
Abstract 
Satellite remote sensing (RS) offers an efficient, large-scale 

approach for monitoring crop health, particularly in precise esti-
mation of crop yields. Rice is a staple food for over three billion 
people worldwide, making it crucial to estimate rice yield prompt-
ly to ensure food security and support sustainable agriculture. 
However, traditional field survey methods for yield assessment, 
are often labor-intensive, and time-consuming. To address this 
challenge, we propose a novel approach that integrates Gaofen-1 
(GF-1) and Gaofen-6 (GF-6) multispectral data for monitoring 
and evaluating rice crop yield under different wheat residue cover 
(WRC) percentages. This method employed three Remote Sensing 
(RS) based vegetation indices (VIs): i) enhanced vegetation index 
(EVI), ii) normalized difference vegetation Index (NDVI), and iii) 
green normalized difference vegetation index (GNDVI), with field 
data collected from 80 sampling points across paddy fields in the 
Changshu County, China. The results demonstrated that land use 
and land cover (LULC) mapping effectively classified paddy 
fields, covering 66% of the study area, with a classification  accu-
racy of 88% (κ = 0.84). Among the relationships tested between 
VIs and WRC, NDVI showed the highest correlation (R² = 0.66), 
followed by EVI (R² = 0.60) and GNDVI (R² = 0.51), confirming 
NDVI as the most effective index for yield modeling. The yield 
estimation model, based on peak NDVI values correlated with 
measured rice yield from the calibration dataset (n=52), achieved 
R² = 0.83, and validation with test data (n=28) showed high accu-
racy of R² = 0.88 with low error metrics (RMSE = 3.48% and 
MAPE = 2.35%). Additionally, the findings indicated that the 
highest rice yields (8.21-8.36 tons/ha) were observed at moderate 
WRC levels (60-75%) compared to other residue percentages. 
These outcomes suggest that an appropriate amount of WRC 
enhances rice yield by supporting moisture retention and nutrient 
availability, which optimizes overall crop performance. Therefore, 
we strongly recommend that the integration of Gaofen satellite 
data with NDVI could be a scalable, cost-effective solution for 
accurate yield prediction that supports sustainable residue man-
agement practices and precision agriculture. 

 
 
 

Introduction 
Rice (Oryza sativa) is one of the most important crops and is 

used as regular food for more than three billion people worldwide 
(Dong and Xiao, 2016). The crop is cultivated in over 100 coun-
tries, covering about 164 million hectares and producing 510 mil-
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lion metric tons annually (Dorairaj and Govender, 2023). Recently, 
the U.S. Department of Agriculture (USDA) forecasted that the 
initial production of rice for the 2023/24 season would hit a record 
520.5 million tons, representing a notable increase of 12.1 million 
tons compared to the previous year. However, China is one of the 
world’s largest producers and consumers of rice (Guo et al., 2017), 
with a production of 208.49 million tons in the year 2023 (National 
Bureau of Statistics of China, 2023). Despite the extensive area 
under rice cultivation and significant production worldwide, the 
total demands often exceed supply, with consumption projected to 
be 530 million tons in 2030 (Durand-Morat and Bairagi, 2021). 

This increase is driven by the expected to be more than ten bil-
lion in 2050, necessitating more production, while climate change 
further puts massive pressure on the global food demand. To 
address these challenges, it is important to adopt reliable methods 
for ensuring long-term sustainable rice crop yields. However, the 
retention of crop residue or straw plays an important role in replen-
ishing soil nutrient stocks, increasing rice yield, improving soil 
structure, and enhancing soil total nitrogen (TN), available phos-
phorus (AP), and organic matter (OM) (Memon et al., 2018). 
Accordingly, the estimation of crop yield forecasting under differ-
ent amounts of preceding crop residue is critical for providing reli-
able information to decision-makers, helping them develop poli-
cies to address food security challenges in cases of shortfall or sur-
plus (Van Dijk et al., 2021) under conservation agricultural prac-
tices (Guo et al., 2023). Traditionally, crop yield information data 
has been gathered through agricultural statistics, which rely on 
large-scale field surveys and farmer interviews. Despite its invalu-
able role in understanding historical trends in rice cultivation, these 
techniques are time-consuming, imprecise, and labor-intensive 
(Wu et al., 2014), also the yield data is typically released to the 
stakeholders and government agencies several months after the 
crop has been harvested, and thus making it less useful for food 
security planning. 

Meanwhile, in recent years, RS-based techniques have rapidly 
provided land surface information across large areas, and with an 
increment in temporal and spatial resolution, satellite data is now 

freely available (Raza et al., 2024). The benefits of RS technology, 
such as efficient analysis and spatial coverage over a regional 
agroecosystem, are significant; it is available year-round at a rela-
tively low cost through freely available optical and multi- temporal 
satellites, such as Landsat, Sentinel, Gaofen, and MODIS. These 
satellites provide timely information and are capable of mapping 
detailed spatial distributions of different cropping regions. 
Moreover, for effective rice crop monitoring and yield estimation, 
remote sensing images are captured throughout the growing season 
at the critical growth stages (e.g., transplantation, tillering, panicle 
initiation, flowering). These images are then analyzed using NDVI 
to assess vegetation dynamics and predict yield outcomes. The 
NDVI values are initially low during the transplantation stage, pro-
gressively increasing through the vegetative and reproductive 
phases and gradually declining as the crop progresses towards the 
ripening phase (Figure 1). 

As the rice crop grows through different phenology, its 
reflectance characteristics change across spectral wavelengths. 
Several vegetation indices (VIs) have demonstrated a strong corre-
lation with rice evolution parameters. Additionally, most studies 
have concentrated on utilizing advanced sensors or combining 
varying sensors to access land surfaces. Only a limited number of 
studies have explored using more than two satellite sensors to 
identify crop types through change detection features in a time 
series. Liu et al. (2018) used multi- temporal data of Landsat-8 
(OLI-TIRS), Sentinel-1a (MSI), and Sentinel-2b (MSI), combined 
with random forest (RF) algorithm to classify forest types, high-
lighting that integration of multi-spectral images can produce suit-
able results. Furthermore, China Aerospace Science and 
Technology Corporation launched a series of satellites under the 
Gaofen mission equipped with different optical and microwave 
sensors with distinct characteristics. Specifically, within this mis-
sion (Chen et al., 2024), two of the most important and high-reso-
lution satellites primarily used for agricultural and forestry appli-
cations are Gaofen-1 (GF-1) and Gaofen-6 (GF-6). Consequently, 
fine-resolution satellite data alone is often insufficient for timely 
land surface analysis across such an extensive region. The integra-
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Figure 1. Illustration of rice growth cycle with different phases and stages. Blue-dotted line represents a temporal profile of NDVI asso-
ciated with the growing stages of rice crops. (Modified after Mosleh et al., 2015; Aguilar, 2019; with permission).



tion of both GF-1 and GF-6 satellites is providing higher temporal 
resolution, enabling continuous agricultural monitoring at a 
regional scale. The main advantage of Gaofen satellites over other 
sensors, such as Landsat and Sentinel, is their combined higher 
spatial and temporal resolution. Moreover, the wide-angle sensors 
of Gaofen-1 and Gaofen-6 (800 km swath at 16 m resolution) 
allow for broader coverage, making them highly suitable for large-
scale agricultural applications and frequent crop monitoring. This 
capability facilitates time series analysis and increases the likeli-
hood of regular surface observations. 

In the present study, a satellite-based approach was developed 
to map and assess the yield performance of rice crops using RS 
vegetation indices. Thus, the specific objective of the current 
research was to integrate the capabilities of Gaofen-1 and Gaofen-
6 satellites to develop a model for monitoring and estimating the 
rice crop yield under different percentages of wheat residue cover 
(WRC) during the growing season. This study is particularly sig-
nificant as it enhanced rice crop mapping through the use of multi-
sensors and multi-temporal data, which provides valuable insight 
for crop planting adjustment and yield performance under varying 
WRC percentages in large agricultural regions. 

 

Materials and Methods  

Overview of study site 
The research site is situated in one of the primary rice-wheat 

cropping regions, in Changshu County (31°39′54″N; 120°49′19″E) 
within the administration of Suzhou district in Jiangsu Province, 
P.R. China (Figure 2). The area lies within the Tai-Lake plain, part 
of the Yangtze River delta, spanning 1,276 km2 of which 386 km² 
consists of water bodies. The total arable land is 42,265 hectares, 
including 27,451 hectares of rice, 5,600 hectares of irrigated, and 
9,214 hectares of dry land (Memon et al., 2023). This region fea-
tures a subtropical monsoon climate, with a mean annual tempera-
ture of 16°C, and average yearly precipitation of 1,200 

mm. The mean annual number of sunshine hours is 2,000, cor-
responding to 46% sunshine per year (Chen et al., 2022). However, 
the dominant cropping system is rice (9.355 tons/ha) and wheat 
(5.03 tons /ha), along with some other agricultural products such as 
sorghum, maize, cocoon, vegetables, fruits, and medical herbs sup-
ported by abundant water resources. 
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Figure 2. Study area location map with observation points on a Gaofen-1 (GF-1) satellite image (1st August 2019), displayed in a natural 
color composite: red (B3 band), green (B2 band), and blue (B1 band) of rice growth cycle with different phases and stages.



Field survey and measurement data 
A GNSS (Global Navigation Satellite System) based survey and 

field visit were conducted across 80 paddy fields within the study 
area during the key stages of rice crop, from June 16 to November 
30, 2019. The geographic distribution of location data points is 
depicted in Figure 2. However, the points were consistent with those 
utilized to access the wheat residue cover (WRC) percentages in our 
previous study, where the WRC levels were measured through the 
line transect method (Memon et al., 2023). Each sampled field 
spanned an area of about 1500 m2 and showed relatively uniform 
homogeneity. Moreover, in the current study, we utilized the wheat 
straw cover (WSC) data from our previously developed model, 
which accurately estimated using Sentinel-2 satellite imagery 
through + (NDTI), achieving a coefficient of determination (R2) of 
0.85 and an RMSD of 6.49%. The measured rice crop yield and 
WRC percentage of each sampling point are presented in Table S1. 
 
Collection of secondary data for rice yield model 

In addition to the measured rice crop yield obtained from our 
field observation, we also collected annual production data from a 
secondary source, specifically the Statistical Yearbooks of 
Changshu District, Suzhou, 2020 (Suzhou Statistics Bureau, 
2020), which served as a crucial benchmark for analysis. These 
statistical data were employed to develop and refine the algorithm 
model, which aimed to precisely determine rice yield performance 
under various wheat residue cover percentages by integrating mul-
tisource Gaofen satellite data over a large scale. 

 
Remote sensing data 

Remote sensing (RS) offers a reliable method for assessing 
crop yield performance over large areas under different amounts of 
residue coverage percentage using various RS-based indices 
(Memon et al., 2019). In the present study, multispectral data 
(Figure 3) Gaofen-1 (Xin, 2013) and Gaofen-6 satellites were uti-
lized to estimate rice crop yield. The Gaofen (GF) is a series of 
Chinese civilian RS satellites developed under the state-sponsored 
China High-definition Earth Observation System (CHEOS) pro-
gram. In particular, the GF-1 satellite is a crucial part of China’s 

High-Resolution Earth Observation System and is specifically 
designed for detailed monitoring of vegetation and forests, inland 
water surveillance, and exploration of mineral resources. It has a 
multispectral wide-field-of-view camera sensor with four bands at 
a 16-meter spatial resolution. Meanwhile, the Gaofen-6 satellite is 
also primarily used for precision observation of agriculture, 
forestry resource surveying, and other industries. 

However, Gaofen-6 has multispectral capabilities with eight 
bands at a 16-meter spatial resolution, and the temporal resolution 
of both satellites is four days, which allows for frequent monitor-
ing of crop conditions. Additionally, these satellites’ digitization 
footprint, expressed in data volume, varies according to sensor res-
olution; the GF-1 satellite’s sensors generate approximately 
0.000745 MB/ha for multispectral data (Eoportal.org, 2024). This 
manageable digitization footprint and available efficient process-
ing tools simplify large- scale data handling and facilitate rapid 
agricultural data analysis. Gaofen satellite images (Level-1A) 
product were obtained from the China Resources Satellite Data 
and Application Center platform, accessible at 
https://data.cresda.cn/#/home (retrieved on 10 August 2024), and 
technical specifications of these satellites are detailed in Table S2. 

 
Image acquisition 

The study utilized GF-1 and GF-6 satellite images acquired dur-
ing the rice growing season under different straw coverage percent-
ages in the study area. The image acquisition dates were strategically 
selected with key phenological stages of the rice crop, such as the 
germination, heading, and grain-filling stages, which are critical for 
yield performance determination. A total of nine multispectral 
images (Table 1 and Figure S1) with minimal cloud cover were 
acquired from both the GF-1 and GF-6 satellites during the June to 
December 2019 period to assess the rice crop’s performance. 

 
Processing of satellite images 

All the acquired scenes from both satellites (GF-1 and GF-6) 
were processed using various preprocessing methods, including 
geometric correction, radiometric calibration, and atmospheric 
correction (Ding et al., 2023), implemented with ENVI 5.3 soft-
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Figure 3. View of the deployed Gaofen satellites spacecraft: a) GF-1 and b) GF-6. Source: Krebs, 2022, 2023.



ware as per standard procedures. However, the procedure for pro-
ducing surface reflectance required completing the radiometric 
calibration for data of Gaofen-1 and Gaofen-6 WFV images, which 
involves converting the digital numbers to radiance values. After 
deriving the radiance, top-of-atmosphere (TOA) reflectance was 
calculated using radiative transfer principal and calibration coeffi-
cients, with solar radiance data collected from the metadata of the 
GF-1 satellite. Moreover, the Level-1A product of Gaofen images 
required orthorectification correction to ensure the pixels precisely 
corresponded to the actual ground position in the study area. 

 
Analysis of vegetation indices  

Subsequent to all these preprocessing steps, a suite of estab-
lished vegetation indices was derived from the multispectral satel-
lite data to analyze various aspects of rice crop performance 
parameters. Estimating the rice crop yield under different amounts 
of WRC coverage involved utilizing a set of well-developed vege-
tation indices (VIs) calculated from multispectral satellites (He et 
al., 2016; Memon et al., 2019; Wang et al., 2019) with the integra-
tion of GF-1 and GF-6 data (Wang et al., 2017), including i) nor-
malized difference vegetation index (NDVI), ii) enhanced vegeta-
tion index (EVI), and, iii) green normalized difference vegetation 
index (GNDVI). However, NDVI (Rouse et al., 1974) was devel-
oped in 1974 and is one of the most commonly used indices for 
assessing crop characteristics. In contrast, EVI (Liu and Huete, 
1995) is a modified version of NDVI that minimizes the influences 
of soil and atmospheric conditions and improves the sensitivity of 
high-vegetation areas (Xue and Su, 2017). In addition, the GNDVI 
(Viña et al., 2011) was also employed in various research to assess 

the crop condition and technically measures the ratio of reflection 
from the green and near-infrared wavelengths, which is sensitive to 
changes in leaf chlorophyll and nitrogen content, a critical factor 
for crop yield performance (Yang et al., 2011; Xue and Su, 2017) 
and determined the complementary information about the physio-
logical status of the rice crop under varying soil levels. Moreover, 
the selected vegetation indices (VIs) used in the present study are 
illustrated in Table 2. Afterward, the selected vegetation indices 
were calculated for each Gaofen satellite image through a compre-
hensive analytical process (Figure S2) using the ArcGIS Pro 
Model Builder tool (ESRI, 2014). The key processing phases 
include i) importing the preprocessed Gaofen imagery, ii) extract-
ing and applying VIs bands across the study area, iii) vegetation 
indices analysis, and iv) extracting results into a spreadsheet for 
further processing. This automated tool was designed to process 
and determine different indices values for each satellite imagery 
scene. 

 
Development of model and data analysis 

To establish and validate the relationship between the calculat-
ed RS-based indices with measured WRC percentage and actual 
rice crop yield, a total of 80 samples were gathered across the 
study area. These Samples represent a range of rice crop produc-
tion under different straw cover percentage levels. Thus, this study 
developed the predictive crop yield model with randomly separat-
ed samples in training and testing datasets, where the training 
dataset contained 65% (52 Nos) samples; meanwhile, the remain-
ing 35% (28 samples) were allocated for testing dataset to validate 
the model’s performance and assess the consistency between the 
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Table 1. Summary of GF-1 and GF-6 satellite images acquired during the rice crop season. 

No.                Image capture dates                        Platform                         Sensor             Day of year (DOY)           Scene cloud cover 

1.                                 5-June-2019                                          GF-1                                  WFV                                 156                                           1% 
2.                                 1-Aug-2019                                          GF-1                                  WFV                                213                                           2% 
3.                                21-Aug-2019                                         GF-1                                  WFV                                233                                           3% 
4.                                13-Sep-2019                                         GF-6                                  WFV                                256                                           6% 
5.                                23-Sep-2019                                         GF-1                                  WFV                                266                                           2% 
6.                                19-Oct-2019                                         GF-6                                  WFV                                292                                           3% 
7.                                11-Nov-2019                                         GF-6                                  WFV                                315                                           0% 
8.                                28-Nov-2019                                         GF-6                                  WFV                                332                                           3% 
9.                                 6-Dec-2019                                          GF-6                                  WFV                                340                                           0% 

Table 2. Selected optical vegetation indices for crop yield performance. 

Vegetation index                                            Abbreviation                  Satellites (GF-1 & GF-6)                                Reference 

Normalized difference vegetation index                          NDVI                                   (B4 – B3)/(B4 + B3)                                     (Rouse et al., 1974) 
Green normalized difference vegetation index              GNDVI                                 (B4 – B2)/(B4 + B2)                    (Gitelson et al., 1996; Hunt et al., 2013) 
Enhanced vegetation index                                                EVI                                  EVI = G * ((B4 – B3) /                                (Liu and Huete, 1995) 
                                                                                                                              (B4 + C1 * B3 – C2 * B1 + L))                                             
The coefficients adopted in the MODIS-EVI algorithm are L=1, C1 = 6, C2 = 7.5, and G (gain factor) = 2.5. For intermediate vegetation cover, L = 0.1, and this value is used most widely. 

Table 3. Summary statistics of training and testing datasets for rice yield model development. 

Dataset                                         Number of samples                                     Crop yield (kg/ha)                                                        SE 
                                                                                                             Max                    Min              Average                                           

Training dataset (65%)                                         52                                         8,300                       6,530                   7,688                                              59.63 
Testing dataset (35%)                                           28                                         8,250                       6,500                   7,628                                              80.01 
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Figure 4. Spatial distribution and classification of rice crop at different stages.

Figure 5. Temporal evolution of NDVI during the rice growing season through Gaofen satellite.



measured and predicted crop yield. The statistical details for each 
dataset used to predict crop production are shown in Table 3. 

These datasets used various univariate regression models (lin-
ear and non-linear), including linear, polynomial, and exponential 
functions (Equations 1 to 3), to establish empirical models through 
RS-based vegetation indices derived from GF satellite data, along 
with field measurements of rice crop yield and additional second-
ary data. 

 
Linear regression: 
 
Y = β0+β1X + Ú                                                                  (Eq. 1) 
 
where: Y is the dependent variable (outcome), X is the independent 
variable (predictor), b0 indicates the intercept, which is the value of 
Y when X = 0, β1 represents the slope (the change in Y for a one-
unit change in X ) and Ú denotes the error term. 
 
Polynomial regression: 
 
Y = β0+β1X +β2X2+β3X3 +…...+βnXn +Ú                               (Eq. 2) 
 
where: Y is the dependent variable (outcome), X is the independent 
variable (predictor), β0 indicates the intercept (the value of Y when 
X =0), β1, β2,..... bn represent the coefficients for the polynomial 
terms, which determine the contribution of each degree of X to the 
model, X2, X3,.., Xn are the higher-degree terms (i.e., squared, 
cubic, etc.), which allow the model to capture non-linear relation-
ships and Ú denotes the error term, accounting for the residuals 
between the observed and predicted values of Y. 
 
Exponential regression model: 
 
Y = β0eb1X + Ú                                                                       (Eq. 3) 
 
where: Y denotes the dependent variable (outcome) being modeled, 
X is the independent variable (predictor), β0 indicates the scaling 
coefficient, which is the value of Y when X =0, e is Euler’s number 
(approximately 2.71828), the base of the natural logarithm, β1 rep-
resents the rate of growth or decay, which is the exponent coeffi-
cient controlling the exponential change of Y with respect to X and 
Ú the error term. 
The performance of these models was evaluated using standard 
statistical metrics, such as the coefficient of determination (R2), 
root mean square error (RMSE), and mean absolute percentage 
error (MAPE). Additionally, the collected field survey data were 
analyzed using SPSS software (IBM Corp., 2015). The following 
equations calculate the RMSD and MAPE (Willmott and 
Matsuura, 2005); 
 

                                         

(Eq. 4)

 

                                                 
                                                                                               

(Eq. 5) 

where: n is the total number of observations, xi represent the meas-
ured values and yi denotes the model-predicted values. 

Software 
All the remote sensing image processing, analysis, and model-

ing were performed using ENVI 5.3, Global Mapper, and ArcGIS 
Pro 2.7 software. 

 
 

Results and Discussion 
Analysis of field data 

The field data collected during the 2019-2020 rice cultivation 
season were analyzed to assess the variability of rice crop yield 
under different percentages of wheat residue cover. The WRC per-
centage was obtained from our previous study (Memon et al., 
2023) from 80 sampling fields. The Table S1 data indicated that the 
highest recorded WRC was 90%, and the lowest was higher or 
equal to 25% in the study area. Whereas, for the field data analysis, 
the sampling points were divided into a calibration and validation 
dataset, which was then used to develop the regression models. 

 
Mapping and classification of paddy fields 

The mapping and classification of paddy fields at different 
stages within the study area were derived from Gaofen satellite 
imagery (Figure 4). The results indicated that the rice fields were 
strongly correlated with the previous land use and land cover data 
and confirming the kappa accuracy of the classification mapping 
with an overall accuracy of 88% (κ =0.84), which is thought to be 
in accordance with the multispectral satellite data (Shan et al., 
2017). However, the classification results revealed distinct spatial 
patterns across four major land cover classes, i.e., early rice crop 
class was found the most dominant and covered 38% (2,765 ha), 
followed by late rice crops at 28% (1,987 ha), urban areas at 25% 
(1,834 ha) and water bodies at 9% (647 ha) based on the Gaofen 
NDVI values derived from the satellite imagery acquired on 1st 
August 2019 (213 DOY). These spatial patterns suggest a predom-
inant focus on rice cultivation, which could be influenced by local 
agricultural practices and climatic conditions. Whereas urban areas 
and water bodies occupy smaller portions of the area, they play key 
roles in delineating the study region’s boundaries and usable agri-
cultural land. Moreover, the spatial distribution of rice cropping 
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fields confirmed that the Gaofen multispectral data and NDVI veg-
etation index could be suitable for mapping and classifying crop-
ping stages at field scale (Song et al., 2017). These findings of rice 
classification agree with similar research by Jia et al. (2022), who 
employed time- series GF-1-WFV images to construct NDVI to 
capture crop phenological stages and achieved an impressive clas-
sification accuracy of 94.39% with a Kappa coefficient of 0.93 and 
demonstrated successfully monitoring and mapping of rice crops 
through NDVI over large areas using Gaofen satellite data. 

 
Performance of Gaofen (GF) satellite-based vege-
tation indices under different residue coverage 
 
Evolutionary trends in normalized difference vegetation 
index (NDVI) 

The temporal profile of NDVI during the rice growing at vari-
ous growth stages as derived from Gaofen satellite data (Figure 5) 
and results indicated that the value of NDVI gradually increased 
from the early stage in June 2019, reaching higher values during 

the vegetative growth phases, particularly in the month of August 
and September 2019. However, the highest NDVI value was 
observed on Day of Year (DOY): 266, with a maximum of 0.835, 
reflecting the peak greenness and biomass accumulation during the 
heading and flowering stages of rice development. Prior to this, a 
significant rise in NDVI was recorded between DOY: 213 and 
DOY: 233 as the rice crop transitioned through its critical tillering 
phase. Following this peak, a notable decline in NDVI value 
occurred as the crop entered the ripening phase, with values drop-
ping from 0.640 to 0.0.573 by DOY: 292 to DOY: 315, respective-
ly. This reduction continued into the post-harvest period, with 
NDVI values falling to 0.392 and 0.271 on DOY: 332 and DOY: 
340), respectively, indicating the maturating stage or end of the 
crop cycle. Hence, the spatial distribution of NDVI values aligns 
well with the natural progression of rice growth stages, from ger-
mination to harvest. In addition, the relationship between the early 
and late rice varieties with the NDVI plot (Figure 6) highlighted 
that the early rice variety consistently exhibited higher NDVI val-
ues than the late rice variety throughout the growth stages. At the 
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Figure 7. Temporal evolution of EVI using Gaofen satellite data during the rice growth season under different straw cover percentages.



initial stage (DOY 156), early rice had an NDVI value of 0.320, 
while late rice was at 0.265. During the peak growing period (DOY 
266), the value was recorded as 0.815 and 0.750 for early and late 
rice, respectively. After the peak, both varieties entered the ripen-
ing phase, with NDVI values decreasing from 0.620 (early rice) to 
0.650 (late rice) on DOY 292. Subsequently, during the post-har-
vest stage, early rice values dropped to 0.390 on DOY 332 and fur-
ther declined to 0.258 on DOY 340, while late rice followed a sim-
ilar trend, declining from 0.450 to 0.290 in the same period. The 
trend demonstrated that early rice reached its maximum greenness 
slightly earlier than late rice, although both followed a similar pat-
tern with the natural progression of rice growth stages, from ger-
mination to harvest. 

Overall, the present study findings are supported by previous 
studies of Wang et al. (2017), who used GF-1 imagery data and 
NDVI vegetation index to monitor rice growth stages, showing a 
strong correlation between cumulative NDVI and aboveground 
biomass with an R² value of 0.85. Also, Luo et al., (2021) reported 

that the high accuracy of NDVI-based crop classification, owing to 
the high spatial and temporal resolution of Gaofen satellites, 
allows for more precise monitoring of crop phenological stages. 
Additionally, Shan et al. (2021) indicated that GF-6 satellite data 
could achieve an accuracy of 77.85% in paddy rice areas by using 
a combination of NDVI index during crop season. Therefore, our 
results validate and confirm that multi-temporal data of GF-1 and 
GF-6 satellites combined with NDVI is an effective tool for pro-
viding timely data on rice crop conditions, optimizing yield out-
comes, and monitoring rice crop growth parameters, particularly 
under different residue cover percentages on crop yield at regional 
scale. 

 
Evolution of enhanced vegetation index (EVI) 

Temporal time-series of the enhanced vegetation index (EVI), 
derived from Gaofen data (Figure 7), indicated that the EVI values 
were relatively low (0.304) on DOY-156 due to early crop devel-
opment and limited canopy cover, then gradually increased to 
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Figure 8.  Temporal progression of GNDVI derived from Gaofen data during the rice growing season.



reach 0.594 by DOY-213 during the active vegetative stage. 
However, the highest EVI value was observed at 0.772 on DOY-
266, which corresponds to maximum canopy cover and biomass 
during the heading and flowering stages. Following this, the EVI 
values declined as the crop matured and entered the ripening 
phase, with further reductions to 0.686-0.312 on DOY 292 and 
DOY 332, respectively. In comparison, the lowest EVI value was 
recorded at 0.285 on DOY-340, demonstrating the senescence 
stage. These trends demonstrate the capability of EVI, captured 
through Gaofen satellite data, to monitor key phenological stages, 
with variations under different straw coverage percentages high-
lighting the influence of residue management on canopy dynamics. 
Our results are supported by the findings of Wang et al. (2017), 
who demonstrated the effectiveness of the enhanced vegetation 
index (EVI) derived from Gaofen-1 satellite data in monitoring 
rice crop growth and estimating yield and found that the quadratic 
polynomial regression model achieved a high coefficient of deter-
mination (R² = 0.95) and a relative cross-validation root mean 

square error (RRMSE) of 54.27, the study further suggested that 
EVI with Gaofen data illustrating the capability to reflect rice 
growth dynamics throughout the season accurately. 

Similarly, Luo et al. 2021 confirmed that EVI derived from 
GF-1 and GF-6 satellites accurately captured rice crop dynamics, 
achieving a classification accuracy of 94.1%. These results agree 
with our findings, confirming that the high temporal and spatial 
resolution of GF-1 and GF-6 imagery combined with EVI can 
accurately assess and monitor rice phenology and estimate crop 
yield. The consistency across these studies reinforces the suitabil-
ity of Gaofen satellite imagery and EVI for precision agriculture, 
particularly in rice yield estimation under different residue covers. 

 
Evolution of green normalized difference vegetation 
index (GNDVI) 

Figure 8 presented the temporal variation of the GNDVI from 
Gaofen imagery during the rice growing season. The values of 
GNDVI fluctuate significantly over the development of the crop 
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Figure 9.  Relationship between vegetation indices and wheat residue cover (WRC) percentage for corresponding sampling points (n=80). 
a) WRC with normalized vegetation index (NDVI). b) Enhanced vegetation index (EVI) with WRC. c) Green normalized difference veg-
etation (GNDVI) with WRC.



growing season, reflecting various phases of the rice crop’s growth 
cycle and the impact of crop residue coverage on the chlorophyll 
content and overall health. The results demonstrated that GNDVI 
values were relatively low (0.572) on DOY-156, which corre-
sponded to the initial crop development when leaf area and chloro-
phyll content were still limited. However, the GNDVI values 
increased steadily from DOY-213 to DOY-233 at 0.687 and 0.735, 
respectively, which indicates the crop transition to the reproductive 
phase. The maximum GNDVI value was recorded at 0.810 on 
DOY-256, reflecting the highest chlorophyll content and optimal 
conditions for photosynthesis during the heading and flowering 
stages, where the rice crop exhibited its most robust growth. 
Following this higher peak, a decline was observed in GNDVI as 
the crop entered the ripening phase, and the values dropped to 
0.597 on DOY-292, signaling the onset of senescence as the rice 
crop matured. The reduction in GNDVI continued into the post-
harvest phase, where values further decreased to 0.516 and 0.312 
on DOY-332 and DOY-340, respectively, which reflected the crop 
senescence stage and substantial reduction in chlorophyll as the 
crop harvest phase. 

Moreover, the evolution results of GNDVI of the present study 
are aligned closely with the natural progression and reflect the 
dynamic interaction between crop growth stages and the different 
crop straw coverage. In the early growing season, the relatively 
low GNDVI values were influenced by soil contact and showed 
the initial decomposition of straw, which delays nutrient availabil-
ity. Then the straw decomposes, and the rice canopy develops, 
where GNDVI values increase and chlorophyll concentrations are 
at their highest. These findings are corroborated by Ghimire et al. 
(2020), who demonstrated that GNDVI, derived using the Gram-
Schmidt fusion method through Gaofen satellite data, was highly 
reliable in analyzing vegetation characteristics and crop yield esti-
mation, achieving a correlation coefficient of 99.03% and a root 
mean square error of 10.06%. Their results confirmed the robust-
ness of GNDVI in reflecting temporal variations in chlorophyll 
content and canopy structure, which parallels our findings that 
GNDVI effectively monitors rice crop growth stages and provides 

reliable crop yield estimates. Similarly, Yuan et al. (2023) reported 
that GNDVI derived from Gaofen-6 data achieved a classification 
accuracy of 87.89%, particularly in distinguishing different crops 
and growth stages. Additionally, Ali et al. (2019) emphasized the 
sensitivity of GNDVI to spatial variability in crop yields over sev-
eral years, identifying strong correlations with crop yield during 
mid-reproductive growth stages, with correlation coefficients rang-
ing from 0.729 to 0.935, also confirmed that GNDVI provides 
accurate insights into rice crop condition and yield estimation. 
Thereby, the consistent results across these studies affirm that 
GNDVI is a reliable indicator for monitoring crop health and pre-
dicting crop yield, reinforcing the utility of Gaofen imagery data 
for large- scale agricultural monitoring and decision-making in 
precision agriculture. 

 
Development and performance of rice yield model 
using integrated GF-1 and GF-6 data 

The relationship between the maximum value of vegetation 
indices (VIs), i.e., NDVI, EVI and GNDVI with measured WRC 
percentage was analyzed and developed a regression- based model 
for the sampling data points (n=80) across the study site, as illus-
trated in Figure 9. Peak values for each index were recorded during 
the key growth stage (DOY: 233- 266) of the rice crop. The results 
demonstrated a positive correlation between VIs and WRC, which 
were strongly fitted in a moderate polynomial regression model, 
with coefficient of determination (R2) values of 0.66, 0.60, and 
0.51 for NDVI, EVI, and GNDVI, respectively. Among these, the 
highest NDVI and EVI values were observed at 0.840 and 0.750 
for WRC- 60%, while the lowest values were found at 0.56 and 
0.46 for WRC-20% for NDVI and EVI, respectively. However, the 
GNDVI values were highest (0.810) at WRC-60% and lowest 
(0.423) at WRC-25%. This trend in NDVI, EVI and GNDVI indi-
cated that moderate straw cover enhances vegetation greenness, 
supports chlorophyll retention and is essential for the photosynthe-
sis activity of rice crops.  

Moreover, the excessive wheat straw cover percentage may 
limit the emergence rate, affect canopy structure and hinder photo-
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Figure 10. Relationship between NDVI and crop yield under dif-
ferent WRC percentages. n, sampling points of the training 
dataset.

Figure 11. Relationship between predicted and measured rice 
yields for model validation using NDVI-based regression through 
the testing dataset (n=28).



synthetic activity, which potentially stresses plant growth by dense 
residue cover (Memon et al., 2018; Yadav et al., 2019). The results 
of our present study for correlation models of crop performance 
through vegetation indices are closely aligned with the previous 
study of Memon et al. (2019), who highlighted the effectiveness of 
NDVI in accurately predicting rice crop yields under varying straw 
coverage through Landsat satellite and their model achieved a pos-
itive relationship between the different amount of residue cover 
and NDVI with R² of 0.67 with highest and lowest NDVI values 
with WSC-68% (0.86) and WSC-33% (0.60), respectively at peak 
vegetative stages. Additionally, Yaghouti et al. (2019) demonstrat-
ed that vegetation indices, specifically NDVI and EVI, are highly 
effective for predicting rice crop yield through different satellite 
data, particularly when applied during key growth stages of rice 
crops. The normalized difference vegetation index (NDVI) serves 
as a strong predictor, with positive correlations to rice yield at the 

flowering stage and achieved R2 for local and high-yield varieties 
as 0.71 and 0.70, respectively. At the same time, the enhanced veg-
etation index (EVI) is shown as a precise and effective crop yield 
estimator, particularly in the context of diverse rice cropping sys-
tems of Hunan Provinces, where the initial EVI values were 
observed at 0.15 at the transplanting stage and rise as vegetation 
developed. 

In contrast, the higher EVI values were found at 0.55 during 
the heading stage, which is associated with healthier and denser 
vegetation, often correlating with higher yield potential. Both 
research findings concluded that NDVI and EVI, tailored to crop 
growth stages and local conditions, would provide robust and pre-
cise remote sensing tools for rice yield estimation. Furthermore, 
the GNDVI also strongly predicts rice yield, especially when inte-
grated into advanced modeling techniques through multispectral 
satellite and UAV imagery. A mixed regression model with 
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Figure 12. Illustration of the relationship between NDVI and predicted rice crop yield under different percentages of WRC across sam-
pling points (n=80) in the study area. a) Split heat map depicting WRC, NDVI, and rice yield. b) Bivariate kernel density plot of yield dis-
tribution relative to WRC percentages.



GNDVI achieved enhanced accuracy in yield assessment by reduc-
ing mean absolute error (MAE) to 2.5% compared to conventional 
models (Yawata et al., 2019). At the same time, another study by 
Kang et al. (2021) incorporated GNDVI with an artificial neural 
network (ANN) model through UAV-based multispectral imagery 
in the rice field. The finding illustrated that root mean square error 
of prediction (RMSEP) ranging from 24.2 to 59.1 kg per 1,000 m² 
across multiple years, which highlighted the GNDVI capability in 
capturing variations in crop health and significantly determine the 
effect chlorophyll content and canopy structure due to different 
levels of fertilizers. Both research emphasized the reliability of 
GNDVI as a predictor for analyzing key variations in rice crop 
health under diverse field conditions, such as differing rice vari-
eties, fertilizer levels, and environmental factors. By this means, it 
is further recommended that vegetation indices derived from GF-1 
and GF-6 satellite data, such as NDVI, EVI, and GNDVI, can 
effectively be employed to develop precise predictive models for 
rice crop performance and yield under varying amounts of wheat 
residue cover (WRC) percentages. These models provide valuable 
insights for optimizing residue management practices to maximize 
crop productivity. 

In addition, among the analysis of three vegetation indices, 
NDVI was chosen for the development of the yield model due to 
its significant performance (R2 = 0.66) as compared to EVI (R2 = 
0.60) and GNDVI (R2 = 0.51) regard to correlation with WRC per-
centage (Figure 9). However, a linear regression model was devel-
oped to establish the relationship between NDVI and measured 
rice yield using the training dataset (n=52), as presented in Figure 
10. The results indicated a strong positive correlation with R2 = 
0.83, and the highest and lowest values of NDVI were observed, 
0.82 and 0.57, to the rice yield of approximately 8,050 and 6,730 
kg/ha, respectively. The Equation, derived from the calibration 
dataset, is given below: 

 
Predicted yield (kg/ha) = 5600 × NDVI + 3690               (Eq. 6) 

 
These outcomes highlight that NDVI can be effectively used to 

determine crop health performance and predict rice productivity 
with considerable accuracy across different WRC conditions. 
However, the present findings are consistent with previous studies 
by Singha and Swain, (2022); Siyal et al. (2015) revealed that 
NDVI has a strong predictive capability in estimating rice yield. In 
their studies, the R² values of yield models were achieved at 0.406 
and 0.94 with Sentinel and Landsat satellite data, respectively, 
which reflected the positive correlation between NDVI and rice 
crop performance. The uniformity of these studies emphasizes 
NDVI’s effectiveness as a considerable indicator for predicting 
rice yield under varying field conditions. 

 
Estimation of rice yield using developed predictive 
model 

In the present study, the yield estimation model was validated 
through Eq. (6) and employed on the testing dataset (n=28) of sam-
pling points to predict rice crop yield with peak NDVI data (Figure 
10). The predicted yield data were then compared to the measured 
data (Figure 11), which were gathered from ground truth surveys 
and the statistical yearbooks of Changshu District, Suzhou, for 
2020-2021 (Suzhou Statistics Bureau, 2020) for the study site. 

However, the yield predictive model was fitted to a linear 
regression Equation and exhibited a significant positive correlation 
with the coefficient of determination (R2) value of 0.88. The 
RMSE and MAPE for the validation model were 3.48% and 

2.35%, respectively, which signified a low margin of error and 
confirmed the precision of the model in predicting rice yields. 

These observations are in agreement with earlier studies by 
Son et al. (2020), who applied RS and machine learning tech-
niques, mainly using NDVI, in predicting crop yields through 

satellite data and achieved R2 values of 0.84 and 0.85 with 
RMSE of 5.6% and 8.46% respectively, showcasing the model’s 
reliability in rice yield forecasting across different field and envi-
ronmental conditions. Thus, this strong correlation between pre-
dicted and measured yields recommended that the model performs 
well under varying WRC conditions across the study region. 

Subsequently, to determine rice crop production under varying 
WRC percentages, we utilized Eq. 6 through NDVI values to cover 
sampling points (n=80) across the study area. We analyzed the 
relationship between predicted rice yield and WRC coverage per-
centage, as presented in Figure 12. The split-class heatmap (Figure 
12a) indicated that the mean rice grain yields were significantly 
highest (8.21-8.36 ton/ha) at a WRC level of 60-70%, with NDVI 
ranging from 0.823 to 0.835. In contrast, the lowest yield was 
observed, 6.83-7.01 ton/ha at a WRC level of 20%-35%, with 
NDVI values ranging from 0.562 to 0.600, respectively. However, 
the kernel density plot (Figure 12b) further revealed the influence 
of WRC on rice crop yield and showed a high concentration of 
yield density (0.073) in the mid-range of wheat residue coverage 
of 60-75%, within the average yields between 7.66 to 8.36 tons/ha 
compared to other WRC percentage. The outcomes further empha-
size that an appropriate amount of crop residue is beneficial 
because excessive or minimal straw coverage might inhibit crop 
health, either with poorer nutrient availability or excessive shad-
ing, which ultimately limits soil physicochemical properties and 
affects the crop emergence rate and yield performance. Moreover, 
these results are supported by Song et al. (2016) prior studies of ho 
reported that a suitable amount of crop residue coverage is a key 
management strategy for enhancing emergence rate, seedling 
growth quality, and grain yield in rice. Similarly, Memon et al. 
(2019) stated that applying wheat straw at different percentages 
significantly impacts the rice crop yield, with the highest produc-
tion estimated at 8,439.67 kg/ha under 68% residue coverage. 
Their analysis also presented a bivariate kernel density distribution 
and determined higher yield density (0.082) with a mean rice yield 
of 8.30 to 8.40 tons/ha in the range of wheat residue cover of 65-
78%, respectively. In contrast, the lower yields were recorded with 
WRC levels below 30%, where yields dropped substantially, 
reflecting the negative impact of minimal residue amount on soil 
quality and crop yield. Therefore, the present study’s findings 
underscore the precision and consistency of the yield model devel-
oped with the NDVI vegetation index through Gaofen satellite data 
under various WRC percentages. The insights gained from these 
visualizations are significant, indicating that moderate WRC levels 
(60-75%) are crucial for achieving optimal rice yield and provid-
ing valuable guidance for precision agriculture practices, empha-
sizing efficient residue management strategies to enhance higher 
crop productivity and support long-term sustainable agriculture. 
Notably, integrating NDVI with high- resolution Gaofen satellite 
imagery is essential for accurately monitoring rice crop yield per-
formance across large agricultural regions. 

 
 

Conclusions and suggestions for future 
research 

In this study, an advanced regression-based model was devel-
oped to predicate rice yield through the combination of Gaofen-1 
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and Gaofen-6 satellite data with the utilization of various vegeta-
tion indices (VIs) under different wheat residue cover (WRC) per-
centage conditions under a rice-wheat cropping system. The land 
use/land cover (LULC) mapping based on Gaofen data demon-
strated that paddy fields covered 66% of the study area, achieving 
an overall classification accuracy of 88% (κ = 0.84), thus provid-
ing a well-defined basis for yield estimation focused on rice culti-
vation areas, however, by integrating remote sensing-based vege-
tation indices, including NDVI, EVI and GNDVI, with various 
WRC percentages for model development, a positive correlation 
with R2 values of 0.66, 0.60 and 0.51, respectively, confirming 
NDVI as the most effective indicator for predicting rice yield. The 
rice yield model was developed by correlating the peak NDVI val-
ues of training sampling points (n=52) with ground-measured rice 
yield resulting in R2 =0.83. For model validation, the yield predic-
tive model was tested using a dataset (n=28) and fitted to a linear 
regression equation, which exhibited a significant positive correla-
tion with high accuracy (R2=0.88) and low error metrics (RMSE = 
3.48% and MAPE = 2.35%). Additionally, the finding highlighted 
that the highest predicted grain rice yields were recorded in the 
range of 8.21-8.36 tons/ha at moderate WRC levels of 60-70%, 
corresponding to NDVI values between 0.823 and 0.835. The 
bivariate kernel density plot further confirmed a high concentra-
tion of yield density (0.073) within the mid-range of WRC (60-
75%) compared to other WRC percentages. This suggests that an 
appropriate amount of crop residue is beneficial for enhanced crop 
yield, likely due to improved soil moisture retention and nutrient 
availability, positively impacting overall crop performance. 
Therefore, our findings strongly recommend that Gaofen satellite 
imagery is highly effective for monitoring and estimating rice crop 
yield across varying WRC percentages. By combining GF data 
with vegetation indices, this approach offers a scalable, RS-based 
solution for accurate yield prediction, supporting sustainable agri-
cultural practices and advancing precision agriculture at a regional 
scale. Moreover, the approach can assist scientists and policymak-
ers in addressing agricultural sustainability challenges and adapt-
ing agricultural systems to global climate change, providing valu-
able insights into food security strategies and resource manage-
ment. Furthermore, the present study establishes a foundation for 
future research exploring additional remote-sensing satellite data, 
multi-year evaluations, and advanced machine-learning techniques 
combined with vegetation indices under diverse crop types, cli-
mate zones, and field management practices. Such efforts will 
enable a better understanding of assessing the impact of crop 
residue coverage on crop yield in agroecosystems using remote 
sensing-based technologies for yield estimation. 
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