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Abstract

This study investigates the acoustic characteristics of normal and abnormal calls in white-
feathered broilers to propose a method for early detection of non-healthy conditions.
Vocalizations were collected from 2-week-old broilers over a 21-day period and analyzed using
time-domain and frequency-domain features, including maximum amplitude, effective amplitude,
fundamental frequency, and pulse index. Significant differences were identified between normal
calls and abnormal calls influenced by laryngeal mucus, with support vector machines and
random forest classifiers achieving accuracies of 97.8% and 98.76%, respectively. Unlike
previous empirical feature aggregation methods, this research employs statistically validated
feature selection aligned with physiological mechanisms, enhancing interpretability and
performance. The proposed framework offers a practical, automated solution for on-farm
monitoring of broiler vocalizations, contributing to early detection of abnormal signs and

improved management in precision poultry farming.
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Introduction

Animal vocalizations contain rich information that can effectively reflect their health and
production status, which is crucial for building an environment suitable for animal welfare (Wei
et al., 2023). Traditionally, the health assessment of white-feathered broilers has relied on visual
observation and physiological indicators, which suffer from subjectivity and delayed warnings
(Yao et al., 2023). More effective detection methods are urgently needed, especially to address
the issue of limited acoustic feature parameters currently used in research, aiming to statistically
identify key acoustic features that can significantly distinguish different health states of broilers.
Although significant progress has been made in sound detection for broiler health monitoring,
with broad application prospects, direct studies on the vocalizations of white-feathered broilers
are relatively rare (Bhardwaj et al., 2022). There is also a lack of systematic comparative analysis
of their sound features, which has led to empirical feature selection. Tao et al .(2022) extracted
60 acoustic features from time-domain, frequency-domain, MFCC, and sparse representations,
and selected 30 features with the highest contribution to classification performance using the
random forest algorithm. This method tested multiple segments of broiler vocal signals and
achieved a recognition accuracy of 99.12%, demonstrating the potential of the model for
automated broiler vocal recognition. Alireza et al. (2021) studied the application of five acoustic
features in bird vocalizations for health monitoring, finding that wavelet entropy was most
effective in detecting infectious bronchitis. For Newcastle disease, wavelet entropy and Mel-
frequency cepstral coefficients (MFCC) had similar detection accuracies, 80% and 78%,
respectively, but wavelet entropy was more reliable in detecting healthy birds. Cuan et al. (2020)
proposed a method based on convolutional neural networks for chicken sound recognition to
detect avian influenza infection. They extracted four types of acoustic features: logarithmic bank
features, MFCC, and their first and second-order differences, and combined them with a CNN
model for classification. The model achieved accuracy rates of 93.01%, 95.05%, and 97.43% on
days 2, 4, and 6 after virus injection, respectively, proving its rapid and effective detection
capabilities. Du et al. (2021) developed a method based on a three-stimulus-resonance peak
model for classifying chicken vocalizations. They extracted three stimuli and MFCC features and
used BP neural networks and Gaussian mixture models for classification, achieving an average

accuracy of 94.9% with a 12-dimensional MFCC and BPNN feature model. Li et al. (2022)



designed a gender detection model for chicks based on deep learning, distinguishing male and
female chicks by vocal differences at one day of age, achieving a detection accuracy of 95% with
the ResNet-50 model.

Many studies have focused on traditional features such as MFCC and linear predictive cepstral
coefficients (Abdul et al., 2022), which are widely used in acoustic analysis. While these features
are classical and widely applied, they often fail to fully capture the complex health information
in vocal signals, especially subtle but crucial changes. Further exploration and development of
more comprehensive feature parameters are necessary to improve the accuracy and reliability of
disease detection.

In fact, broiler vocalizations contain abundant acoustic features (Curtin et al., 2014), including,
but not limited to, spectral features, time-envelope features, nonlinear features (such as bispectral,
higher-order cumulants), and time-frequency combined features (Mahdavian et al., 2021). These
features have distinct characteristics in describing different dimensions of sound signals, some
sensitive to frequency changes, and others better reflecting temporal or nonlinear aspects (Xu et
al., 2020). Therefore, relying solely on a few or single acoustic features for model training limits
the recognition ability and generalization performance of the model, making it difficult to adapt
to the diversity of vocalizations across different breeds, ages, and health conditions of broilers.
Given the shortcomings of current sound detection in broiler health monitoring, it is necessary to
explore more diversified feature extraction approaches and continue to improve and optimize
the related technical systems (Huang et al., 2021).

To sum up, the current body of research on livestock and poultry acoustics has laid a critical
foundation for the use of vocalizations in health monitoring. Studies focusing on classic features
such as mel-frequency cepstral coefficients (MFCCs) and linear predictive cepstral coefficients
(LPCCs) have undeniably demonstrated the feasibility and value of audio-based bioacoustic
analysis. These approaches are computationally efficient, well-understood, and have provided
significant benchmarks in distinguishing broad health states, thereby establishing a strong basis
for non-invasive monitoring. Furthermore, the work of researchers like Tao and Cuan has been
instrumental in proving the high classification accuracy achievable by combining multiple feature
sets with powerful machine learning models, moving the field firmly beyond purely observational

methods.



However, despite these valuable contributions, certain limitations persist. The heavy reliance on
these traditional feature sets, while practical, often fails to fully capture the complexity and
subtlety of health-related changes in vocalizations. Many studies employ a relatively narrow
range of feature parameters, which can constrain the model's ability to generalize across diverse
conditions, such as different breeds or specific illnesses that manifest through nuanced acoustic
shifts. These challenges not only impact the accuracy and robustness of broiler health monitoring
but may also limit the broader application and scalability of sound detection technologies in
precision livestock farming. Therefore, while building upon the solid groundwork established by
previous research, there is a compelling need to explore more comprehensive and discriminatory
feature extraction strategies to overcome these limitations and enhance the effectiveness of
vocalization-based health assessment.

This study selected 60 white-feathered broiler chickens at 2 weeks of age and continuously
recorded their vocalizations for 21 days, with a nearly equal gender ratio of approximately 1:1.
Using microphones, their normal and abnormal calls were recorded at a fixed time each
afternoon throughout this period, with each recording lasting for 10 minutes. The abnormal calls
were classified as whining sounds and cackling sounds through manual identification.
Quantitative analysis was conducted on these three types of sounds, and acoustic features such
as duration, amplitude, and frequency were extracted and analyzed using independent sample
T-tests. This study aims to explore and determine unique acoustic features that effectively
distinguish between healthy and abnormal states, and validate their performance in machine
learning models, in order to develop a model that can effectively distinguish abnormal calls from
healthy calls, providing new quantitative basis for early health warning of broiler chickens. The
acoustic-based health monitoring method overcomes the subjectivity and delay inherent in
traditional assessments, provides valuable features for machine learning models, and

demonstrates significant application potential.

Materials and Methods
Sound signal collection
This study focuses on WOD168 white-feathered broiler chickens. The experiment was conducted

at the Simate Broiler Farm (GPS coordinates: 37.17°N, 116.44°E) in Pingyuan County, Shandong



Province, China. The poultry house used in this study was a mechanically ventilated building
with a length of 101 m, width of 16 m, eave height of 4.2 m, and ridge height of 6 m. Its cross-
sectional area was 81.6 m?, yielding an internal volume of 8,241.6 m3. The housing system
consisted of 8 cage rows, each comprising 73 cages per row and 4 tiers per row, with 30 broilers
per cage, resulting in a total stocking capacity of 70,080 birds (8 rows x 73 cages x 4 tiers x 30
birds). This structural and stocking information provides context for the experimental scale and
ensures reproducibility.

A total of 60 broilers were selected at 2 weeks of age from the same batch, comprising 40 healthy
and 20 unhealthy birds, with a sex ratio close to 1:1. The birds were housed in a dedicated
experimental area within the main poultry house, which was physically isolated from the
commercial flock by solid partitions to maintain standard environmental conditions (e.g.,
ventilation, temperature, humidity, and lighting). To adhere to the standard commercial stocking
density of a maximum of 30 birds per cage and to ensure separation by health status, the birds
were allocated into three adjacent cages. Specifically, the 40 healthy birds were divided into two
groups of 20 birds each and housed in two separate cages, while all 20 unhealthy birds were
housed together in a third cage. All cages were of the same standard type used throughout the
facility. Feed and water were provided ad libitum via the central automated system. This
configuration ensured that the collected acoustic data reflected natural vocalization behaviors
under representative farming conditions while enabling clear distinction between health statuses
and minimizing disturbance from routine operations.

Vocalizations were recorded from the three cages sequentially over 21 consecutive days using a
XinKe V-01 microphone with a magnetic base. Each day, the microphone was deployed at a fixed,
identical position relative to each cage in turn. Specifically, for each recording session, the
microphone was attached to the outer side of the cage rack at the third tier, centered on the target
cage, with the microphone head positioned at a height of approximately 1.5 meters above the
floor. This standardized placement ensured consistent acoustic recording conditions across all
cages, prevented physical contact with the birds, and minimized behavioral disturbance. The
microphone has a sensitivity of -36+3 dB, a signal-to-noise ratio >70 dB, and a frequency
response range of 50 Hz-12 kHz. All recordings were made with a 16-bit depth and a sampling

rate of 16 kHz. Recording sessions for each cage were conducted daily at a fixed time in the



afternoon, with each session lasting 10 min. To avoid capturing stress-induced vocalizations and
to ensure the sounds reflected natural conditions, the microphone was mounted externally
without direct exposure to the chickens during all recordings.

The collected sounds were classified by two experienced professional breeders through manual
auditory screening based on acoustic morphology and context. The classification followed
established ethological criteria adapted from prior poultry vocalization studies (de Carvalho
Soster et al., 2025). Normal vocalizations were clear. Abnormal vocalizations included both
rhythmic clucking calls and mucus-associated whimpering calls, which were characterized by
wheezing, gurgling, or strained tones and often occurred in series with irregular rhythm. Any

ambiguous cases were re-evaluated jointly until consensus was reached.

Sound signal preprocessing

The recorded chicken vocalizations contain significant amounts of irrelevant information and
noise (Catania et al., 2013), which must be removed through preprocessing in order to extract
meaningful sound features (Biocca et al., 2019). The main preprocessing steps in this study
include pre-emphasis, denoising, and frame windowing (Akgay et al., 2020).

Pre-emphasis is a high-pass filter that processes the signal using a first-order filter to emphasize
high-frequency components while reducing low-frequency components (Dong et al., 2020). The
process involves subtracting the previous sample multiplied by a coefficient a (set to 0.95 in this
study) from the current sample.

Since sound signals are highly complex and non-stationary, it is generally assumed that the
characteristics of sound signals remain stable or change slowly within short time segments. Since
the audio signals are usually complex and non-stationary, it is generally believed that their
characteristics remain relatively stable over a longer period of time, or change at a relatively slow
rate. In this study, when choosing the frame length, we referred to the observation results, which
indicated that the calls of broiler chickens typically change within a time scale of 15 to 60
milliseconds in a short period of time. Therefore, a frame length of 50 milliseconds (equivalent to
800 samples at a 16 kHz sampling rate) was selected. As shown in Figure 1, a frame length of 50
milliseconds can achieve a balance between temporal resolution and feature representation,

enabling a more comprehensive capture of the acoustic features of short-term sound events. To



ensure a smooth transition between frames, a 50% (25 milliseconds) overlap method was adopted.
The effective signal length of each recording was 5 seconds, containing multiple analysis frames.
In order to reduce edge discontinuities and spectral leakage, a Hamming window is used in this
study. The equation for the Hamming window is as follows:

w(n) = 0.54 — 0.46cos(N — 12mn) (Eq.- 1)
where n is the sample index within the window (0 < n < N-1), and N is the length of the window
(i.e., the number of samples, N=800 in our implementation). The coefficients 0.54 and 0.46 in
the Hamming window are used to adjust the relative size of the main lobe and side lobes,
providing approximately -43 dB sidelobe suppression.
The short-time Fourier transform (STFT) is then applied to convert the windowed audio signal into
a time-frequency domain spectrum, extracting its amplitude, phase information, and power
spectrum. A 1024-point FFT was used to compute the STFT, providing a frequency resolution of
15.625 Hz. To estimate the noise energy, the average of the first 30 frames (approximately 1.5
seconds) of the audio signal, which contained only background noise, was calculated.
To reduce spectral discontinuities, the amplitude spectrum is smoothed using a moving average
filter with a 3-band width. By combining the estimated noise energy with the signal's power
spectrum, spectral subtraction is employed for denoising (Balaji et al., 2020). This step adjusts the
amount of noise energy subtracted (using an over-subtraction factor of 3.0) to balance the
denoising effect and signal fidelity while controlling small values in the amplitude spectrum to
enhance signal smoothness. The enhanced amplitude spectrum is then combined with the
original phase information, and the inverse STFT is applied to restore the time-domain audio

signal.

Sound signal endpoint detection

For chicken vocalization detection, this study proposes an adaptive dual-threshold endpoint
detection algorithm based on short-time energy (E) and short-time zero-crossing rate (Z). The
threshold coefficients (20% and 30%) were empirically optimized through iterative testing on a
subset of 50 recordings to maximize the F1-score for vocalization detection, a common approach
in bioacoustic studies (Yin et al., 2024). To constrain the vocal pulse duration, the minimum

length was set to 6 frames (corresponding to 300 ms at our 50 ms frame length), while the



maximum length was set to 30 frames (corresponding to 1500 ms or 1.5 s). These limits effectively
filtered out short-duration impulsive noises and long-duration non-vocal events such as
equipment hum.

The algorithm proceeds as follows: First, the moving averages of E and Z (MA_E and MA_Z) are
computed over a 500 ms window to adapt to varying background conditions. A candidate start
point is identified when E > 0.2 * MA_E and Z > 0.2 * MA_Z simultaneously. This candidate is
confirmed as a true start point if, within the subsequent 200 ms, both E > 0.3 * MA_E and Z >
0.3 * MA_Z are satisfied. After start point confirmation, the vocal endpoint is identified when
both E and Z fall below 0.3 * MA_E and 0.3 * MA_Z for more than 6 consecutive frames.

Figure 2 illustrates the endpoint detection process on a representative audio clip containing both

normal and abnormal calls, demonstrating the effectiveness of the chosen thresholds.

Sound signal feature extraction

Following speech denoising and endpoint detection on signals containing three types of
vocalizations, this study systematically extracts features in both time and frequency domains (Lin
etal., 2001). The extracted features and their mathematical formulations are summarized in Table

1.

Time-domain feature extraction

Time-domain features are calculated directly from the signal's amplitude waveform, reflecting its
energy distribution and statistical properties. The standard extraction process involves segmenting
the signal into short frames, applying a Hamming window to each frame to minimize spectral
leakage, and calculating features within each window. Average values are then computed across
all frames to obtain the final feature vector.

A suite of time-domain features is extracted to capture the signal's instantaneous characteristics
and overall energy profile. These include maximum amplitude, peak value, root mean square
(RMS) amplitude, variance, skewness, Kurtosis, peak-to-peak value, crest factor, margin index,
pulse index, and waveform index. Their mathematical formulations and descriptions are detailed
in Table 1. These features are instrumental in detecting impulsive components, quantifying the

dynamic range, and assessing the waveform's similarity to a pure sinusoid.



Frequency-domain features are derived by transforming the windowed time-domain signal into
the frequency domain using a Fourier Transform. The transformation for a discrete-time signal

x[n] of length N is given by:

X(f) = SN=Ex(n) - e Eq.2)

Where:

X(f) is the frequency-domain signal

x(n) is the time-domain signal

N is the signal length,

f is the frequency.
The extracted frequency-domain features provide insights into the spectral structure and
variability of the sound signal. These include the Fundamental Frequency (FO), which corresponds
to the perceived pitch; Spectral Centroid, indicating the brightness of the sound; Spectral
Bandwidth and Spectral Roll-off, describing the spread of spectral energy; and RMS Frequency.
Their precise mathematical definitions are provided in Table 1. These features are crucial for

analyzing the harmonic content, resonant frequencies, and spectral shape of the vocalization.

Extraction of traditional acoustic features

Figure 3 illustrates the extraction process of mel-frequency cepstral coefficients (MFCC) and linear
prediction cepstral coefficients. MFCC and LPCC are two fundamental cepstral feature extraction
techniques. The overall workflow for both methods is summarized in the flowchart below,
highlighting their parallel yet distinct processes.

MFCC extraction is designed to model the human auditory system. The signal undergoes pre-
emphasis and is split into short, windowed frames. The Fourier transform converts these frames
into the frequency domain. The resulting spectrum is then processed through a Mel-scaled filter
bank to simulate nonlinear human hearing, followed by a logarithm to compress dynamic range.
Finally, the discrete cosine transform (DCT) decorrelates the filter bank outputs to produce the
final cepstral coefficients, with the first 13 typically retained as features. In contrast, LPCC
extraction focuses on modeling the physical properties of the vocal tract. After pre-emphasis,

framing, and windowing, it analyzes the signal's autocorrelation to perform linear predictive



coding (LPC). The LPC coefficients, which model the vocal tract filter, are then converted into
cepstral coefficients via a recursive formula, with the first 13 coefficients retained as the LPCC
features. The distinct principles and applications of these two feature sets are concisely compared

in the Table 2.

Statistical analysis and testing

The experiment was conducted on a Windows 10 64-bit operating system using Python 3.10 for
audio processing (utilizing libraries such as librosa, scipy, and numpy) and SPSS software for
statistical analysis. The core innovation of our feature selection strategy lies in the rigorous
statistical screening of a comprehensive set of acoustic features, rather than relying on empirical
or conventional subsets. To this end, an independent-samples t-test was conducted to analyze
the differences in acoustic feature parameters between normal calls, whimpering calls, and
clucking calls (Yu et al., 2022). This test served as a critical filter to identify and select features
with significant discriminatory power for subsequent model training, directly addressing the
feature dimensionality and selection challenge. A p-value of less than 0.05 was set as the
threshold for statistical significance.

Following this statistically-guided feature selection, multiple machine learning models were
employed for vocalization classification, including support vector machines (SVM), random
forests, naive bayes, and K-nearest neighbors (KNN). Each model offers distinct advantages: SVM
constructs an optimal hyperplane for high accuracy and minimizes overfitting; random forest
integrates multiple decision trees for robustness against complex nonlinear relationships; naive
bayes, based on conditional independence assumption, is efficient for large datasets; and KNN
offers intuitive classification based on nearest neighbors (Balaji et al., 2021). The use of these

diverse models allows for a robust evaluation of the effectiveness of the selected feature subset.

Results

Feature selection based on independent-samples t-test

The independent-samples t-test provided a data-driven foundation for feature selection. As
detailed in Table 3, the analysis revealed statistically significant differences (p<0.05) in all sixteen

examined acoustic features when comparing normal calls to both whimpering and clucking calls.



This result indicated that every feature in our extracted set possessed significant discriminatory
power for this specific classification task. Therefore, based on this rigorous statistical evaluation,
the entire set of features was selected for subsequent machine learning model training. The
profoundly low p-values (often p<0.001) and substantial t-statistics across time-domain (e.g.,
maximum amplitude, variance, pulse index), frequency-domain (e.g., fundamental frequency,
spectral line width), and spectral features (resonance peaks) demonstrate that these parameters
collectively capture essential and significant aspects of vocal differences, likely reflecting
underlying physiological or behavioral states. This comprehensive, statistically-vetted feature set
forms the basis of our model input, ensuring that only features with proven discriminative power

are utilized.

Model performance evaluation

The performance of the machine learning models, trained on the statistically-selected feature set,
is summarized in Table 4. The random forest algorithm demonstrated exceptional classification
capability, achieving near-perfect scores across all evaluation metrics (accuracy, precision, recall,
F1 score~0.988). This outstanding result highlights the synergistic effect of combining a powerful
classifier with a feature set pre-validated for high discriminative power. Furthermore, models
utilizing the t-test selected features consistently and significantly outperformed those employing
conventional cepstral features (MFCCs, LPCCs) alone or in combination. This performance gap
underscores the value of our comprehensive feature selection methodology over traditional
approaches that rely on a predetermined, limited set of features.

Among the cepstral features, LPCCs generally showed superior predictive capability compared
to MFCCs. Combining MFCC and LPCC features led to a performance improvement over using
either set independently, suggesting complementary information. However, even this
combination failed to match the performance achieved by the broader, statistically-selected
feature set, emphasizing the necessity of incorporating a diverse range of acoustic characteristics

for optimal classification performance in this domain.

Discussion

The accumulation of mucus in the larynx may cause changes in the vibration characteristics of



the vocal cords, thus affecting the time domain and frequency domain characteristics of the sound.
Specifically, the significant difference between normal and whimper calls suggests that the
presence of mucus may have reduced the amplitude of vocal cord vibrations, which in turn
affected the intensity and clarity of the sound. From a time-domain perspective, the differences
between normal calls and whimpering calls are particularly evident in parameters such as
maximum amplitude and effective amplitude. For instance, the maximum amplitude of normal
calls is typically lower (around 0.685+0.113), whereas the maximum amplitude of whimpering
calls is significantly reduced (around 0.503+0.094). This change suggests that throat mucus may
reduce the amplitude of vocal cord vibrations, leading to an overall loss of sound energy, which
in turn affects sound quality and clarity (Peters et al., 2021). The significant decrease in effective
amplitude (from 0.108 to 0.030) further supports this idea, reflecting the suppressive effect of
mucus on vocal cord vibrations. Figure 4 highlights the waveform variations for different call
types. In terms of frequency-domain features, the significant differences in fundamental frequency
and resonance peaks further reveal the changes in sound quality. The accumulation of mucus in
the throat likely alters the mass and tension of the vocal cords, resulting in a decrease and
instability in the fundamental frequency (Hegde et al., 2024). For example, the fundamental
frequency of normal calls is 501.395+319.346 Hz, while the fundamental frequency of
whimpering calls is significantly lower (145.674+0.280 Hz).This frequency change may be due
to altered vocal cord vibration frequencies, manifesting as instability and lower frequencies (Li et
al., 2021). Spectrograms (Figure 5) visually represent the energy distribution across different
frequencies for these call types, where mucus-influenced calls show broader and less distinct
frequency bands. These findings are consistent with the research by Moura, who noted that the
frequency and amplitude of bird calls can reflect their thermal comfort, emphasizing the impact
of physiological health on vocalizations (Moura et al., 2008). Additionally, the acoustic features
between normal calls and clucking calls also demonstrate changes in sound quality, particularly
in terms of fundamental frequency and resonance peaks. Clucking calls exhibit a significantly
higher maximum amplitude than normal calls (from 0.685 to 0.802), but their fundamental
frequency decreases markedly (from 501.395 Hz to 146.844 Hz). This phenomenon suggests a
connection between whimpering calls and clucking calls, such as pneumonia, which typically

lead to instability in sound energy and significant frequency changes (Yadav et al., 2020). In terms



of bandwidth, which reflects the spectral spread of sound, calls with mucus accumulation show
a significant increase in bandwidth, suggesting greater spectral line width. This is further
corroborated by the bandwidth bar chart (Figure 6), which highlights this increase across the
different call types.

Compared to other studies, this research also achieved positive results in feature selection and
model evaluation. For instance, research by Bu, which analyzed the sounds of seven woodboring
pests, proposed a pulse-based acoustic feature extraction method, which differs from the
traditional time-domain and frequency-domain methods employed in this study (Bu et al., 2016).
By focusing on discrete pulse features, the pest monitoring system proposed by Bu was able to
identify pests at an early stage, offering a unique perspective on animal sound data analysis.
Similarly, research by Sun highlighted subtle changes in the pulse groups of cricket calls,
empbhasizing the importance of minute differences between pulses in species identification (Sun
etal., 2019). These studies have enriched the methodology for analyzing animal acoustic features
and provided valuable insights for this research.

Overall, the significant differences in maximum amplitude, effective amplitude, fundamental
frequency, and pulse index between normal calls, whimpering calls and clucking calls reflect
changes in sound intensity and quality. Notably, throat mucus reduces the amplitude of vocal
cord vibrations and leads to a decrease in both sound energy and clarity. Similarly, the
fundamental frequency is significantly lower in both whimpering calls and clucking calls,
revealing the impact of vocal cord health on frequency (Binazzi et al., 2011). Furthermore,
differences in peak value and pulse index indicate nonlinear changes in vocal cord vibration,
making these features important for distinguishing between normal and abnormal calls (Burkard
et al., 1984). Finally, the significant increase in spectral line width in whimpering calls further
demonstrates the influence of throat mucus on vocal cord vibration characteristics. These changes,
analyzed through time-domain and frequency-domain features, effectively differentiate normal
calls from abnormal calls, highlighting potential health issues in broiler chickens. As Xu et al.
(2023) mentioned, animal vocalizations can convey a range of information, and combining
acoustic analysis with monitoring chicken calls not only offers significant implications for
production performance but also provides new insights into animal welfare. Therefore, focusing

on changes in vocalizations during health monitoring can help identify and address health



problems in a timely manner.

Furthermore, our current dataset is sufficient to support the construction of a classification model
capable of distinguishing different age-related call types, it must be acknowledged that age-
related physiological development significantly affects the acoustic characteristics of the chicken
calls. Previous studies have shown that the behavior and call characteristics of chickens change
significantly with age and weight increase (Weeks et al., 2000), especially in older chickens,
where inactivity and lying behaviors increase, which may indirectly affect the production of calls.
Additionally, Manteuffel et al. (2004) emphasized that calls are closely related to perception and
physiological state, meaning that age-related changes in body condition may alter the
characteristics of normal calls and distress calls. This is consistent with other research results in
the field of bioacoustics and signal processing, where developmental stage and physiological
condition have been proven to affect signal characteristics. Our experimental design deliberately
integrated voice samples from different age groups (from 2 weeks to 5 weeks) in a balanced
distribution. This method ensures that the features learned by the classifier are general across
developmental stages, rather than being biased towards specific age-related features. By exposing
the model to various acoustic changes related to age, we enhanced its ability to detect
pathological patterns (such as patterns caused by laryngeal mucus), which, despite potential age
effects, are still distinguishable. We clearly state that a detailed study on the interaction between
age and abnormal call patterns is beyond the scope of this research. As Weeks et al. (2000)
pointed out, studies on the behavior of chickens require strictly controlled conditions and a large
sample size to distinguish these complex effects. Therefore, building upon our approach that
controls for age variation, we suggest that future research should incorporate longitudinal
monitoring and age-stratified analysis to elucidate the developmental trajectory of both normal
and abnormal vocalizations across the complete growth cycle. Such investigations would not
only refine early warning systems but also provide fundamental insights into the ontogeny of
avian vocal patterns in both healthy and pathological states.

Beyond the specific acoustic correlations revealed in this work, our methodological framework
demonstrates distinct advantages over prior studies on poultry vocal recognition and health
monitoring. Whereas previous research primarily emphasized algorithmic innovation or

empirical feature aggregation, our study integrates rigorous statistical feature evaluation with



machine learning classification, yielding both high performance and physiological interpretability.
Unlike the chicken voice recognition method by Cheng and Zhong (2015) based on orthogonal
matching pursuit (OMP), which reconstructed signals via sparse representation before extracting
MFCC, LPC, and PNCC features for SVM classification, our work moves beyond generic signal
reconstruction to systematically evaluate which acoustic features are most discriminative. While
their sparse representation pipeline improved recognition under noisy environments, feature
selection remained empirical, lacking statistical verification of inter-condition differences. In
contrast, our independent-samples t-test analysis identified physiologically meaningful features-
such as maximum amplitude, effective amplitude, fundamental frequency, and pulse index- that
directly reflect pathological changes in broiler vocalizations. This principled approach enabled
our SVM classifier to achieve 97.8% accuracy, far exceeding the performance of MFCC-only
(77.54%) or LPCC-only (58.89%) models and improving upon the results of Cheng and Zhong's
sparse feature method.

Similarly, the improved online multiple kernel classification (OMKC) algorithm developed by
Cheng (2014) and colleagues focused on kernel optimization to reduce classification error across
generic datasets. Although kernel learning improves algorithmic flexibility, it does not inherently
ensure that the selected input features are biologically or statistically meaningful for broiler health
assessment. By contrast, our feature evaluation process is hypothesis-driven rather than purely
model-driven, ensuring that the selected features are not only computationally efficient but also
interpretable in terms of broiler physiology, thereby enhancing both scientific credibility and
practical applicability.

The broiler sound recognition framework of Tao et al. (2022) and Sun et al. (2024) represents
another line of research that constructed high-dimensional (60D) multi-domain feature sets and
used random forest or kNN to rank feature importance. While these methods achieved
competitive classification results (up to 94.16% accuracy in Tao et al. and 91.14% in Sun et al.),
their feature selection relied on post hoc model importance rather than pre-validated statistical
differentiation between health conditions. In contrast, our compact t-test-selected feature set
avoids overfitting risks inherent to high-dimensional data and simultaneously achieved 98.76%
accuracy with random forest, surpassing prior results while reducing computational burden.

Moreover, our method directly targets pathological vocal characteristics (such as decreased



amplitude and lowered fundamental frequency caused by respiratory distress) rather than relying
on generic acoustic descriptors.

Finally, while Sun et al. (2024) advanced broiler health monitoring by integrating sound
classification into a cough-rate estimation framework with a visualization platform, their
emphasis remained on engineering system deployment rather than on feature interpretability. Our
study complements and extends this line of work by providing a statistically grounded,
physiologically relevant feature selection strategy that can be seamlessly integrated into such
platforms, improving both early disease detection and diagnostic transparency.

In summary, this study presents a transparent and domain-optimized framework for broiler health
monitoring by integrating rigorous statistical feature evaluation with advanced machine learning
classification. Unlike approaches that rely on empirical feature aggregation, our method employs
t-test-based feature selection to ensure that the extracted acoustic parameters are biologically
meaningful and closely linked to pathological vocal changes. By focusing on statistically
validated, physiologically interpretable features, the proposed system achieves superior
recognition accuracy with a compact feature set, effectively avoiding the overfitting issues
commonly observed in high-dimensional models. Furthermore, the framework directly targets
pathological variations in broiler vocalizations, such as reductions in amplitude and fundamental
frequency, rather than relying solely on generic acoustic descriptors, thereby enhancing its
diagnostic relevance. Designed for seamless integration with existing signal-processing and
monitoring platforms, this approach combines scientific rigor with practical applicability, offering
a robust solution for automated broiler health assessment. By moving beyond traditional feature
sets, sparse reconstruction techniques, and purely kernel-driven optimization strategies, this
research establishes a physiologically grounded, computationally efficient, and high-performance

methodology that advances the state of the art in poultry vocal analysis and health monitoring.

Conclusions

This study establishes a rigorous and physiologically interpretable framework for broiler health
monitoring through detailed acoustic feature analysis combined with machine learning
classification. Unlike prior work that relied on empirical feature aggregation, our approach

systematically identifies statistically significant features -including but not limited to maximum



amplitude, effective amplitude, fundamental frequency, and pulse index- that are closely
associated with pathological changes in vocalization caused by respiratory disorders. These
features reflect how non-healthy physiological states alter vocal cord vibration characteristics,
enabling reliable differentiation between normal and abnormal calls.

The framework was validated on vocalization data collected from a batch of 2-week-old white-
feathered broilers over a continuous 21-day period, demonstrating high classification accuracy
using both support vector machine (97.8%) and random forest (98.76%) models. The use of a
statistically validated, multidimensional feature set minimizes overfitting risks while maintaining
strong discriminative power across different call types. Importantly, the identified features are
physiologically relevant rather than being generic acoustic descriptors, ensuring that the
classification results directly reflect health-related vocal changes rather than incidental sound
variations.

From an application perspective, this methodology provides a scientifically grounded tool for
poultry farms to detect respiratory problems early and objectively, replacing reliance on
subjective observation or delayed clinical diagnosis. Since the feature set is compact and
computationally tractable, it can be readily integrated into automated monitoring platforms using
standard signal processing hardware. By linking acoustic indicators to specific health states, this
study enhances both the reliability of early warning systems and the feasibility of large-scale

deployment in precision poultry farming.
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Figure 1. Frame segmentation of vocal signals.
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Table 1. Time-domain and frequency-domain feature formulations.

n=201..N-1
x[n]: The amplitude of the n-th sample in the

Feature Feature Mathematical formulation Description
category name
Time- Maximum A = max(|x[n]]) ,n = 0,1,...,N—1 The maximum
domain amplitude x[n]: The raw amplitude value of the n-th | absolute amplitude
sample in the discrete signal frame. This value | value within a
can be positive or negative. signal frame,
reflecting the
instantaneous peak
intensity.
Peak value A_p = max(x[n]),n = 0,1,...,N—1 The maximum
x[n]: amplitude at sample n. positive amplitude,
indicating the
instantaneous
maximum output.
Effective 1 Agrms represents
amplitude Arms = sart (N i sum(x[n]2)> - the averF;ge power
=01...,.N—1 or overall energy
1 content of the
S* sum(x[n]?): The mean (average) of the onal § q
signal frame an
squared values. This is the mean square value, | serves as a robust
representing the average power of the signal. measure of
sqrt (% * sum(x[n]z)): The square root of the loudness.
mean square value. This returns the value to
the original unit of amplitude, giving the RMS
amplitude.
Variance o2 = lZN_l(x[n] Ly It measures the
N ZLin-o deviation of the
1Nt signal from its
H= Nznzox[“] mean value,
n=201...,.N—1 indicating the
N-d(x[n] — w)?: The sum of squared variability of the
deviations. This adds up all the individual amplitude
squared differences. distribution.
%Zﬁ‘;&(x[n] — w)?2: The mean of the squared
deviations.
n:The mean amplitude of the signal frame,
indicating the variability of the amplitude
distribution.
Skewness y = ((1/N) £ (x[n] — w?) / o* It measures the

asymmetry of the
amplitude




discrete signal frame (can be positive or
negative).

N: The total number of samples in the frame.
p: The mean amplitude of the signal frame,
representing the DC offset or central value of

distribution; y > 0
indicates a right-
skewed
distribution, while
y < 0 indicates a

the signal. left-skewed
distribution.
Peak-to-Peak Vyp = max(|x[n]|) — min(|x[n]|) The difference

Value

n=01.. N-1
max(|x[n]|): The maximum function applied
to the raw signal values. It returns the highest
(most positive) amplitude value in the frame.
min(|x[n]|) : The minimum function applied
to the raw signal values. It returns the lowest
(most negative) amplitude value in the frame.

between the
maximum and
minimum
amplitude values
in the frame,
representing the
total dynamic
range.

Kurtosis

L INH(x[n] — )

1 2
(§ ENaxIn] - )
n=201...N—-1

B:

%Zﬁ‘;&(x[n] — w*: The mean of the fourth-
power deviations. This is the numerator.
(%Zg;é(x[n] - u)Z)Z:The square of the

variance (o2). This is the denominator.

Measures the
"tailedness" of the
amplitude
distribution
relative to a
normal
distribution.
Higher values
indicate heavier
tails and a sharper
peak.

Crest factor

_ max(|x[n]])
© Arws
n=201...,.N-1

max(|x[n]|): The maximum absolute
amplitude of the signal frame.
Agrms: Root Mean Square (RMS) amplitude of
the frame, representing the average signal
magnitude considering both positive and
negative values.

The ratio of the
signal's peak
amplitude to its
RMS amplitude,
indicating the
presence of
extreme peaks
relative to the
average signal
level.

Margin
index

Ap
1w 2
(5 Nz V<)
n=201...,N—-1
A_p : The peak amplitude.

(%ZE;& N |X[n]|)2: The square of that average

L=

A measure similar
to the crest factor
but more sensitive
to impulse signals,
calculated as the
ratio of peak
amplitude to the




value. This is the denominator.

square of the
averaged square
root of absolute

amplitude.
Pulse index max(|x[n]|) It represents the
Pl = —4/— strength of
(2 IxInll) impulsive
n=201,..N-1 components in the
max(| x[n] [): The maximum absolute signal.
amplitude in the signal frame (peak value).
% X |x[n]| : The mean absolute amplitude,
representing the overall average signal
intensity.
Waveform sqrt(% 3 x[n]?) It measures the
index == waveform’s
(§ Z Ix[n]]) similarity to a
n=201,..N-1 sinusoid
sqrt(% % x[n]?):The root mean square (RMS) (approxnma.tely
1.11 for a sine
amplitude of the signal, representing its wave and 1.0 for a
average power. square wave).
% X |x[n]| : The mean absolute amplitude of
the signal.
Frequency- | Fundamental FO = fy, FO is the lowest
domain Frequency where k is the index of the maximum frequency of
(FO) magnitude in the spectrum within a plausible | vibration of the
frequency range. vocal cords,
perceived as the
pitch of the call. It
is found by
identifying the
strongest harmonic
in the spectrum.
Spectral _ sum(fy * [x[K]|) The spectral
centroid ~ sum(|x[K]|) centroid is the

k=01,.. K-1
sum(fy * |x[Kk]|): The sum of each frequency
multiplied by its energy. This is the numerator.
sum(|x[K]|) : The total energy (sum of all
magnitudes) in the spectrum. This is the
denominator.

x[K]: x[K] is its discrete Fourier transform

"center of mass" or
weighted average
of the frequencies
present in the
spectrum. A higher
centroid indicates
a brighter sound




(DFT), defined over frequency bins

with more high-

k=0,1,..., K-1 frequency energy.
Frequency £ RMS = sqrt( (Z f k* |X[K]|) It represents the
RMS - CIXKID) RMS frequency
k=01, .. K-1 distribution,
f_ k: The frequency value corresponding to the | describing the
KTH spectral line (unit: Hz). spread of energy
X[k] : The amplitude of the KTH spectral line | across frequencies.
after the discrete Fourier transform (DFT)
(usually a linear value, not dB).
Spectral B = sqrt (sum((fk —c)? x |x[k]|)> Spectral
bandwidth sum(|x[k]]) bandwidth

k=01,.. K-1
sum((fy — ¢)? * |x[K]|) : The energy-weighted
sum of the squared deviations.
sum(|x[Kk]|): The total energy in the spectrum.

measures the
spread of the
spectrum around
the centroid. A
high bandwidth
means the
spectrum is wide
and contains a
broad range of
frequencies. A low
bandwidth means
the spectral energy
is concentrated
tightly around the
centroid.

Spectral line
width

Af = f high — f low (half
— power bandwidth)
f_high and f_low: upper and lower cut-off
frequencies. These two frequency points are
defined on the power spectral density (PSD)
curve of the spectrum.

The spectral line
width indicates the
degree of spectral
concentration.

Spectral
rolloff

Spectral rolloff is the frequency R below which
a certain percentage y of the total spectral
energy is contained.

Spectral rolloff is a
measure of the
skewness of the
spectral shape.




Table2. Comparison of MFCC and LPCC features.

Cepstrum (physical)

Models the acoustic theory of speech
production (vocal tract source-filter).

Feature Primary domain Underlying principle Key applications
MFCC Censt Mimics the non-linear frequency Speech recognition, sound
epstrum
P resolution of the human ear (Mel classification, music
(perceptual) . . .
scale). information retrieval.
LPCC Speaker recognition, speech

synthesis, voice pathology
detection.




Table 3. Independent samples t-test of acoustic features between normal calls and other call types.

square (Hz)

Acoustic feature Normal calls Whimpering calls t(Whimper) | p(Whimper) Clucking calls t-value p-value
Maximum amplitude 0.685+0.113 0.503+0.094 -28.03 <0.001 0.802+0.138 14.813127 | <0.001
Effective amplitude 0.108+0.011 0.030+0.002 -154.55 0.000 0.070+0.012 -52.427058 | <0.001
Variance 0.012+0.002 0.001+0.000 -101.50 0.000 0.005+0.002 -51.116122 | <0.001
Peak-to-peak value 1.329+0.211 0.887+0.192 -35.00 <0.001 1.400+0.234 5.137306 | <0.001
Kurtosis 0.001+0.000 0.000+0.000 -46.95 <0.001 0.001+0.000 -18.827250 | <0.001
Peak value 6.356+0.827 16.701+2.659 84.06 0.000 11.659+1.911 57.616207 | <0.001
Margin index 6.356+0.827 16.701+2.659 84.06 0.000 11.659+1.911 57.616207 | <0.001
Skewness -5.741+£42.015 -9223.372+4779.168 -122.55 0.000 947.884+5043.693 | -4.226571 | <0.001
Pulse index 9.707+1.545 26.579+4.686 77.38 0.000 20.893+3.744 62.486304 | <0.001
Waveform index 1.522+0.064 1.588+0.042 19.22 <0.001 1.789+0.075 60.905236 | 0.000
Fundamental frequency 146.844+1.398 -25.121653 | <0.001
H2) 501.395+319.346 145.674+0.280 -25.20 <0.001

z
First resonance peak 0.001+0.010 -6.591302 | <0.001
H2) 0.003+0.011 0.001+0.006 -3.58 <0.001

z
S d k 0.001+0.011 -6.793243 0.001
(Scj’n resonance pea 0.00320.010 0.00120.007 3.31 <0.001 - =

z
Third k 0.001+0.011 -6.717301 0.001
(H'r) resonance pea 0.003=0.009 0.0010.007 2.53 0.011 - =

z
Spectral line width (Hz) 0.026+0.004 0.070+0.001 227.65 0.000 0.074+0.003 221.910527 | 0.000
F t 12.663+2.899 -42.155079 | <0.001

requency root mean 20.080+2.728 8.748+0.559 192.09 0.000




Table 4. Machine learning model performance evaluation with different feature sets.

Model Feature set Accuracy Precision Recall F1 score
SVM t-test selected 0.978 0.978 0.979 0.978
MFCC 0.775 0.777 0.776 0.775
LPCC 0.589 0.583 0.592 0.579
MFCC+LPCC 0.783 0.784 0.783 0.782
Naive bayes t-test selected 0.878 0.884 0.876 0.874
MFCC 0.548 0.723 0.556 0.528
LPCC 0.616 0.609 0.611 0.609
MFCC+LPCC 0.548 0.723 0.556 0.528
KNN t-test selected 0.957 0.958 0.956 0.956
MFCC 0.537 0.544 0.532 0.520
LPCC 0.378 0.400 0.388 0.318
MFCC+LPCC 0.534 0.539 0.530 0.525
Random forest t-test selected 0.988 0.988 0.988 0.988
MFCC 0.778 0.780 0.778 0.777
LPCC 0.782 0.789 0.779 0.780
MFCC+LPCC 0.813 0.814 0.811 0.810




