radiometric calibration, and 
atmospheric correction (Ding et al., 2023), implemented with ENVI 5.3 software as per 
standard procedures. However, the procedure for producing surface reflectance required 
completing the radiometric calibration for data of Gaofen-1 and Gaofen-6 WFV images, 
which involves converting the digital numbers to radiance values. After deriving the 
radiance, top-of-atmosphere (TOA) reflectance was calculated using radiative transfer 
principal and calibration coefficients, with solar radiance data collected from the metadata 
of the GF-1 satellite. Moreover, the Level-1A product of Gaofen images required 
orthorectification correction to ensure the pixels precisely corresponded to the actual 
ground position in the study area.  

Analysis of vegetation indices (VIs) 
Subsequent to all these preprocessing steps, a suite of established vegetation indices was 
derived from the multispectral satellite data to analyze various aspects of rice crop 
performance parameters. Estimating the rice crop yield under different amounts of WRC 
coverage involved utilizing a set of well-developed vegetation indices (VIs) calculated from 
multispectral satellites (He et al., 2016; Memon et al., 2019; Wang et al., 2019) with the 
integration of GF-1 and GF-6 data (Wang et al., 2017), including i) normalized difference 
vegetation index (NDVI), ii) enhanced vegetation index (EVI), and, iii) green normalized 
difference vegetation index (GNDVI). However, NDVI (Rouse et al., 1974) was developed 
in 1974 and is one of the most commonly used indices for assessing crop characteristics. In 
contrast, EVI (Liu and Huete, 1995) is a modified version of NDVI that minimizes the 
influences of soil and atmospheric conditions and improves the sensitivity of high-vegetation 
areas (Xue and Su, 2017). In addition, the GNDVI (Viña et al., 2011) was also employed in 
various research to assess the crop condition and technically measures the ratio of reflection 
from the green and near-infrared wavelengths, which is sensitive to changes in leaf 
chlorophyll and nitrogen content, a critical factor for crop yield performance (Yang et al., 
2011; Xue and Su, 2017) and determined the complementary information about the 
physiological status of the rice crop under varying soil levels. Moreover, the selected 
vegetation indices (VIs) used in the present study are illustrated in Table 2.  
 
 
 
 
 
 
 
 
 



Table 2. Selected optical vegetation indices for crop yield performance. 
Vegetation  

Index 
Abbreviatio

n 
Satellites 

(GF-1 & GF-6) 
Reference 

Normalized difference 
vegetation index 

NDVI (B4 – B3)/(B4 + B3) (Rouse et al., 1974) 

Green Normalized 
Difference                       

Vegetation Index 

GNDVI (B4 – B2)/(B4 + B2) (Gitelson et al., 
1996; Hunt et al., 

2013) 
Enhanced Vegetation 

Index 
EVI EVI = G * ((B4 – B3) / (B4 + 

C1 * B3 – C2 * B1 + L)) 
(Liu and Huete, 

1995) 

The coefficients adopted in the MODIS-EVI algorithm are; L=1, C1 = 6, C2 = 7.5, and G (gain factor) = 2.5, ^ 
For intermediate vegetation cover, L = 0.1, and this value is used most widely. 

Afterward, the selected vegetation indices were calculated for each Gaofen satellite image 
through a comprehensive analytical process (Figure S2) using the ArcGIS Pro Model Builder 
tool (ESRI, 2014). The key processing phases include a) importing the preprocessed Gaofen 
imagery, b) extracting and applying VIs bands across the study area, c) Vegetation indices 
analysis, and d) extracting results into a spreadsheet for further processing. This automated 
tool was designed to process and determine different indices values for each satellite 
imagery scene. 
 
Development of model and data analysis 
To establish and validate the relationship between the calculated RS-based indices with 
measured WRC percentage and actual rice crop yield, a total of 80 samples were gathered 
across the study area. These Samples represent a range of rice crop production under 
different straw cover percentage levels. Thus, this study developed the predictive crop yield 
model with randomly separated samples in training and testing datasets, where the training 
dataset contained 65% (52 Nos) samples; meanwhile, the remaining 35% (28 samples) were 
allocated for testing dataset to validate the model’s performance and assess the consistency 
between the measured and predicted crop yield. The statistical details for each dataset used 
to predict crop production are shown in Table 3.   
 
 
 
 
 
 
 



Table 3. Summary statistics of training and testing datasets for rice yield model development. 

Dataset Number of 
Samples 

Crop Yield (kg/ha) Standard 
Error 
(SE±) 

Max  Min Average 

Training dataset 
(65%) 

52 8,300 6,530 7,688 59.63 

Testing dataset 
(35%) 

28 8,250 6,500 7,628 80.01 

 

These datasets used various univariate regression models (Linear and non-linear), including 
linear, polynomial, and exponential functions (Equation 1 to 3), to establish empirical 
models through RS-based vegetation indices derived from GF satellite data, along with field 
measurements of rice crop yield and additional secondary data.  
 
Linear Regression:  

                      (Eq. 1) 

where,  

represents the dependent variable (outcome), 
denotes the independent variable (predictor), 
indicates the intercept, which is the value of when , 

= represents the slope (the change in for a one-unit change in ) and  

= denotes the error term 
 
Polynomial Regression: 

              (Eq. 2) 

where,  
represents the dependent variable (outcome), 
is the independent variable (predictor), 
indicates the intercept (the value of when =0), 

represent the coefficients for the polynomial terms, which determine the 

contribution of each degree of to the model, 
are the higher-degree terms (i.e., squared, cubic, etc.), which allow the model 

to capture non-linear relationships and 
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 denotes the error term, accounting for the residuals between the observed and predicted 
values of .  

 
Exponential Regression Model: 
 

       (Eq. 3) 

where  
denotes the dependent variable (outcome) being modeled, 
is the independent variable (predictor),  
 indicates the scaling coefficient, which is the value of when =0, 

 is Euler’s number (approximately 2.71828), the base of the natural logarithm,  
 represents the rate of growth or decay, which is the exponent coefficient controlling the 

exponential change of with respect to and  
 is the error term 

 
The performance of these models was evaluated using standard statistical metrics, such as 
the coefficient of determination (R2), root mean square error (RMSE), and mean absolute 
percentage error (MAPE). Additionally, the collected field survey data were analyzed using 
SPSS software (IBM Corp., 2015). The following Equations calculate the RMSD and MAPE 
(Willmott and Matsuura, 2005); 

                        (Eq. 4) 

         (Eq. 5) 

 
where  

 the total number of observations,  

represent the measured values and  

 denote the model-predicted values 
 

Software  
All the remote sensing image processing, analysis, and modeling were performed using 
ENVI 5.3, Global Mapper, and ArcGIS Pro 2.7 software.  
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Results and Discussion 
Analysis of field data 
The field data collected during the 2019-2020 rice cultivation season were analyzed to 
assess the variability of rice crop yield under different percentages of wheat residue cover. 
The WRC percentage was obtained from our previous study (Memon et al., 2023) from 80 
sampling fields. The Table S1 data indicated that the highest recorded WRC was 90%, and 
the lowest was higher or equal to 25% in the study area. Whereas, for the field data analysis, 
the sampling points were divided into a calibration and validation dataset, which was then 
used to develop the regression models. 
 
Mapping and classification of paddy fields  
The mapping and classification of paddy fields at different stages within the study area were 
derived from Gaofen satellite imagery (Figure 4). The results indicated that the rice fields 
were strongly correlated with the previous land use and land cover data and confirming the 
kappa accuracy of the classification mapping with an overall accuracy of 88% (κ = 0.84), 
which is thought to be in accordance with the multispectral satellite data (Shan et al., 2017). 
However, the classification results revealed distinct spatial patterns across four major land 
cover classes, i.e., early rice crop class was found the most dominant and covered 38% 
(2,765 ha), followed by late rice crops at 28% (1,987 ha), urban areas at 25% (1,834 ha) 
and water bodies at 9% (647 ha) based on the Gaofen NDVI values derived from the satellite 
imagery acquired on 1st August 2019 (213 DOY). These spatial patterns suggest a 
predominant focus on rice cultivation, which could be influenced by local agricultural 
practices and climatic conditions. Whereas urban areas and water bodies occupy smaller 
portions of the area, they play key roles in delineating the study region's boundaries and 
usable agricultural land. Moreover, the spatial distribution of rice cropping fields confirmed 
that the Gaofen multispectral data and NDVI vegetation index could be suitable for mapping 
and classifying cropping stages at field scale (Song et al., 2017). These findings of rice 
classification are in agreement with similar research by Jia et al. (2022), who employed time-
series GF-1-WFV images to construct NDVI to capture crop phenological stages and 
achieved an impressive classification accuracy of 94.39% with a Kappa coefficient of 0.93 
and demonstrated successfully monitoring and mapping of rice crops through NDVI over 
large areas using Gaofen satellite data. 
 



 

Figure 4. Spatial distribution and classification of rice crop at different stages. 

 

Performance of Gaofen (GF) satellite-based vegetation indices under different residue 
coverage 

Evolutionary trends in normalized difference vegetation index (NDVI) 

The temporal profile of NDVI during the rice growing at various growth stages as derived 
from Gaofen satellite data (Figure 5) and results indicated that the value of NDVI gradually 
increased from the early stage in June 2019, reaching higher values during the vegetative 
growth phases, particularly in the month of August and September 2019. However, the 
highest NDVI value was observed on Day of Year (DOY): 266, with a maximum of 0.835, 
reflecting the peak greenness and biomass accumulation during the heading and flowering 
stages of rice development. Prior to this, a significant rise in NDVI was recorded between 
DOY: 213 and DOY: 233 as the rice crop transitioned through its critical tillering phase. 
Following this peak, a notable decline in NDVI value occurred as the crop entered the 
ripening phase, with values dropping from 0.640 to 0.0.573 by DOY: 292 to DOY: 315, 
respectively.  



 
Figure 5. 

Temporal 
evolution of 
NDVI during the 
rice growing 
season through 
Gaofen satellite. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This reduction continued into the post-harvest period, with NDVI values falling to 0.392 
and 0.271 on DOY: 332 and DOY: 340), respectively, indicating the maturating stage or end 
of the crop cycle. Hence, the spatial distribution of NDVI values aligns well with the natural 
progression of rice growth stages, from germination to harvest. In addition, the relationship 
between the early and late rice varieties with the NDVI plot (Figure 6) highlighted that the 
early rice variety consistently exhibited higher NDVI values than the late rice variety 
throughout the growth stages. At the initial stage (DOY 156), early rice had an NDVI value 
of 0.320, while late rice was at 0.265. During the peak growing period (DOY 266), the value 
was recorded as 0.815 and 0.750 for early and late rice, respectively. After the peak, both 
varieties entered the ripening phase, with NDVI values decreasing from 0.620 (early rice) to 
0.650 (late rice) on DOY 292. Subsequently, during the post-harvest stage, early rice values 
dropped to 0.390 on DOY 332 and further declined to 0.258 on DOY 340, while late rice 
followed a similar trend, declining from 0.450 to 0.290 in the same period. The trend 
demonstrated that early rice reached its maximum greenness slightly earlier than late rice, 
although both followed a similar pattern with the natural progression of rice growth stages, 
from germination to harvest. 



 

 
 
Figure 6. Temporal variation of NDVI for early and late rice varieties. 
 
Overall, the present study findings are supported by previous studies of Wang et al. (2017), 
who used GF-1 imagery data and NDVI vegetation index to monitor rice growth stages, 
showing a strong correlation between cumulative NDVI and aboveground biomass with an 
R² value of 0.85. Also, Luo et al., (2021) reported that the high accuracy of NDVI-based 
crop classification, owing to the high spatial and temporal resolution of Gaofen satellites, 
allows for more precise monitoring of crop phenological stages. Additionally, Shan et al. 
(2021) indicated that GF-6 satellite data could achieve an accuracy of 77.85% in paddy rice 
areas by using a combination of NDVI index during crop season. Therefore, our results 
validate and confirm that multi-temporal data of GF-1 and GF-6 satellites combined with 
NDVI is an effective tool for providing timely data on rice crop conditions, optimizing yield 
outcomes, and monitoring rice crop growth parameters, particularly under different residue 
cover percentages on crop yield at regional scale.  
 

Evolution of enhanced vegetation index (EVI) 

Temporal time-series of the enhanced vegetation index (EVI), derived from Gaofen data 
(Figure 7), indicated that the EVI values were relatively low (0.304) on DOY-156 due to early 
crop development and limited canopy cover, then gradually increased to reach 0.594 by 
DOY-213 during the active vegetative stage. However, the highest EVI value was observed 
at 0.772 on DOY-266, which corresponds to maximum canopy cover and biomass during 
the heading and flowering stages. Following this, the EVI values declined as the crop 
matured and entered the ripening phase, with further reductions to 0.686-0.312 on DOY 



292 and DOY 332, respectively. In comparison, the lowest EVI value was recorded at 0.285 
on DOY-340, demonstrating the senescence stage.  These trends demonstrate the capability 
of EVI, captured through Gaofen satellite data, to monitor key phenological stages, with 
variations under different straw coverage percentages highlighting the influence of residue 
management on canopy dynamics. Our results are supported by the findings of Wang et al. 
(2017), who demonstrated the effectiveness of the enhanced vegetation index (EVI) derived 
from Gaofen-1 satellite data in monitoring rice crop growth and estimating yield and found 
that the quadratic polynomial regression model achieved a high coefficient of determination 
(R² = 0.95) and a relative cross-validation root mean square error (RRMSE) of 54.27, the 
study further suggested that EVI with Gaofen data illustrating the capability to reflect rice 
growth dynamics throughout the season accurately.  
Similarly, Luo et al. 2021 confirmed that EVI derived from GF-1 and GF-6 satellites 
accurately captured rice crop dynamics, achieving a classification accuracy of 94.1%. These 
results are in agreement with our findings, confirming that the high temporal and spatial 
resolution of GF-1 and GF-6 imagery combined with EVI can accurately assess and monitor 
rice phenology and estimate crop yield. The consistency across these studies reinforces the 
suitability of Gaofen satellite imagery and EVI for precision agriculture, particularly in rice 
yield estimation under different residue covers.  
 
 

Figure 7. Temporal 
evolution of EVI 
using Gaofen 
satellite data 
during the rice 
growth season 
under different 
straw cover 
percentages. 

 

 

 

 

 

 

 

 



 

Evolution of green normalized difference vegetation index (GNDVI) 

Figure 8 presented the temporal variation of the GNDVI from Gaofen imagery during the 
rice growing season. The values of GNDVI fluctuate significantly over the development of 
the crop growing season, reflecting various phases of the rice crop's growth cycle and the 
impact of crop residue coverage on the chlorophyll content and overall health. The results 
demonstrated that GNDVI values were relatively low (0.572) on DOY-156, which 
corresponded to the initial crop development when leaf area and chlorophyll content were 
still limited. However, the GNDVI values increased steadily from DOY-213 to DOY-233 at 
0.687 and 0.735, respectively, which indicates the crop transition to the reproductive phase. 
The maximum GNDVI value was recorded at 0.810 on DOY-256, reflecting the highest 
chlorophyll content and optimal conditions for photosynthesis during the heading and 
flowering stages, where the rice crop exhibited its most robust growth. Following this higher 
peak, a decline was observed in GNDVI as the crop entered the ripening phase, and the 
values dropped to 0.597 on DOY-292, signaling the onset of senescence as the rice crop 
matured. The reduction in GNDVI continued into the post-harvest phase, where values 
further decreased to 0.516 and 0.312 on DOY-332 and DOY-340, respectively, which 
reflected the crop senescence stage and substantial reduction in chlorophyll as the crop 
harvest phase. 
 



 

Figure 8. Temporal 
Progression of 
GNDVI derived 
from Gaofen data 
during the rice 
growing season. 

 

 

 

 

 

 

 

 

 

 
Moreover, the evolution results of GNDVI of the present study are aligned closely with the 
natural progression and reflect the dynamic interaction between crop growth stages and the 
different crop straw coverage. In the early growing season, the relatively low GNDVI values 
were influenced by soil contact and showed the initial decomposition of straw, which delays 
nutrient availability. Then the straw decomposes, and the rice canopy develops, where 
GNDVI values increase and chlorophyll concentrations are at their highest. These findings 
are corroborated by Ghimire et al. (2020), who demonstrated that GNDVI, derived using 
the Gram-Schmidt fusion method through Gaofen satellite data, was highly reliable in 
analyzing vegetation characteristics and crop yield estimation, achieving a correlation 
coefficient of 99.03% and a root mean square error of 10.06%. Their results confirmed the 
robustness of GNDVI in reflecting temporal variations in chlorophyll content and canopy 
structure, which parallels our findings that GNDVI effectively monitors rice crop growth 
stages and provides reliable crop yield estimates. Similarly, Yuan et al. (2023) reported that 
GNDVI derived from Gaofen-6 data achieved a classification accuracy of 87.89%, 
particularly in distinguishing different crops and growth stages. Additionally, Ali et al. (2019) 
emphasized the sensitivity of GNDVI to spatial variability in crop yields over several years, 
identifying strong correlations with crop yield during mid-reproductive growth stages, with 



correlation coefficients ranging from 0.729 to 0.935, also confirmed that GNDVI provides 
accurate insights into rice crop condition and yield estimation. Thereby, the consistent 
results across these studies affirm that GNDVI is a reliable indicator for monitoring crop 
health and predicting crop yield, reinforcing the utility of Gaofen imagery data for large-
scale agricultural monitoring and decision-making in precision agriculture.  
 
Development and performance of rice yield model using integrated GF-1 and GF-6 data 
The relationship between the maximum value of vegetation indices (VIs), i.e., NDVI, EVI 
and GNDVI with measured WRC percentage was analyzed and developed a regression-
based model for the sampling data points (n = 80) across the study site, as illustrated in 
Figure 9. Peak values for each index were recorded during the key growth stage (DOY: 233-
266) of the rice crop. The results demonstrated a positive correlation between VIs and WRC, 
which were strongly fitted in a moderate polynomial regression model, with coefficient of 
determination (R2) values of 0.66, 0.60, and 0.51 for NDVI, EVI, and GNDVI, respectively. 
Among these, the highest NDVI and EVI values were observed at 0.840 and 0.750 for WRC-
60%, while the lowest values were found at 0.56 and 0.46 for WRC-20% for NDVI and EVI, 
respectively. However, the GNDVI values were highest (0.810) at WRC-60% and lowest 
(0.423) at WRC-25%. This trend in NDVI, EVI and GNDVI indicated that moderate straw 
cover enhances vegetation greenness, supports chlorophyll retention and is essential for the 
photosynthesis activity of rice crops.  
 
 
 

Figure 9. Relationship 
between vegetation 
indices and wheat 
residue cover (WRC) 
percentage for 
corresponding sampling 
points (n=80). (a) WRC 
with normalized 
vegetation index (NDVI), 
(b) Enhanced Vegetation 
Index (EVI) with WRC 
and (c) Green 
Normalized Difference 
Vegetation (GNDVI) with 
WRC.  



 
Moreover, the excessive wheat straw cover percentage may limit the emergence rate, affect 
canopy structure and hinder photosynthetic activity, which potentially stresses plant growth 
by dense residue cover (Memon et al., 2018; Yadav et al., 2019).  The results of our present 
study for correlation models of crop performance through vegetation indices are closely 
aligned with the previous study of Memon et al. (2019), who highlighted the effectiveness 
of NDVI in accurately predicting rice crop yields under varying straw coverage through 
Landsat satellite and their model achieved a positive relationship between the different 
amount of residue cover and NDVI with R² of 0.67 with highest and lowest NDVI values 
with WSC-68% (0.86) and WSC-33% (0.60), respectively at peak vegetative stages. 
Additionally, Yaghouti et al. (2019) demonstrated that vegetation indices, specifically NDVI 
and EVI, are highly effective for predicting rice crop yield through different satellite data, 
particularly when applied during key growth stages of rice crops. The normalized difference 
vegetation index (NDVI) serves as a strong predictor, with positive correlations to rice yield 
at the flowering stage, and achieved R2 for local and high-yield varieties as 0.71 and 0.70, 
respectively. At the same time, the enhanced vegetation index (EVI) is shown as a precise 
and effective crop yield estimator, particularly in the context of diverse rice cropping systems 
of Hunan Provinces, where the initial EVI values were observed at 0.15 at the transplanting 
stage and rise as vegetation developed. 
In contrast, the higher EVI values were found at 0.55 during the heading stage, which is 
associated with healthier and denser vegetation, often correlating with higher yield potential. 
Both research findings concluded that NDVI and EVI, tailored to crop growth stages and 
local conditions, would provide robust and precise remote sensing tools for rice yield 
estimation. Furthermore, the GNDVI also strongly predicts rice yield, especially when 
integrated into advanced modeling techniques through multispectral satellite and UAV 
imagery. A mixed regression model with GNDVI achieved enhanced accuracy in yield 
assessment by reducing mean absolute error (MAE) to 2.5% compared to conventional 
models (Yawata et al., 2019). At the same time, another study by Kang et al. (2021) 
incorporated GNDVI with an artificial neural network (ANN) model through UAV-based 
multispectral imagery in the rice field. The finding illustrated that root mean square error of 
prediction (RMSEP) ranging from 24.2 to 59.1 kg per 1,000 m² across multiple years, which 
highlighted the GNDVI capability in capturing variations in crop health and significantly 
determine the effect chlorophyll content and canopy structure due to different levels of 
fertilizers. Both researches emphasized the reliability of GNDVI as a predictor for analyzing 
key variations in rice crop health under diverse field conditions, such as differing rice 
varieties, fertilizer levels, and environmental factors. By this means, it is further 
recommended that vegetation indices derived from GF-1 and GF-6 satellite data, such as 
NDVI, EVI, and GNDVI, can effectively be employed to develop precise predictive models 



for rice crop performance and yield under varying amounts of wheat residue cover (WRC) 
percentages. These models provide valuable insights for optimizing residue management 
practices to maximize crop productivity. 
In addition, among the analysis of three vegetation indices, NDVI was chosen for the 
development of the yield model due to its significant performance (R2 = 0.66) as compared 
to EVI (R2 = 0.60) and GNDVI (R2 = 0.51) regard to correlation with WRC percentage (Figure 
9). However, a linear regression model was developed to establish the relationship between 
NDVI and measured rice yield using the training dataset (n = 52), as presented in Figure 10. 
The results indicated a strong positive correlation with R2 = 0.83, and the highest and lowest 
values of NDVI were observed, 0.82 and 0.57, to the rice yield of approximately 8,050 and 
6,730 kg/ha, respectively. The Equation, derived from the calibration dataset, is given below:  
 
Predicted Yield (kg/ha) = 5600 × NDVI + 3690                       (Eq.6) 
 

 

 
Figure 10. Relationship between NDVI and crop yield under different WRC percentages.  
"n" denotes sampling points of the training dataset. 
 
These outcomes highlight that NDVI can be effectively used to determine crop health 
performance and predict rice productivity with considerable accuracy across different WRC 
conditions. However, the present findings are consistent with previous studies by Singha 
and Swain, (2022); Siyal et al. (2015) revealed that NDVI has a strong predictive capability 
in estimating rice yield. In their studies, the R² values of yield models were achieved at 0.406 



and 0.94 with Sentinel and Landsat satellite data, respectively, which reflected the positive 
correlation between NDVI and rice crop performance. The uniformity of these studies 
emphasizes NDVI’s effectiveness as a considerable indicator for predicting rice yield under 
varying field conditions.  
 
Estimation of rice yield using developed predictive model 
In the present study, the yield estimation model was validated through Equation (6) and 
employed on the testing dataset (n=28) of sampling points to predict rice crop yield with 
peak NDVI data (Figure 10). The predicted yield data were then compared to the measured 
data (Figure 11), which were gathered from ground truth surveys and the statistical 
yearbooks of Changshu District, Suzhou, for 2020-2021 (Statistics, 2020) for the study site.  
 

 
 

Figure 11. Relationship between predicted and measured rice yields for model validation 
using NDVI-based regression through the testing dataset (n=28). 

 

However, the yield predictive model was fitted to a linear regression Equation and exhibited 
a significant positive correlation with the coefficient of determination (R2) value of 0.88. The 
RMSE and MAPE for the validation model were 3.48% and 2.35%, respectively, which 
signified a low margin of error and confirmed the precision of the model in predicting rice 
yields.  
These observations are in agreement with earlier studies by Son et al. (2020), who applied 
RS and machine learning techniques, mainly using NDVI, in predicting crop yields through 



satellite data and achieved R2 values of 0.84 and 0.85 with RMSE of 5.6% and 8.46% 
respectively, showcasing the model’s reliability in rice yield forecasting across different field 
and environmental conditions. Thus, this strong correlation between predicted and 
measured yields recommended that the model performs well under varying WRC conditions 
across the study region.  
 
 

Figure 12. Illustration 
of the relationship 
between NDVI and 
predicted rice crop 
yield under different 
percentages of WRC 
across sampling 
points (n = 80) in the 
study area. (a) Split 
heat map depicting 
WRC, NDVI, and 
rice yield; (b) 
Bivariate kernel 
density plot of yield 
distribution relative 
to WRC percentages. 

 

 

 

 

Subsequently, to determine rice crop production under varying WRC percentages, we 
utilized Eq. 6 through NDVI values to cover sampling points (n=80) across the study area. 
We analyzed the relationship between predicted rice yield and WRC coverage percentage, 
as presented in Figure 12. The split-class heatmap (Figure 12a) indicated that the mean rice 
grain yields were significantly highest (8.21-8.36 ton/ha) at a WRC level of 60-70%, with 
NDVI ranging from 0.823 to 0.835. In contrast, the lowest yield was observed, 6.83-7.01 
ton/ha at a WRC level of 20%-35%, with NDVI values ranging from 0.562 to 0.600, 
respectively. However, the kernel density plot (Figure 12b) further revealed the influence of 
WRC on rice crop yield and showed a high concentration of yield density (0.073) in the 
mid-range of wheat residue coverage of 60-75%, within the average yields between 7.66 to 
8.36 tons/ha compared to other WRC percentage. The outcomes further emphasize that an 



appropriate amount of crop residue is beneficial because excessive or minimal straw 
coverage might inhibit crop health, either with poorer nutrient availability or excessive 
shading, which ultimately limits soil physicochemical properties and affects the crop 
emergence rate and yield performance. Moreover, these results are supported by Song et al. 
(2016) prior studies of ho reported that a suitable amount of crop residue coverage is a key 
management strategy for enhancing emergence rate, seedling growth quality, and grain yield 
in rice. Similarly, Memon et al. (2019) stated that applying wheat straw at different 
percentages significantly impacts the rice crop yield, with the highest production estimated 
at 8,439.67 kg/ha under 68% residue coverage. Their analysis also presented a bivariate 
kernel density distribution and determined higher yield density (0.082) with a mean rice 
yield of 8.30 to 8.40 tons/ha in the range of wheat residue cover of 65-78%, respectively. 
In contrast, the lower yields were recorded with WRC levels below 30%, where yields 
dropped substantially, reflecting the negative impact of minimal residue amount on soil 
quality and crop yield. Therefore, the present study's findings underscore the precision and 
consistency of the yield model developed with the NDVI vegetation index through Gaofen 
satellite data under various WRC percentages. The insights gained from these visualizations 
are significant, indicating that moderate WRC levels (60-75%) are crucial for achieving 
optimal rice yield and providing valuable guidance for precision agriculture practices, 
emphasizing efficient residue management strategies to enhance higher crop productivity 
and support long-term sustainable agriculture. Notably, integrating NDVI with high-
resolution Gaofen satellite imagery is essential for accurately monitoring rice crop yield 
performance across large agricultural regions.  

Conclusions and suggestions for future research 
In this study, an advanced regression-based model was developed to predicate rice yield 
through the combination of Gaofen-1 and Gaofen-6 satellite data with the utilization of 
various vegetation indices (VIs) under different wheat residue cover (WRC) percentage 
conditions under a rice-wheat cropping system. The land use/land cover (LULC) mapping 
based on Gaofen data demonstrated that paddy fields covered 66% of the study area, 
achieving an overall classification accuracy of 88% (κ = 0.84), thus providing a well-defined 
basis for yield estimation focused on rice cultivation areas, however, by integrating remote 
sensing-based vegetation indices, including NDVI, EVI and GNDVI, with various WRC 
percentages for model development, a positive correlation with R2 values of 0.66, 0.60 and 
0.51, respectively, confirming NDVI as the most effective indicator for predicting rice yield. 
The rice yield model was developed by correlating the peak NDVI values of training 
sampling points (n=52) with ground-measured rice yield resulting in R2 =0.83. For model 
validation, the yield predictive model was tested using a dataset (n=28) and fitted to a linear 
regression equation, which exhibited a significant positive correlation with high accuracy 
(R2=0.88) and low error metrics (RMSE = 3.48% and MAPE = 2.35%). Additionally, the 



finding highlighted that the highest predicted grain rice yields were recorded in the range of 
8.21-8.36 tons/ha at moderate WRC levels of 60-70%, corresponding to NDVI values 
between 0.823 and 0.835. The bivariate kernel density plot further confirmed a high 
concentration of yield density (0.073) within the mid-range of WRC (60-75%) compared to 
other WRC percentages. This suggests that an appropriate amount of crop residue is 
beneficial for enhanced crop yield, likely due to improved soil moisture retention and 
nutrient availability, positively impacting overall crop performance. Therefore, our findings 
strongly recommend that Gaofen satellite imagery is highly effective for monitoring and 
estimating rice crop yield across varying WRC percentages. By combining GF data with 
vegetation indices, this approach offers a scalable, RS-based solution for accurate yield 
prediction, supporting sustainable agricultural practices and advancing precision agriculture 
at a regional scale. Moreover, the approach can assist scientists and policymakers in 
addressing agricultural sustainability challenges and adapting agricultural systems to global 
climate change, providing valuable insights into food security strategies and resource 
management. Furthermore, the present study establishes a foundation for future research 
exploring additional remote-sensing satellite data, multi-year evaluations, and advanced 
machine-learning techniques combined with vegetation indices under diverse crop types, 
climate zones, and field management practices. Such efforts will enable a better 
understanding of assessing the impact of crop residue coverage on crop yield in 
agroecosystems using remote sensing-based technologies for yield estimation.  
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