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Abstract 

This study investigates the acoustic characteristics of normal and abnormal calls in white-

feathered broilers to propose a method for early detection of non-healthy conditions. 

Vocalizations were collected from 2-week-old broilers over a 21-day period and analyzed using 

time-domain and frequency-domain features, including maximum amplitude, effective amplitude, 

fundamental frequency, and pulse index. Significant differences were identified between normal 

calls and abnormal calls influenced by laryngeal mucus, with support vector machines and 

random forest classifiers achieving accuracies of 97.8% and 98.76%, respectively. Unlike 

previous empirical feature aggregation methods, this research employs statistically validated 

feature selection aligned with physiological mechanisms, enhancing interpretability and 

performance. The proposed framework offers a practical, automated solution for on-farm 

monitoring of broiler vocalizations, contributing to early detection of abnormal signs and 

improved management in precision poultry farming. 

 

Key words: Acoustic features; health monitoring; model; sound monitoring; white-feathered 

broilers. 
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Introduction 

Animal vocalizations contain rich information that can effectively reflect their health and 

production status, which is crucial for building an environment suitable for animal welfare (Wei 

et al., 2023). Traditionally, the health assessment of white-feathered broilers has relied on visual 

observation and physiological indicators, which suffer from subjectivity and delayed warnings 

(Yao et al., 2023). More effective detection methods are urgently needed, especially to address 

the issue of limited acoustic feature parameters currently used in research, aiming to statistically 

identify key acoustic features that can significantly distinguish different health states of broilers. 

Although significant progress has been made in sound detection for broiler health monitoring, 

with broad application prospects, direct studies on the vocalizations of white-feathered broilers 

are relatively rare (Bhardwaj et al., 2022). There is also a lack of systematic comparative analysis 

of their sound features, which has led to empirical feature selection. Tao et al .(2022) extracted 

60 acoustic features from time-domain, frequency-domain, MFCC, and sparse representations, 

and selected 30 features with the highest contribution to classification performance using the 

random forest algorithm. This method tested multiple segments of broiler vocal signals and 

achieved a recognition accuracy of 99.12%, demonstrating the potential of the model for 

automated broiler vocal recognition. Alireza et al. (2021) studied the application of five acoustic 

features in bird vocalizations for health monitoring, finding that wavelet entropy was most 

effective in detecting infectious bronchitis. For Newcastle disease, wavelet entropy and Mel-

frequency cepstral coefficients (MFCC) had similar detection accuracies, 80% and 78%, 

respectively, but wavelet entropy was more reliable in detecting healthy birds. Cuan et al. (2020) 

proposed a method based on convolutional neural networks for chicken sound recognition to 

detect avian influenza infection. They extracted four types of acoustic features: logarithmic bank 

features, MFCC, and their first and second-order differences, and combined them with a CNN 

model for classification. The model achieved accuracy rates of 93.01%, 95.05%, and 97.43% on 

days 2, 4, and 6 after virus injection, respectively, proving its rapid and effective detection 

capabilities. Du et al. (2021) developed a method based on a three-stimulus-resonance peak 

model for classifying chicken vocalizations. They extracted three stimuli and MFCC features and 

used BP neural networks and Gaussian mixture models for classification, achieving an average 

accuracy of 94.9% with a 12-dimensional MFCC and BPNN feature model. Li et al. (2022) 



designed a gender detection model for chicks based on deep learning, distinguishing male and 

female chicks by vocal differences at one day of age, achieving a detection accuracy of 95% with 

the ResNet-50 model. 

Many studies have focused on traditional features such as MFCC and linear predictive cepstral 

coefficients (Abdul et al., 2022), which are widely used in acoustic analysis. While these features 

are classical and widely applied, they often fail to fully capture the complex health information 

in vocal signals, especially subtle but crucial changes. Further exploration and development of 

more comprehensive feature parameters are necessary to improve the accuracy and reliability of 

disease detection. 

In fact, broiler vocalizations contain abundant acoustic features (Curtin et al., 2014), including, 

but not limited to, spectral features, time-envelope features, nonlinear features (such as bispectral, 

higher-order cumulants), and time-frequency combined features (Mahdavian et al., 2021). These 

features have distinct characteristics in describing different dimensions of sound signals, some 

sensitive to frequency changes, and others better reflecting temporal or nonlinear aspects (Xu et 

al., 2020). Therefore, relying solely on a few or single acoustic features for model training limits 

the recognition ability and generalization performance of the model, making it difficult to adapt 

to the diversity of vocalizations across different breeds, ages, and health conditions of broilers. 

Given the shortcomings of current sound detection in broiler health monitoring, it is necessary to 

explore more diversified feature extraction approaches and continue to improve and optimize 

the related technical systems (Huang et al., 2021). 

To sum up, the current body of research on livestock and poultry acoustics has laid a critical 

foundation for the use of vocalizations in health monitoring. Studies focusing on classic features 

such as mel-frequency cepstral coefficients (MFCCs) and linear predictive cepstral coefficients 

(LPCCs) have undeniably demonstrated the feasibility and value of audio-based bioacoustic 

analysis. These approaches are computationally efficient, well-understood, and have provided 

significant benchmarks in distinguishing broad health states, thereby establishing a strong basis 

for non-invasive monitoring. Furthermore, the work of researchers like Tao and Cuan has been 

instrumental in proving the high classification accuracy achievable by combining multiple feature 

sets with powerful machine learning models, moving the field firmly beyond purely observational 

methods. 



However, despite these valuable contributions, certain limitations persist. The heavy reliance on 

these traditional feature sets, while practical, often fails to fully capture the complexity and 

subtlety of health-related changes in vocalizations. Many studies employ a relatively narrow 

range of feature parameters, which can constrain the model's ability to generalize across diverse 

conditions, such as different breeds or specific illnesses that manifest through nuanced acoustic 

shifts. These challenges not only impact the accuracy and robustness of broiler health monitoring 

but may also limit the broader application and scalability of sound detection technologies in 

precision livestock farming. Therefore, while building upon the solid groundwork established by 

previous research, there is a compelling need to explore more comprehensive and discriminatory 

feature extraction strategies to overcome these limitations and enhance the effectiveness of 

vocalization-based health assessment. 

This study selected 60 white-feathered broiler chickens at 2 weeks of age and continuously 

recorded their vocalizations for 21 days, with a nearly equal gender ratio of approximately 1:1. 

Using microphones, their normal and abnormal calls were recorded at a fixed time each 

afternoon throughout this period, with each recording lasting for 10 minutes. The abnormal calls 

were classified as whining sounds and cackling sounds through manual identification. 

Quantitative analysis was conducted on these three types of sounds, and acoustic features such 

as duration, amplitude, and frequency were extracted and analyzed using independent sample 

T-tests. This study aims to explore and determine unique acoustic features that effectively 

distinguish between healthy and abnormal states, and validate their performance in machine 

learning models, in order to develop a model that can effectively distinguish abnormal calls from 

healthy calls, providing new quantitative basis for early health warning of broiler chickens. The 

acoustic-based health monitoring method overcomes the subjectivity and delay inherent in 

traditional assessments, provides valuable features for machine learning models, and 

demonstrates significant application potential. 

 

Materials and Methods 

Sound signal collection 

This study focuses on WOD168 white-feathered broiler chickens. The experiment was conducted 

at the Simate Broiler Farm (GPS coordinates: 37.17°N, 116.44°E) in Pingyuan County, Shandong 



Province, China. The poultry house used in this study was a mechanically ventilated building 

with a length of 101 m, width of 16 m, eave height of 4.2 m, and ridge height of 6 m. Its cross-

sectional area was 81.6 m², yielding an internal volume of 8,241.6 m³. The housing system 

consisted of 8 cage rows, each comprising 73 cages per row and 4 tiers per row, with 30 broilers 

per cage, resulting in a total stocking capacity of 70,080 birds (8 rows × 73 cages × 4 tiers × 30 

birds). This structural and stocking information provides context for the experimental scale and 

ensures reproducibility. 

A total of 60 broilers were selected at 2 weeks of age from the same batch, comprising 40 healthy 

and 20 unhealthy birds, with a sex ratio close to 1:1. The birds were housed in a dedicated 

experimental area within the main poultry house, which was physically isolated from the 

commercial flock by solid partitions to maintain standard environmental conditions (e.g., 

ventilation, temperature, humidity, and lighting). To adhere to the standard commercial stocking 

density of a maximum of 30 birds per cage and to ensure separation by health status, the birds 

were allocated into three adjacent cages. Specifically, the 40 healthy birds were divided into two 

groups of 20 birds each and housed in two separate cages, while all 20 unhealthy birds were 

housed together in a third cage. All cages were of the same standard type used throughout the 

facility. Feed and water were provided ad libitum via the central automated system. This 

configuration ensured that the collected acoustic data reflected natural vocalization behaviors 

under representative farming conditions while enabling clear distinction between health statuses 

and minimizing disturbance from routine operations. 

Vocalizations were recorded from the three cages sequentially over 21 consecutive days using a 

XinKe V-01 microphone with a magnetic base. Each day, the microphone was deployed at a fixed, 

identical position relative to each cage in turn. Specifically, for each recording session, the 

microphone was attached to the outer side of the cage rack at the third tier, centered on the target 

cage, with the microphone head positioned at a height of approximately 1.5 meters above the 

floor. This standardized placement ensured consistent acoustic recording conditions across all 

cages, prevented physical contact with the birds, and minimized behavioral disturbance. The 

microphone has a sensitivity of -36±3 dB, a signal-to-noise ratio ³70 dB, and a frequency 

response range of 50 Hz-12 kHz. All recordings were made with a 16-bit depth and a sampling 

rate of 16 kHz. Recording sessions for each cage were conducted daily at a fixed time in the 



afternoon, with each session lasting 10 min. To avoid capturing stress-induced vocalizations and 

to ensure the sounds reflected natural conditions, the microphone was mounted externally 

without direct exposure to the chickens during all recordings. 

The collected sounds were classified by two experienced professional breeders through manual 

auditory screening based on acoustic morphology and context. The classification followed 

established ethological criteria adapted from prior poultry vocalization studies (de Carvalho 

Soster et al., 2025). Normal vocalizations were clear. Abnormal vocalizations included both 

rhythmic clucking calls and mucus-associated whimpering calls, which were characterized by 

wheezing, gurgling, or strained tones and often occurred in series with irregular rhythm. Any 

ambiguous cases were re-evaluated jointly until consensus was reached. 

 

Sound signal preprocessing 

The recorded chicken vocalizations contain significant amounts of irrelevant information and 

noise (Catania et al., 2013), which must be removed through preprocessing in order to extract 

meaningful sound features (Biocca et al., 2019). The main preprocessing steps in this study 

include pre-emphasis, denoising, and frame windowing (Akçay et al., 2020). 

Pre-emphasis is a high-pass filter that processes the signal using a first-order filter to emphasize 

high-frequency components while reducing low-frequency components (Dong et al., 2020). The 

process involves subtracting the previous sample multiplied by a coefficient α (set to 0.95 in this 

study) from the current sample. 

Since sound signals are highly complex and non-stationary, it is generally assumed that the 

characteristics of sound signals remain stable or change slowly within short time segments. Since 

the audio signals are usually complex and non-stationary, it is generally believed that their 

characteristics remain relatively stable over a longer period of time, or change at a relatively slow 

rate. In this study, when choosing the frame length, we referred to the observation results, which 

indicated that the calls of broiler chickens typically change within a time scale of 15 to 60 

milliseconds in a short period of time. Therefore, a frame length of 50 milliseconds (equivalent to 

800 samples at a 16 kHz sampling rate) was selected. As shown in Figure 1, a frame length of 50 

milliseconds can achieve a balance between temporal resolution and feature representation, 

enabling a more comprehensive capture of the acoustic features of short-term sound events. To 



ensure a smooth transition between frames, a 50% (25 milliseconds) overlap method was adopted. 

The effective signal length of each recording was 5 seconds, containing multiple analysis frames. 

In order to reduce edge discontinuities and spectral leakage, a Hamming window is used in this 

study. The equation for the Hamming window is as follows: 

w(n) = 0.54 − 0.46cos(N − 12πn)      (Eq. 1) 

where n is the sample index within the window (0 ≤ n ≤ N-1), and N is the length of the window 

(i.e., the number of samples, N=800 in our implementation). The coefficients 0.54 and 0.46 in 

the Hamming window are used to adjust the relative size of the main lobe and side lobes, 

providing approximately -43 dB sidelobe suppression. 

The short-time Fourier transform (STFT) is then applied to convert the windowed audio signal into 

a time-frequency domain spectrum, extracting its amplitude, phase information, and power 

spectrum. A 1024-point FFT was used to compute the STFT, providing a frequency resolution of 

15.625 Hz. To estimate the noise energy, the average of the first 30 frames (approximately 1.5 

seconds) of the audio signal, which contained only background noise, was calculated. 

To reduce spectral discontinuities, the amplitude spectrum is smoothed using a moving average 

filter with a 3-band width. By combining the estimated noise energy with the signal's power 

spectrum, spectral subtraction is employed for denoising (Balaji et al., 2020). This step adjusts the 

amount of noise energy subtracted (using an over-subtraction factor of 3.0) to balance the 

denoising effect and signal fidelity while controlling small values in the amplitude spectrum to 

enhance signal smoothness. The enhanced amplitude spectrum is then combined with the 

original phase information, and the inverse STFT is applied to restore the time-domain audio 

signal. 

 

Sound signal endpoint detection 

For chicken vocalization detection, this study proposes an adaptive dual-threshold endpoint 

detection algorithm based on short-time energy (E) and short-time zero-crossing rate (Z). The 

threshold coefficients (20% and 30%) were empirically optimized through iterative testing on a 

subset of 50 recordings to maximize the F1-score for vocalization detection, a common approach 

in bioacoustic studies (Yin et al., 2024). To constrain the vocal pulse duration, the minimum 

length was set to 6 frames (corresponding to 300 ms at our 50 ms frame length), while the 



maximum length was set to 30 frames (corresponding to 1500 ms or 1.5 s). These limits effectively 

filtered out short-duration impulsive noises and long-duration non-vocal events such as 

equipment hum. 

The algorithm proceeds as follows: First, the moving averages of E and Z (MA_E and MA_Z) are 

computed over a 500 ms window to adapt to varying background conditions. A candidate start 

point is identified when E > 0.2 * MA_E and Z > 0.2 * MA_Z simultaneously. This candidate is 

confirmed as a true start point if, within the subsequent 200 ms, both E > 0.3 * MA_E and Z > 

0.3 * MA_Z are satisfied. After start point confirmation, the vocal endpoint is identified when 

both E and Z fall below 0.3 * MA_E and 0.3 * MA_Z for more than 6 consecutive frames. 

Figure 2 illustrates the endpoint detection process on a representative audio clip containing both 

normal and abnormal calls, demonstrating the effectiveness of the chosen thresholds. 

 

Sound signal feature extraction 

Following speech denoising and endpoint detection on signals containing three types of 

vocalizations, this study systematically extracts features in both time and frequency domains (Lin 

et al., 2001). The extracted features and their mathematical formulations are summarized in Table 

1. 

 

Time-domain feature extraction 

Time-domain features are calculated directly from the signal's amplitude waveform, reflecting its 

energy distribution and statistical properties. The standard extraction process involves segmenting 

the signal into short frames, applying a Hamming window to each frame to minimize spectral 

leakage, and calculating features within each window. Average values are then computed across 

all frames to obtain the final feature vector. 

A suite of time-domain features is extracted to capture the signal's instantaneous characteristics 

and overall energy profile. These include maximum amplitude, peak value, root mean square 

(RMS) amplitude, variance, skewness, Kurtosis, peak-to-peak value, crest factor, margin index, 

pulse index, and waveform index. Their mathematical formulations and descriptions are detailed 

in Table 1. These features are instrumental in detecting impulsive components, quantifying the 

dynamic range, and assessing the waveform's similarity to a pure sinusoid. 



Frequency-domain features are derived by transforming the windowed time-domain signal into 

the frequency domain using a Fourier Transform. The transformation for a discrete-time signal 

x[n] of length N is given by: 

X(f) = ∑ x(n) ∙ e!"#$
!"
# 	%!&

'(&       (Eq. 2) 

Where: 

 X(f) is the frequency-domain signal 

 x(n) is the time-domain signal 

 N is the signal length, 

 f is the frequency. 

The extracted frequency-domain features provide insights into the spectral structure and 

variability of the sound signal. These include the Fundamental Frequency (F0), which corresponds 

to the perceived pitch; Spectral Centroid, indicating the brightness of the sound; Spectral 

Bandwidth and Spectral Roll-off, describing the spread of spectral energy; and RMS Frequency. 

Their precise mathematical definitions are provided in Table 1. These features are crucial for 

analyzing the harmonic content, resonant frequencies, and spectral shape of the vocalization. 

 

Extraction of traditional acoustic features 

Figure 3 illustrates the extraction process of mel-frequency cepstral coefficients (MFCC) and linear 

prediction cepstral coefficients. MFCC and LPCC are two fundamental cepstral feature extraction 

techniques. The overall workflow for both methods is summarized in the flowchart below, 

highlighting their parallel yet distinct processes. 

MFCC extraction is designed to model the human auditory system. The signal undergoes pre-

emphasis and is split into short, windowed frames. The Fourier transform converts these frames 

into the frequency domain. The resulting spectrum is then processed through a Mel-scaled filter 

bank to simulate nonlinear human hearing, followed by a logarithm to compress dynamic range. 

Finally, the discrete cosine transform (DCT) decorrelates the filter bank outputs to produce the 

final cepstral coefficients, with the first 13 typically retained as features. In contrast, LPCC 

extraction focuses on modeling the physical properties of the vocal tract. After pre-emphasis, 

framing, and windowing, it analyzes the signal's autocorrelation to perform linear predictive 



coding (LPC). The LPC coefficients, which model the vocal tract filter, are then converted into 

cepstral coefficients via a recursive formula, with the first 13 coefficients retained as the LPCC 

features. The distinct principles and applications of these two feature sets are concisely compared 

in the Table 2. 

 

Statistical analysis and testing 

The experiment was conducted on a Windows 10 64-bit operating system using Python 3.10 for 

audio processing (utilizing libraries such as librosa, scipy, and numpy) and SPSS software for 

statistical analysis. The core innovation of our feature selection strategy lies in the rigorous 

statistical screening of a comprehensive set of acoustic features, rather than relying on empirical 

or conventional subsets. To this end, an independent-samples t-test was conducted to analyze 

the differences in acoustic feature parameters between normal calls, whimpering calls, and 

clucking calls (Yu et al., 2022). This test served as a critical filter to identify and select features 

with significant discriminatory power for subsequent model training, directly addressing the 

feature dimensionality and selection challenge. A p-value of less than 0.05 was set as the 

threshold for statistical significance. 

Following this statistically-guided feature selection, multiple machine learning models were 

employed for vocalization classification, including support vector machines (SVM), random 

forests, naive bayes, and K-nearest neighbors (KNN). Each model offers distinct advantages: SVM 

constructs an optimal hyperplane for high accuracy and minimizes overfitting; random forest 

integrates multiple decision trees for robustness against complex nonlinear relationships; naive 

bayes, based on conditional independence assumption, is efficient for large datasets; and KNN 

offers intuitive classification based on nearest neighbors (Balaji et al., 2021). The use of these 

diverse models allows for a robust evaluation of the effectiveness of the selected feature subset. 

 

Results 

Feature selection based on independent-samples t-test 

The independent-samples t-test provided a data-driven foundation for feature selection. As 

detailed in Table 3, the analysis revealed statistically significant differences (p<0.05) in all sixteen 

examined acoustic features when comparing normal calls to both whimpering and clucking calls. 



This result indicated that every feature in our extracted set possessed significant discriminatory 

power for this specific classification task. Therefore, based on this rigorous statistical evaluation, 

the entire set of features was selected for subsequent machine learning model training. The 

profoundly low p-values (often p<0.001) and substantial t-statistics across time-domain (e.g., 

maximum amplitude, variance, pulse index), frequency-domain (e.g., fundamental frequency, 

spectral line width), and spectral features (resonance peaks) demonstrate that these parameters 

collectively capture essential and significant aspects of vocal differences, likely reflecting 

underlying physiological or behavioral states. This comprehensive, statistically-vetted feature set 

forms the basis of our model input, ensuring that only features with proven discriminative power 

are utilized. 

 

Model performance evaluation 

The performance of the machine learning models, trained on the statistically-selected feature set, 

is summarized in Table 4. The random forest algorithm demonstrated exceptional classification 

capability, achieving near-perfect scores across all evaluation metrics (accuracy, precision, recall, 

F1 score≈0.988). This outstanding result highlights the synergistic effect of combining a powerful 

classifier with a feature set pre-validated for high discriminative power. Furthermore, models 

utilizing the t-test selected features consistently and significantly outperformed those employing 

conventional cepstral features (MFCCs, LPCCs) alone or in combination. This performance gap 

underscores the value of our comprehensive feature selection methodology over traditional 

approaches that rely on a predetermined, limited set of features. 

Among the cepstral features, LPCCs generally showed superior predictive capability compared 

to MFCCs. Combining MFCC and LPCC features led to a performance improvement over using 

either set independently, suggesting complementary information. However, even this 

combination failed to match the performance achieved by the broader, statistically-selected 

feature set, emphasizing the necessity of incorporating a diverse range of acoustic characteristics 

for optimal classification performance in this domain. 

 

Discussion 

The accumulation of mucus in the larynx may cause changes in the vibration characteristics of 



the vocal cords, thus affecting the time domain and frequency domain characteristics of the sound. 

Specifically, the significant difference between normal and whimper calls suggests that the 

presence of mucus may have reduced the amplitude of vocal cord vibrations, which in turn 

affected the intensity and clarity of the sound. From a time-domain perspective, the differences 

between normal calls and whimpering calls are particularly evident in parameters such as 

maximum amplitude and effective amplitude. For instance, the maximum amplitude of normal 

calls is typically lower (around 0.685±0.113), whereas the maximum amplitude of whimpering 

calls is significantly reduced (around 0.503±0.094). This change suggests that throat mucus may 

reduce the amplitude of vocal cord vibrations, leading to an overall loss of sound energy, which 

in turn affects sound quality and clarity (Peters et al., 2021). The significant decrease in effective 

amplitude (from 0.108 to 0.030) further supports this idea, reflecting the suppressive effect of 

mucus on vocal cord vibrations. Figure 4 highlights the waveform variations for different call 

types. In terms of frequency-domain features, the significant differences in fundamental frequency 

and resonance peaks further reveal the changes in sound quality. The accumulation of mucus in 

the throat likely alters the mass and tension of the vocal cords, resulting in a decrease and 

instability in the fundamental frequency (Hegde et al., 2024). For example, the fundamental 

frequency of normal calls is 501.395±319.346 Hz, while the fundamental frequency of 

whimpering calls is significantly lower (145.674±0.280 Hz).This frequency change may be due 

to altered vocal cord vibration frequencies, manifesting as instability and lower frequencies (Li et 

al., 2021). Spectrograms (Figure 5) visually represent the energy distribution across different 

frequencies for these call types, where mucus-influenced calls show broader and less distinct 

frequency bands. These findings are consistent with the research by Moura, who noted that the 

frequency and amplitude of bird calls can reflect their thermal comfort, emphasizing the impact 

of physiological health on vocalizations (Moura et al., 2008). Additionally, the acoustic features 

between normal calls and clucking calls also demonstrate changes in sound quality, particularly 

in terms of fundamental frequency and resonance peaks. Clucking calls exhibit a significantly 

higher maximum amplitude than normal calls (from 0.685 to 0.802), but their fundamental 

frequency decreases markedly (from 501.395 Hz to 146.844 Hz). This phenomenon suggests a 

connection between whimpering calls and clucking calls, such as pneumonia, which typically 

lead to instability in sound energy and significant frequency changes (Yadav et al., 2020). In terms 



of bandwidth, which reflects the spectral spread of sound, calls with mucus accumulation show 

a significant increase in bandwidth, suggesting greater spectral line width. This is further 

corroborated by the bandwidth bar chart (Figure 6), which highlights this increase across the 

different call types. 

Compared to other studies, this research also achieved positive results in feature selection and 

model evaluation. For instance, research by Bu, which analyzed the sounds of seven woodboring 

pests, proposed a pulse-based acoustic feature extraction method, which differs from the 

traditional time-domain and frequency-domain methods employed in this study (Bu et al., 2016). 

By focusing on discrete pulse features, the pest monitoring system proposed by Bu was able to 

identify pests at an early stage, offering a unique perspective on animal sound data analysis. 

Similarly, research by Sun highlighted subtle changes in the pulse groups of cricket calls, 

emphasizing the importance of minute differences between pulses in species identification (Sun 

et al., 2019). These studies have enriched the methodology for analyzing animal acoustic features 

and provided valuable insights for this research. 

Overall, the significant differences in maximum amplitude, effective amplitude, fundamental 

frequency, and pulse index between normal calls, whimpering calls and clucking calls reflect 

changes in sound intensity and quality. Notably, throat mucus reduces the amplitude of vocal 

cord vibrations and leads to a decrease in both sound energy and clarity. Similarly, the 

fundamental frequency is significantly lower in both whimpering calls and clucking calls, 

revealing the impact of vocal cord health on frequency (Binazzi et al., 2011). Furthermore, 

differences in peak value and pulse index indicate nonlinear changes in vocal cord vibration, 

making these features important for distinguishing between normal and abnormal calls (Burkard 

et al., 1984). Finally, the significant increase in spectral line width in whimpering calls further 

demonstrates the influence of throat mucus on vocal cord vibration characteristics. These changes, 

analyzed through time-domain and frequency-domain features, effectively differentiate normal 

calls from abnormal calls, highlighting potential health issues in broiler chickens. As Xu et al. 

(2023) mentioned, animal vocalizations can convey a range of information, and combining 

acoustic analysis with monitoring chicken calls not only offers significant implications for 

production performance but also provides new insights into animal welfare. Therefore, focusing 

on changes in vocalizations during health monitoring can help identify and address health 



problems in a timely manner. 

Furthermore, our current dataset is sufficient to support the construction of a classification model 

capable of distinguishing different age-related call types, it must be acknowledged that age-

related physiological development significantly affects the acoustic characteristics of the chicken 

calls. Previous studies have shown that the behavior and call characteristics of chickens change 

significantly with age and weight increase (Weeks et al., 2000), especially in older chickens, 

where inactivity and lying behaviors increase, which may indirectly affect the production of calls. 

Additionally, Manteuffel et al. (2004) emphasized that calls are closely related to perception and 

physiological state, meaning that age-related changes in body condition may alter the 

characteristics of normal calls and distress calls. This is consistent with other research results in 

the field of bioacoustics and signal processing, where developmental stage and physiological 

condition have been proven to affect signal characteristics. Our experimental design deliberately 

integrated voice samples from different age groups (from 2 weeks to 5 weeks) in a balanced 

distribution. This method ensures that the features learned by the classifier are general across 

developmental stages, rather than being biased towards specific age-related features. By exposing 

the model to various acoustic changes related to age, we enhanced its ability to detect 

pathological patterns (such as patterns caused by laryngeal mucus), which, despite potential age 

effects, are still distinguishable. We clearly state that a detailed study on the interaction between 

age and abnormal call patterns is beyond the scope of this research. As Weeks et al. (2000) 

pointed out, studies on the behavior of chickens require strictly controlled conditions and a large 

sample size to distinguish these complex effects. Therefore, building upon our approach that 

controls for age variation, we suggest that future research should incorporate longitudinal 

monitoring and age-stratified analysis to elucidate the developmental trajectory of both normal 

and abnormal vocalizations across the complete growth cycle. Such investigations would not 

only refine early warning systems but also provide fundamental insights into the ontogeny of 

avian vocal patterns in both healthy and pathological states. 

Beyond the specific acoustic correlations revealed in this work, our methodological framework 

demonstrates distinct advantages over prior studies on poultry vocal recognition and health 

monitoring. Whereas previous research primarily emphasized algorithmic innovation or 

empirical feature aggregation, our study integrates rigorous statistical feature evaluation with 



machine learning classification, yielding both high performance and physiological interpretability. 

Unlike the chicken voice recognition method by Cheng and Zhong (2015) based on orthogonal 

matching pursuit (OMP), which reconstructed signals via sparse representation before extracting 

MFCC, LPC, and PNCC features for SVM classification, our work moves beyond generic signal 

reconstruction to systematically evaluate which acoustic features are most discriminative. While 

their sparse representation pipeline improved recognition under noisy environments, feature 

selection remained empirical, lacking statistical verification of inter-condition differences. In 

contrast, our independent-samples t-test analysis identified physiologically meaningful features- 

such as maximum amplitude, effective amplitude, fundamental frequency, and pulse index- that 

directly reflect pathological changes in broiler vocalizations. This principled approach enabled 

our SVM classifier to achieve 97.8% accuracy, far exceeding the performance of MFCC-only 

(77.54%) or LPCC-only (58.89%) models and improving upon the results of Cheng and Zhong’s 

sparse feature method. 

Similarly, the improved online multiple kernel classification (OMKC) algorithm developed by 

Cheng (2014) and colleagues focused on kernel optimization to reduce classification error across 

generic datasets. Although kernel learning improves algorithmic flexibility, it does not inherently 

ensure that the selected input features are biologically or statistically meaningful for broiler health 

assessment. By contrast, our feature evaluation process is hypothesis-driven rather than purely 

model-driven, ensuring that the selected features are not only computationally efficient but also 

interpretable in terms of broiler physiology, thereby enhancing both scientific credibility and 

practical applicability. 

The broiler sound recognition framework of Tao et al. (2022) and Sun et al. (2024) represents 

another line of research that constructed high-dimensional (60D) multi-domain feature sets and 

used random forest or kNN to rank feature importance. While these methods achieved 

competitive classification results (up to 94.16% accuracy in Tao et al. and 91.14% in Sun et al.), 

their feature selection relied on post hoc model importance rather than pre-validated statistical 

differentiation between health conditions. In contrast, our compact t-test-selected feature set 

avoids overfitting risks inherent to high-dimensional data and simultaneously achieved 98.76% 

accuracy with random forest, surpassing prior results while reducing computational burden. 

Moreover, our method directly targets pathological vocal characteristics (such as decreased 



amplitude and lowered fundamental frequency caused by respiratory distress) rather than relying 

on generic acoustic descriptors. 

Finally, while Sun et al. (2024) advanced broiler health monitoring by integrating sound 

classification into a cough-rate estimation framework with a visualization platform, their 

emphasis remained on engineering system deployment rather than on feature interpretability. Our 

study complements and extends this line of work by providing a statistically grounded, 

physiologically relevant feature selection strategy that can be seamlessly integrated into such 

platforms, improving both early disease detection and diagnostic transparency. 

In summary, this study presents a transparent and domain-optimized framework for broiler health 

monitoring by integrating rigorous statistical feature evaluation with advanced machine learning 

classification. Unlike approaches that rely on empirical feature aggregation, our method employs 

t-test-based feature selection to ensure that the extracted acoustic parameters are biologically 

meaningful and closely linked to pathological vocal changes. By focusing on statistically 

validated, physiologically interpretable features, the proposed system achieves superior 

recognition accuracy with a compact feature set, effectively avoiding the overfitting issues 

commonly observed in high-dimensional models. Furthermore, the framework directly targets 

pathological variations in broiler vocalizations, such as reductions in amplitude and fundamental 

frequency, rather than relying solely on generic acoustic descriptors, thereby enhancing its 

diagnostic relevance. Designed for seamless integration with existing signal-processing and 

monitoring platforms, this approach combines scientific rigor with practical applicability, offering 

a robust solution for automated broiler health assessment. By moving beyond traditional feature 

sets, sparse reconstruction techniques, and purely kernel-driven optimization strategies, this 

research establishes a physiologically grounded, computationally efficient, and high-performance 

methodology that advances the state of the art in poultry vocal analysis and health monitoring. 

 

Conclusions 

This study establishes a rigorous and physiologically interpretable framework for broiler health 

monitoring through detailed acoustic feature analysis combined with machine learning 

classification. Unlike prior work that relied on empirical feature aggregation, our approach 

systematically identifies statistically significant features -including but not limited to maximum 



amplitude, effective amplitude, fundamental frequency, and pulse index- that are closely 

associated with pathological changes in vocalization caused by respiratory disorders. These 

features reflect how non-healthy physiological states alter vocal cord vibration characteristics, 

enabling reliable differentiation between normal and abnormal calls. 

The framework was validated on vocalization data collected from a batch of 2-week-old white-

feathered broilers over a continuous 21-day period, demonstrating high classification accuracy 

using both support vector machine (97.8%) and random forest (98.76%) models. The use of a 

statistically validated, multidimensional feature set minimizes overfitting risks while maintaining 

strong discriminative power across different call types. Importantly, the identified features are 

physiologically relevant rather than being generic acoustic descriptors, ensuring that the 

classification results directly reflect health-related vocal changes rather than incidental sound 

variations. 

From an application perspective, this methodology provides a scientifically grounded tool for 

poultry farms to detect respiratory problems early and objectively, replacing reliance on 

subjective observation or delayed clinical diagnosis. Since the feature set is compact and 

computationally tractable, it can be readily integrated into automated monitoring platforms using 

standard signal processing hardware. By linking acoustic indicators to specific health states, this 

study enhances both the reliability of early warning systems and the feasibility of large-scale 

deployment in precision poultry farming. 
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Figure 1. Frame segmentation of vocal signals. 



 

 

Figure 2. Effect diagram of the endpoint detection process for chicken crowing sounds. 



 
 

Figure 3. Extraction process of mel-frequency cepstral coefficients (MFCC) and linear prediction 
cepstral coefficients. 
 
 
 
 



 

Figure 4. Waveform diagram of "normal calls", "clucking calls" and "whimpering calls". 

 

 

 

 

Figure 5. Spectrograms of the "normal calls", "clucking calls" and "whimpering calls". 

 

 

Figure 6. The bandwidth of the "normal calls", "clucking calls" and "whimpering calls". 



Table 1. Time-domain and frequency-domain feature formulations. 
Feature 
category 

Feature 
name 

Mathematical formulation Description 

Time-
domain 

Maximum 
amplitude 

A!"# = max(|x[n]|)	 , n	 = 	0,1, . . . , N − 1 
x[n] : The raw amplitude value of the n-th 
sample in the discrete signal frame. This value 
can be positive or negative. 

The maximum 
absolute amplitude 
value within a 
signal frame, 
reflecting the 
instantaneous peak 
intensity. 

 Peak value A_p	 = 	max(x[n]), n	 = 	0,1, . . . , N − 1 
x[n]: amplitude at sample n. 

The maximum 
positive amplitude, 
indicating the 
instantaneous 
maximum output. 

 Effective 
amplitude 

A$%& = sqrt 9
1
N ∗ sum(x[n]

')<	 , n	

= 	0,1, . . . , N − 1 

(
)
∗ sum(x[n]'): The mean (average) of the 

squared values. This is the mean square value, 
representing the average power of the signal. 

sqrt =(
)
∗ sum(x[n]')>: The square root of the 

mean square value. This returns the value to 
the original unit of amplitude, giving the RMS 
amplitude. 

A$%&	represents 
the average power 
or overall energy 
content of the 
signal frame and 
serves as a robust 
measure of 
loudness. 

 Variance 
σ' =

1
N@ (x[n] − µ)'

)*(

+,-
	 

µ =
1
N@ x[n]

)*(

+,-
	 

	n	 = 	0,1, . . . , N − 1 
∑ (x[n] − µ)')*(
+,- : The sum of squared 

deviations. This adds up all the individual 
squared differences. 

(
)
∑ (x[n] − µ)')*(
+,- : The mean of the squared 

deviations.  

µ:The mean amplitude of the signal frame, 
indicating the variability of the amplitude 
distribution. 

It measures the 
deviation of the 
signal from its 
mean value, 
indicating the 
variability of the 
amplitude 
distribution. 

 Skewness γ	 = 	 ((1/N)	Σ	(x[n] − µ)³)	/	σ³ 
	n	 = 	0,1, . . . , N − 1 

x[n]: The amplitude of the n-th sample in the 

It measures the 
asymmetry of the 
amplitude 



discrete signal frame (can be positive or 
negative). 

N: The total number of samples in the frame. 
µ : The mean amplitude of the signal frame, 
representing the DC offset or central value of 
the signal. 

distribution; γ > 0 
indicates a right-
skewed 
distribution, while 

γ < 0 indicates a 
left-skewed 
distribution. 

 Peak-to-Peak 
Value 

V.. = max(|x[n]|) − min(|x[n]|)		 
n = 0,1, … , N − 1 

max(|x[n]|): The maximum function applied 
to the raw signal values. It returns the highest 
(most positive) amplitude value in the frame. 

min(|x[n]|)		: The minimum function applied 
to the raw signal values. It returns the lowest 
(most negative) amplitude value in the frame. 

The difference 
between the 
maximum and 
minimum 
amplitude values 
in the frame, 
representing the 
total dynamic 
range. 

 Kurtosis 
β =

1
N∑ (x[n] − µ)/)*(

+,-

(1N∑ (x[n] − µ)'))*(
+,-

' 

n	 = 	0,1, . . . , N − 1 

(
)
∑ (x[n] − µ)/)*(
+,- : The mean of the fourth-

power deviations. This is the numerator. 

((
)
∑ (x[n] − µ)'))*(
+,-

'
:The square of the 

variance (σ²). This is the denominator. 

Measures the 
"tailedness" of the 
amplitude 
distribution 
relative to a 
normal 
distribution. 
Higher values 
indicate heavier 
tails and a sharper 
peak. 

 Crest factor 
C =

max(|x[n]|)
A$%&

	 

n	 = 	0,1, . . . , N − 1 
max(|x[n]|): The maximum absolute 
amplitude of the signal frame. 

A$%&: Root Mean Square (RMS) amplitude of 
the frame, representing the average signal 
magnitude considering both positive and 
negative values. 
 

The ratio of the 
signal's peak 
amplitude to its 
RMS amplitude, 
indicating the 
presence of 
extreme peaks 
relative to the 
average signal 
level. 

 Margin 
index L =

A_p	

(1N∑ M|x[n]|))*(
+,-

' 

	n	 = 	0,1, . . . , N − 1 
A_p	: The peak amplitude. 

((
)
∑ M|x[n]|))*(
+,-

'
: The square of that average 

A measure similar 
to the crest factor 
but more sensitive 
to impulse signals, 
calculated as the 
ratio of peak 
amplitude to the 



value. This is the denominator. square of the 
averaged square 
root of absolute 
amplitude. 

 Pulse index 
PI	 = 	

max(|x[n]|)

	(	1N 	Σ	|x[n]|	)
 

	n	 = 	0,1, . . . , N − 1 
max(∣ x[n] ∣): The maximum absolute 
amplitude in the signal frame (peak value). 

(
)
	Σ	|x[n]|	: The mean absolute amplitude, 

representing the overall average signal 
intensity. 

It represents the 
strength of 
impulsive 
components in the 
signal. 

 Waveform 
index WI	 =

	sqrt(1N 	Σ	x[n]²)

(1N 	Σ	|x[n]|	)
	 

	n	 = 	0,1, . . . , N − 1 

sqrt((
)
	Σ	x[n]²):The root mean square (RMS) 

amplitude of the signal, representing its 
average power. 

(
)
	Σ	|x[n]|	: The mean absolute amplitude of 

the signal. 

It measures the 
waveform’s 
similarity to a 
sinusoid 
(approximately 
1.11 for a sine 
wave and 1.0 for a 
square wave). 

Frequency-
domain  

Fundamental 
Frequency 
(F0) 

F0 = f0 
where k is the index of the maximum 
magnitude in the spectrum within a plausible 
frequency range. 

F0 is the lowest 
frequency of 
vibration of the 
vocal cords, 
perceived as the 
pitch of the call. It 
is found by 
identifying the 
strongest harmonic 
in the spectrum. 

 Spectral 
centroid 

C =
sum(f0 ∗ |x[k]|)
sum(|x[k]|)  

k = 0,1, … , K − 1 
sum(f0 ∗ |x[k]|): The sum of each frequency 
multiplied by its energy. This is the numerator. 

sum(|x[k]|) : The total energy (sum of all 
magnitudes) in the spectrum. This is the 
denominator. 

x[k]: x[k] is its discrete Fourier transform 

The spectral 
centroid is the 
"center of mass" or 
weighted average 
of the frequencies 
present in the 
spectrum. A higher 
centroid indicates 
a brighter sound 



(DFT), defined over frequency bins 
k=0,1,…,K-1 

with more high-
frequency energy. 

 Frequency 
RMS 

f_RMS	 = 	
sqrt(	(Σ	f_k²	|X[k]|)

(Σ	|X[k]|)	)  

k = 0,1, … , K − 1 
f_k: The frequency value corresponding to the 
KTH spectral line (unit: Hz). 

X[k] : The amplitude of the KTH spectral line 
after the discrete Fourier transform (DFT) 
(usually a linear value, not dB). 

It represents the 
RMS frequency 
distribution, 
describing the 
spread of energy 
across frequencies. 

 Spectral 
bandwidth 

B = sqrt \
sum((f0 − c)' ∗ |x[k]|)

sum(|x[k]|) ^	 

k = 0,1, … , K − 1 
sum((f0 − c)' ∗ |x[k]|) : The energy-weighted 
sum of the squared deviations. 

sum(|x[k]|): The total energy in the spectrum. 

Spectral 
bandwidth 
measures the 
spread of the 
spectrum around 
the centroid. A 
high bandwidth 
means the 
spectrum is wide 
and contains a 
broad range of 
frequencies. A low 
bandwidth means 
the spectral energy 
is concentrated 
tightly around the 
centroid. 

 Spectral line 
width 

Δf	 = 	f_high	 − 	f_low	(half
− power	bandwidth) 

f_high and f_low: upper and lower cut-off 
frequencies. These two frequency points are 
defined on the power spectral density (PSD) 
curve of the spectrum. 

The spectral line 
width indicates the 
degree of spectral 
concentration. 

 Spectral 
rolloff 

Spectral rolloff is the frequency R below which 

a certain percentage γ of the total spectral 
energy is contained. 

Spectral rolloff is a 
measure of the 
skewness of the 
spectral shape. 

 

 

 

 

 



Table2. Comparison of MFCC and LPCC features. 

Feature Primary domain Underlying principle Key applications 

MFCC 
Cepstrum 
(perceptual) 

Mimics the non-linear frequency 
resolution of the human ear (Mel 

scale). 

Speech recognition, sound 
classification, music 
information retrieval. 

LPCC 
Cepstrum (physical) 

Models the acoustic theory of speech 
production (vocal tract source-filter). 

Speaker recognition, speech 
synthesis, voice pathology 

detection. 



 

Table 3. Independent samples t-test of acoustic features between normal calls and other call types. 

Acoustic feature Normal calls Whimpering calls t(Whimper) p(Whimper) Clucking calls t-value p-value 

Maximum amplitude 0.685±0.113 0.503±0.094 -28.03 <0.001 0.802±0.138 14.813127 <0.001 

Effective amplitude 0.108±0.011 0.030±0.002 -154.55 0.000 0.070±0.012 -52.427058 <0.001 

Variance 0.012±0.002 0.001±0.000 -101.50 0.000 0.005±0.002 -51.116122 <0.001 

Peak-to-peak value 1.329±0.211 0.887±0.192 -35.00 <0.001 1.400±0.234 5.137306 <0.001 

Kurtosis 0.001±0.000 0.000±0.000 -46.95 <0.001 0.001±0.000 -18.827250 <0.001 

Peak value 6.356±0.827 16.701±2.659 84.06 0.000 11.659±1.911 57.616207 <0.001 

Margin index 6.356±0.827 16.701±2.659 84.06 0.000 11.659±1.911 57.616207 <0.001 

Skewness -5.741±42.015 -9223.372±4779.168 -122.55 0.000 947.884±5043.693 -4.226571 <0.001 

Pulse index 9.707±1.545 26.579±4.686 77.38 0.000 20.893±3.744 62.486304 <0.001 

Waveform index 1.522±0.064 1.588±0.042 19.22 <0.001 1.789±0.075 60.905236 0.000 

Fundamental frequency 
(Hz) 

501.395±319.346 145.674±0.280 -25.20 <0.001 
146.844±1.398 -25.121653 <0.001 

First resonance peak 
(Hz) 

0.003±0.011 0.001±0.006 -3.58 <0.001 
0.001±0.010 -6.591302 <0.001 

Second resonance peak 
(Hz) 

0.003±0.010 0.001±0.007 -3.31 <0.001 
0.001±0.011 -6.793243 <0.001 

Third resonance peak 
(Hz) 

0.003±0.009 0.001±0.007 -2.53 0.011 
0.001±0.011 -6.717301 <0.001 

Spectral line width (Hz) 0.026±0.004 0.070±0.001 227.65 0.000 0.074±0.003 221.910527 0.000 

Frequency root mean 
square (Hz) 

20.080±2.728 8.748±0.559 -92.09 0.000 
12.663±2.899 -42.155079 <0.001 



 

Table 4. Machine learning model performance evaluation with different feature sets. 

Model Feature set Accuracy Precision Recall F1 score 

SVM t-test selected 0.978 0.978 0.979 0.978 

 MFCC 0.775 0.777 0.776 0.775 

 LPCC 0.589 0.583 0.592 0.579 

 MFCC+LPCC 0.783 0.784 0.783 0.782 

Naive bayes t-test selected 0.878 0.884 0.876 0.874 

 MFCC 0.548 0.723 0.556 0.528 

 LPCC 0.616 0.609 0.611 0.609 

 MFCC+LPCC 0.548 0.723 0.556 0.528 

KNN t-test selected 0.957 0.958 0.956 0.956 

 MFCC 0.537 0.544 0.532 0.520 

 LPCC 0.378 0.400 0.388 0.318 

 MFCC+LPCC 0.534 0.539 0.530 0.525 

Random forest t-test selected 0.988 0.988 0.988 0.988 

 MFCC 0.778 0.780 0.778 0.777 

 LPCC 0.782 0.789 0.779 0.780 

 MFCC+LPCC 0.813 0.814 0.811 0.810 

 


