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Abstract  
Hyperspectral imaging (HSI) is a non-destructive technique that is employed to assess quality 
parameters and integrate monitoring across the supply chain in the context of Industry 4.0. Although 
promising, HSI faces challenges such as high cost and equipment requirements. However, advances 
in technology and 3D printing are enabling low-cost solutions that still need to be validated in the 
field. This work presents the development of a low-cost hyperspectral prototype, built using 3D 
elements and commercially available electronic components, and operating in the spectral range from 
400 nm to 1000 nm. Furthermore, two types of gratings have been compared. In the first part of the 
study, the calibration process using RGB LEDs and a halogen lamp is described in detail. The second 
part of the study presents the results of a few applications on a food matrix under controlled light 
conditions, which were conducted to evaluate the performance of the prototype. The extracted spectra 
were normalised and subsequently pre-processed with either SNV (Standard Normal Variate) 
transform or the Savitzky–Golay (SG) derivative. Finally, the data were explored with PCA (Principal 
Component Analysis), which confirmed the ability of the prototype to distinguish samples of different 
colours (first trial), assess the decay of different apple samples (second trial) and differentiate between 
healthy and damaged tissues (third trial). The experimental results were consistent with the 
anticipated outcomes, and both types of grating demonstrated favourable performance. 
 
Key words: hyperspectral imaging, IoT sensors, portable, low-cost, process monitoring.  
 
Introduction 
The food quality refers to sensory aspects, shelf-life and freshness, nutrient contents, and also 
microbiological and technological features (Hassoun et al., 2023).  
Nowadays, quality process control in agri-food production has significantly evolved, particularly with 
the integration of laboratory-grade analytical instrumentation directly into processing lines (at-line, 
on-line, and in-line). These technologies offer the potential for real-time monitoring and rapid 
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decision-making, improving product consistency and reducing waste. However, despite these 
advantages, the practical implementation of such systems remains challenging. The complexity of the 
equipment, the need for specific environmental conditions (e.g., vibration-free, temperature-stable 
settings), and the requirement for trained personnel often limit their usability in standard industrial 
environments. Factors such as high initial investment costs, maintenance demands, and integration 
difficulties with existing production workflows further hinder widespread adoption. As a result, many 
production facilities, particularly small to medium-sized enterprises (SMEs), still rely on more 
traditional, off-line quality control methods, which are less efficient and delay corrective actions. 
In the last two decades, hyperspectral imaging (HSI) technology has been emerging as a very potential 
non-destructive optical tool for food quality and safety assessment in post-harvest, adding a new 
component to reduce the gap between laboratory analyses and the production process as a process 
analytical technology (PAT) (Vignati et al., 2023). Moreover, this is playing a key role in the Fourth 
Industrial Revolution (“Industry 4.0”), which is enhancing the use of interconnected sensor networks 
(IoT – Internet of Things) and digital innovations and techniques (e.g., machine learning, big data, 
and cloud) in monitoring systems (Hassoun et al., 2022, 2023). 
These sensors network results in a multivariate statistical process control (MSPC) which provides, 
for each critical point of the production chain, several highly correlated variables (both optical and 
not), that can be handled by multivariate projection methods (such as Principal Component Analysis 
– PCA), allowing a reduction in data dimensionality by utilizing the correlated structure (Kourti, 
2006).  Taking for example the fruit and vegetables or the fresh-cut supply chains, an optimised 
system of sensors interconnected may be applied to monitor the entire production process, from the 
cultivation phase, in both field and greenhouse, to the different post-harvest processing steps. This 
will lead to some advantages such as: i) the creation of remote storage of optical data, ensuring a 
continuous updating and refinement of the models to constantly improve the monitoring at critical 
points of the supply chain and the decision-making process, both in farming and in industry (Pampuri 
et al. (2021b), Hassoun et al., 2022); ii) increase of the product shelf-life and, consequently, 
decreasing food losses and wastes (Casson et al., 2022); iii) assurance of a complete control along 
the entire supply chain (Vignati et al., 2023). 
However, the hyperspectral imaging systems available at the moment on the market are laboratory 
instruments and portable devices and costs remain a limit for real applications of these tools (Pampuri 
et al., 2021a). Moreover, although the HIS technique allows to collection of a large amount of data, 
it may not be possible to control all critical points of the supply chain with a single instrument, but 
more devices are needed. This leads to prohibitive costs for most companies.  
Cost reduction is a current challenge for industry and hence for researchers (Özdoğan et al., 2021; 
Giovenzana et al., 2015) and the first solution proposed was to build low-cost multispectral devices 
based on wavelength previously selected. This approach has some disadvantages, such as the 
limitation of the re-customization of the instrument and its applications on different kinds of products 
and of the ability to improve the predictive models.  
Moreover, due to the fast and high technological advancements that occurred in the last ten years, 
such as the mass production of silicon detectors for commercial cameras and smartphones and 
miniaturized optical components, research is heading towards the development and testing of stand-
alone, compact, cost-effective, and remotely controlled HSI devices.   
Of these devices, there are some examples in literature. Habel et al. (2012) proposed one of the first 
low-cost and compact hyperspectral camera. The device design is based on a consumer camera, and 



   
 

 
 

it is a snapshot system based on computed tomography principles, according to which a transmissive 
diffraction grating is used by computed tomography image spectrophotometers (CTISs) to split the 
incoming light into many spectrum projections onto a single image plane. Then, the spectra are 
obtained by resolving an under-determined linear system. The prototype operates in the VNIR 
(Visible-Near InfraRed) spectral range and allows obtaining images with a spatial resolution of 
120x120 pixels and a spectral resolution of up to 5 nm.  
Taking advantage of the introduction of 3D printing, the advancement of optical and electronic 
components, and the popularity of compact, high-resolution cameras like the Raspberry PI NoIR 
camera, Salazar-Vazquez and Mendez-Vazquez (2020) suggested a cost-effective (around $500) and 
lightweight (300 g) HSI device. The camera operates in the wavelength range of 400 to 1052 nm and 
produces images with 116x110 pixels of spatial resolution and up to 2 nm of spectral resolution. The 
authors also developed a user-friendly graphical user interface, but the device exhibits low 
performance in the 750-1000 nm spectral range, suggesting a reduced analytical capability in food 
quality inspection, probably due to the type of dual-axis holographic transmissive grating used. 
Another example of a cost-effective tool is the one built by Stuart et al. (2020), which utilises 
miniaturised and low-cost imagers and commercially available components that were recently 
developed. This device works in the visible range of the electromagnetic spectrum (340-850 nm) with 
a spectral resolution of 15 nm. Experiments conducted in laboratory conditions demonstrated that this 
hyperspectral sensor has potential application in a variety of fields ranging from the detection of 
bruises on fruit to the characterization of rocks.  
The same tests were performed with good performances using an affordable and portable HSI device 
with smartphone-based components (Stuart et al., 2021). In this study, a transmissive diffraction 
grating was used, but a handling system was required to analyse the entire sample and construct the 
hypercube. As in the previous work, the device covers the visible spectral range (400-700 nm) 
effectively, but the detectable optical range is shortened by IR filters found on common smartphone 
cameras. There are other examples reported in the literature, like the works by Sigernes et al. (2018), 
Riihiaho et al. (2021), and Davies et al. (2022). However, the performances of these devices still need 
to be meticulously assessed, both in controlled and operational conditions, in order to demonstrate 
their applicability in pre- and post-harvest contexts. The development of cost-effective hyperspectral 
systems that can cover a broader spectral range from visible (400 nm) to NIR (1000 nm) is still 
ongoing. Based on these considerations, this work aims to build an HSI camera prototype working in 
the VNIR spectral range, portable, low-cost, and user-friendly, starting from indications given in the 
previous work by Salazar-Vazqueza and Mendez-Vazquez (2020). 
The aim of this paper is to develop a prototype of a cost-effective (500-1000 €) hyperspectral IoT 
device for monitoring the quality of agri-food products along the entire production chain, from the 
field to the industry considering also the distribution phase.  
 
Materials and Methods 
This section provides a detailed description of the proposed hyperspectral device, the calibration 
process and an acquisition test aimed at evaluating the performance of the prototype. 
 
Hyperspectral camera prototype 
The proposed device has been built combining in-house 3D printed parts (housings, case, etc.,) and 
commercially available electronic components. The 3D drawings were designed using the Autodesk 



   
 

 
 

Inventor package (software CAD 3D Inventor®, 2023) and subsequently printed using a UV resin-
based LCD 3D-printer (Anycubic, Photon Mono X) with a resolution of 50 microns. The Anycubic 
Photon Workshop software has been used for the slicing step before printing. Figure 1 shows the 
different components of the hyperspectral device. In detail, the 3D elements are the following. The 
main case (Figure 1A.1), lid (Figure 1A.9) and spacers (Figure 1A 4,7,8) were used with the purpose 
to block the optical and electronics components and keep a constant distance (100 mm) between the 
frontal lens and the diffraction grating. To regulate the amount of light crossing through the optical 
system, a square aperture (Figure 1A.3) has been inserted in the middle of the system. Three supports 
were used to hold the frontal lens (Figure 1A.2), the Vis/NIR camera (Figure 1A.6), and the 
diffraction grating (Figure 1A 5a,5b). To instantaneously split the broadband light into different 
wavelengths without moving parts, two types of single-axis diffraction gratings, differentiated by 
their material composition (and consequently the cost), were utilized to separate polychromatic light 
into its component wavelengths in transmission mode. The light dispersion is calculated using the 
following equation (1): 

nl	=	d(sina	+	sinb)        (Eq. 1) 
where n is an integer value describing the diffraction order, l is the diffracted monochromatic light’s 
wavelength, d is the spacing between the grating grooves, a	is the angle of the incident light (a	is 0° 
in case of transmission gratings) and b	is the diffracted angle of the monochromatic light leaving the 
grating (Palmer and Loewen, 2005) (Figure 2). 
The first grating was a low-cost holographic polyester model (Figure 1B.10; Model 01307, Edmund 
Optics Inc., Barrington, NJ, USA), while the second one was a glass-based (B270® ultra-white glass 
by SCHOTT) grating (Figure 1B.11; Model 49580, Edmund Optics Inc.). The dimensions of the 
holographic grating were 50.80 mm x 50.80 mm x 0.003 mm (L x W x T), and the glass grating 
measured 25.00 mm x 25.00 mm x 3.00 mm (L x W x T). Both types of gratings operate within the 
VNIR range (400-1000 nm), with a percentage of absolute transmission efficiency that vary according 
to the wavelength and the number of grooves (500 and 600 grooves/mm for the holographic and the 
glass grating, respectively) that compose the grating. Additionally, the setup included a fixed focal 
length frontal lens from the C Series (Model 59872, Edmund Optics Inc; Figure 1B.14) and a Macro 
+10 lens with a 52 mm diameter (Figure 1B.15) to focus the sample onto the VNIR camera. The 
camera, a Raspicam NoIR v2.1 with a resolution of 1280x720 pixels and 8 MP (Figure 1B.13), was 
controlled by a Raspberry Pi 3B+ (Figure 1B.12). 
The assembled VNIR hyperspectral prototype weighs approximately 500 grams and it has dimensions 
of 0.185 m x 0.065 m x 0.08 m (L x W x H). The device’s small size and light weight make it 
particularly suitable for use in situations where portability is essential, such as environmental 
surveying, precision agriculture, and food quality monitoring. This allows operators to easily 
transport the device and perform quick and accurate measurements directly right on the spot without 
the need for bulky equipment. Furthermore, careful integration of optical and electronic components 
is required to ensure high performance without compromising portability. 
 
Setup of the prototype  
The hyperspectral prototype has been calibrated in a darkroom to prevent any interference from 
ambient light, ensuring that the device captures images solely from light sources emitting at specific 
wavelengths. These wavelengths include 632 nm (R), 522 nm (G), and 462 nm (B), using addressable 
LEDs to define the pixel positions in the image of such wavelengths. Additionally, a halogen lamp 



   
 

 
 

has been used to establish the upper and lower limits of the detectable spectral band, approximately 
400-1000 nm. The camera holder, prototype, and light sources (LEDs and halogen) were positioned 
in darkroom. As shown in Figure 3, the prototype is placed at 0.40 m from the addressable LEDs 
(RGB-WS2812B), controlled by a Raspberry Pi Pico, and the halogen lamp. To ensure minimal light 
source reaching the detector, the light sources were covered with a layer of aluminium foil punctured 
using a thin needle (hole with a diameter ≤1 mm).  
The prototype was connected to a portable computer through a smartphone hotspot and controlled in 
Matlab® environment, version 2023b (The MathWorks, Inc., Natick, MA, USA) using both built-in 
and in-house functions. Five calibration images were collected to identify the image Region of 
Interest (ROI), and to determine the extensions and the resolution of the diffracted spectrum. The 
halogen lamp served dual purposes acquiring under two different environmental conditions. The first 
image was obtained by acquiring with the halogen lamp without darkroom and aluminium cover. 
Such a method allowed to highlight in the image the effective ROI where to extract the spectral 
information for each pixel. The second image was acquired inside the darkroom with the lamp 
covered with the punctured aluminium foil. In this manner it was possible to identify, in the image, 
the extensions of the diffracted spectrum (first order of diffraction) in the VNIR region. Finally, a 
third, fourth, and fifth image were captured inside the darkroom using the LED emission in the R, G, 
and B channels to identify each emission peak with a known wavelength within the visible range of 
the spectrum. A commercial spectrophotometer (JAZ Spectrometer, Ocean Insight, JAZ 
Spectrometer Handheld Spectrometer, 450 to 1100 nm) was used to characterize the emission peaks 
of the RGB channels (Figure 4). Lastly, the images were post-processed starting from the first image 
without darkroom, from which the central ROI and the respective centroid were identified. 
Subsequently, the centroids were also detected for the diffraction of the R, G, and B channels in the 
corresponding wavelength peaks (632 nm, 522 nm, and 462 nm). However, by overlaying the image 
containing the ROI and those with the centroids of the RGB channels, a shift of the ROI barycentre 
was observed. This was due to the acquisition in the absence of a darkroom of the first image. Thus, 
the centroids were repositioned for both the ROI and the RGB channels and the individual areas in 
the diffracted spectrum corresponding to each channel are identified. This procedure has been done 
for both types of gratings (Figure 1A 5a,b) in order to evaluate their performances and choose the 
better one. 
 
Test in lab-scale and statistical analyses 
Once calibrated, the hyperspectral prototype has been tested in lab-scale. An acquisition stage was 
developed to standardize the image acquisition. The set-up comprised: i) an optical bench (to correctly 
position the prototype, light sources and sample at certain distances), ii) a camera and a sample 
supports, (iii) two halogen lamps with a 45° angle to the sample plane, and iv) a black cover to avoid 
interferences from the environmental light (Figure 5). The hyperspectral prototype was positioned 
0.70 m from the object under analysis to capture its entirety within the frame. The light source was 
placed 0.40 m from the sample, with two different power settings, in order to avoid signal saturation: 
4.0 V for the camera using the glass-based grating, and 5.3 V for the device with the plastic grating. 
The power values were obtained following the execution of acquisition tests on a white reference. 
Saturation of the acquired signal was evaluated and avoided for both gratings at the aforementioned 
power settings. 



   
 

 
 

Three tests (with both grating types) were carried out using a food matrix to evaluate the prototype 
performance to detect spectral differences in such samples.  
A first test was carried out acquiring images of three apples of different colours (i.e., yellow, red, and 
green) to evaluate the capability of the system to maintain the performance of conventional RGB 
cameras. A second tests aimed to acquire images of 12 apples (three replicates each) with four 
different colours (i.e. yellow, red, green and yellow-red) at different time points (at the time of 
purchase, and after 15 and 30 days). A final tests, was performed to determine the ability of the 
prototype distinguishing between sound and damaged tissues. Images of 3 yellow healthy apples 
(three replica for each sample) were acquired. Subsequently, the fruits were damaged subjecting them 
to a simulated accidental post-harvest mechanical damage by dropping them to the ground from a 
height of 0.50 m. After 15 and 30 days images of the damaged apples were acquired, like in the 
experiment described above.  
In each test, a white and dark reference images were taken, before acquiring three images for each 
sample. From each image, 42 diffracted spectra were extracted. Afterwards, every sample spectrum 
was normalized based on the white and dark references, using the following equation (2): 

𝑅 =   !!"#
$"#

⋅ 100         (Eq. 2) 
where, R is the normalized spectrum (expressed in reflectance percentage), R0 is the original 
spectrum, D is the dark reference spectrum, and W is the white reference spectrum.  
After normalization, the spectra obtained from each collected image were averaged before data pre-
processing. This involved applying the Standard Normal Variate (SNV) or Savitzky-Golay (SG) 
derivative to correct baseline vertical shifts, offsets, and global intensity effects typically caused by 
unwanted light scattering. Subsequent scaling was performed by mean-centering the data column-
wise to minimize location differences between spectral variables. Finally, the spectra were explored 
using Principal Component Analysis (PCA). 
The data analyses were performed in Matlab® environment, version 2019b (The MathWorks, Inc.) 
using the PLSToolbox package (Eigenvector Research, Inc. Manson, Washington) and in-house 
functions. 
 
Results  
Calibration images 
During the calibration phase, five images were captured within a region of interest. Each captured 
images consisted of three distinct components:  the central region defined as zero order (image of the 
scanned object), and the first orders (negative on the left and positive on the right) of the diffracted 
image. The first image has been acquired using a free source of light coming from a halogen light 
source (Figure 6). Such image acquisition aimed to define the ROI dimensions (1280 x 720 pixels) 
were the zero and first order of diffraction are contained. The central section shows the zero-order 
image (non-diffracted), representing the halogen light source in 42x42 pixels (Figure 6a). On either 
side, the first order of diffraction (Figure 6-b1,b2) displays the diffracted light from the source.  
Therefore, the real image information has been linearly diffracted (both on the left and right respect 
to the central region) into the wavelengths that compose the VNIR optical range. No wavelength 
attribution to each pixel and the width of the VNIR range within the ROI diffraction portion can be 
extracted at this stage.  
Once the ROI has been identified, three images were acquired using the addressable LEDs. The first-
order diffraction regions helped pinpoint the exact pixel corresponding to each LED emission 



   
 

 
 

wavelength. Figures 7 and 8 show the LEDs images ROI (a1, b1, c1) and the pixels intensity (from 0 
to 255), corresponding to the LED depicted in the zero order and its projection in the diffraction 
regions (a2, b2, c2), obtained with the plastic and the glass-based grating, respectively. In both cases, 
the linear diffraction provides specular peaks starting from the middle one related to the zero order. 
The intensity of the diffraction peaks differs according to the power of the LED for each wavelength 
emission. Such results are consistent with the intensity of the emission measurement performed with 
the commercial spectrometer shown in Figure 4. Indeed, a higher intensity was obtained for the blue 
channel then decreased for the red and green channels. Moreover, the high intensity of the blue 
channel is also noticeable in the left part of Figure 7c2 and in the right part of Figure 8c2, where the 
second order of diffraction is noticeable with a significantly lower intensity compared to the first 
order. The start of the second order of diffraction marks the end of the first one which was used as 
reference to define the image area needed for extracting spectral information. After identification of 
the middle peaks, the broad VNIR range in the first diffraction order has been identified using the 
halogen light bulb. 
As mentioned, the calibration images were elaborated to determine the area of the central ROI and 
the centroids of the latter and of each area of diffraction of the RGB channel. However, a little shift 
of the ROI centroid was noticed, and it was due to the acquisition of the image without darkroom. 
Thus, all the centroids were repositioned (Figure 9, in pink). Once the area of the diffracted light 
(called “blob” – Figures 7 and 8 a1,b1,c1) has been detected, and confirmed that the centroid is also 
the point where the emission peak is located, the corresponding peak values (i.e. 632 nm, 522 nm and 
462 nm, for R, G, B channels, respectively) were assigned at each barycentre. Finally, the ROI of 
each diffracted colour has been computed based on the new centroids (Figure 9, in blue, green and 
red). Once the pixel position of the RGB peaks and the extent of the two diffraction areas were known, 
each x-pixel of the first orders of diffraction was converted to wavelength (nm) using a simple 
straight-line equation, and 42 spectra (corresponding to the square aperture dimensions in pixels) 
were extracted, as shown in Figure 10. 
 
Acquisition tests 
In this section are reported the results obtained from the different tests performed on the apple 
samples. 
 
Apples colour  
Spectra extraction  
A first test was conducted on three apples with different colours (i.e., yellow, red and green) with the 
goal to preliminary assess the system’s capacity to detect spectral differences between the different 
samples. As shown in Figure 11, differences between the three apples were found, including 
variations in shape, intensity, and peaks at specific wavelengths. For both gratings the yellow apples 
had a higher reflectance compared to the red and green apples, with a peak around 620 nm. The red 
apples showed a peak around 650 nm for the glass-based grating and around 720 nm with the 
polyester grating. Finally, the green apples were characterised by a peak at 530 nm (in the green 
spectral region) as well as the peak in the red spectral region like the yellow ones and the characteristic 
chlorophyll absorbance peak around 670-680 nm. Moreover, we can notice a baseline drift in the 
spectra obtained from the glass-based grating and a slight multiplicative effect in both cases. 
 



   
 

 
 

PCA results 
In both cases, the PCA was performed on the data pre-processed with SNV and most of the variance 
was explained by the first two Principal Components (PCs): PC1 (> 70.00%) and PC2 (around 20.00 
%). The loadings (Figures 12a and 13a) indicated specific wavelengths (i.e., 530 nm, 600 nm, 620 
nm, and 680 nm) corresponding to the characteristic reflectance or absorbance peaks of each sample 
group and able to distinguish the different colours. This was confirmed in the scores plot (Figure 12b 
and 13b), where three distinct groups corresponding to each type of apples have been identified: green 
(G), red (R), and yellow (Y).  
 
Apple senescence 
Spectra extraction 
The second test was performed on apples at different time points to assess the prototype's ability to 
detect spectral differences in the samples during senescence. A general decrease in reflectance and 
some changes in spectra shape were observed, particularly with the glass-based grating as shown in 
Figure 14; while with the polyester grating a signal with more noise was obtained (Figure 15). 
Moreover, in the case of yellow and green apples, the signal occasionally reaches saturation. This 
phenomenon may be attributed to the enhanced light reflection capacity of these samples compared 
to other samples, as well as the potential inferior quality of the polyester grating. 
 
PCA results  
Firstly, the results on the PCA performed on the pre-processed spectra obtained from the glass-based 
grating are presented. A preliminary examination of the results revealed a distinct separation along 
PC1 of the three time points. Conversely, PC2 effectively differentiated fresh and healthy samples 
(i.e., t1) from those that have undergone senescence (i.e., t2 and t3) (Figure 16c). Some characteristic 
wavelengths could be identified combining both the pre-processed data plot (Figure 16a) and the 
loadings plot (Figure 16b), allowing the distinction between the various time groups. These 
wavelengths were: 500, 560, 580 and 630 nm. Furthermore, we could state that the colour of the 
apples was not related to the fruit’s senescence, as no differentiation was observed across the various 
time points and sample types. 
Regarding the polyester grating, the pre-processed data with SG first derivative and SNV (Figure 
17a) and thus the loadings (Figure 17b) were characterised by high noise, especially in the NIR 
spectral region. Only PC1 allowed to highlight few peaks in the visible range between 450 and 600 
nm (i.e., 460, 550, and 600 nm) able to distinguish between the three time points. This is confirmed 
in the scores plot (Figure 17c), where a differentiation between the time points can be observed only 
along PC1, despite t2 and t3 are inverted.  
 
Healthy and damaged tissues in apples 
Spectra extraction 
From the last test performed, the spectra of the damaged tissues (i.e., D1 and D2) presented a general 
decrease in reflectance and some changes in the spectrum shape (e.g., a decrease in reflectance 
between 600-750 nm) compared to the healthy tissues (i.e., H), as shown in Figure 18. However, the 
spectra of the healthy tissues obtained with the polyester grating exceeded the normal levels of 
reflectance. This could be due to some light scattering or saturation of the signal during the acquisition 
step. 



   
 

 
 

 
PCA results 
Regarding the PCA performed on the dataset from the glass-based grating, a distinct separation 
between healthy and damaged tissue has been highlighted (Figure 19c), as well as the senescence 
progression of the damaged tissue over time (D1 to D2) (Figure 19d). Along PC1 the second stage of 
senescence (i.e., Damaged – t3) was separated from the healthy tissues (i.e., Healthy – t1) and the 
first stage of senescence (i.e., Damaged – t2), while along PC2 we obtained a good distinction 
between healthy and damaged tissues. According to the pre-processed data (Figure 19a) and the 
loadings plot (Figure 19b), the wavelengths highlighted on PC1 can be more related to the second 
stage of senescence. Indeed, the shape of the loadings is more akin to that observed in the Damaged 
– t3 group. Among the related wavelengths, we found 550 and 620 nm, which fall within the visible 
spectral range and are more closely related to fruit pigments. Additionally, there was a minor peak in 
the NIR spectral region, at 790 nm, which is more related to cell structure and tissue water content. 
On the contrary, the PC2 loadings exhibited a shape more similar to that of healthy tissue, with the 
highlighted wavelengths falling within the visible range and at 500, 530, 560, 590, 620 and 640 nm.  
Good results were also obtained from PCA performed on the spectra from the polyester grating. From 
the loadings plot (Figure 20b) a sort of equilibrium between the visible and the NIR spectral range 
was evident in both the principal components. A distinction between healthy and damaged tissues 
was observed along PC1 (Figure 20c), whereas PC2 exhibited greater capability in differentiating 
between the two phases of tissue ageing in the damaged tissue (Figure 20d). 
 
Conclusions 
In conclusion, a cost-effective hyperspectral imaging prototype, operating within the spectral range 
of 400 nm to 1000 nm, has been designed, using commercial equipment and a 3D-printer, and 
successfully tested, reaching satisfactory outcomes for the current stage of technology development, 
estimated to be at a TRL (Technology Readiness Level) of 2. The implementation and optimization 
of the hardware is still ongoing in order to achieve better performances while maintaining the cost-
effectiveness of the hyperspectral device. In particular, one of the advantages of the proposed system 
is its complete customisation: 3D-printed elements can be redesigned and adapted to suit the user’s 
needs and the replacement of certain optical components (e.g., frontal lens, grating, detector) can 
make the device more cost-effective and reach higher performances, while remaining within an 
acceptable price range (less than 1000 €, approx.). In this preliminary study, the device was calibrated 
and then tested on a food matrix under controlled light conditions. The experimental results are 
consistent with expectations, and both the type of grating allowed to reach good results. However, in 
order to transfer this technology from a controlled laboratory environment to real field conditions for 
crop quality monitoring, it is necessary to ensure some crucial aspects, such as: i) the maintenance of 
the same and the best conditions during the acquisitions in the field, and ii) a standardization of the 
acquisitions during the day and the night. A good solution could be represented by the improvement 
of the proposed HSI prototype. Indeed, the device can be implemented with a light source, that can 
cover the VNIR spectral range and eliminate any ambient light interferences, allowing standard 
acquisitions both in the day and the night. Moreover, this technology could be used in a view of cost-
effective and interconnected sensors which could be distributed in the field allowing to monitor 
different parameters or physiological phases of the crop, as shown in two recent works by Pampuri 
et al. (2021a, 2021b) where different inexpensive prototypes are applied to monitor the water status 



   
 

 
 

and the ripening time of grapes (Vitis vinifera L.). A novel and similar solution has been developed 
by Grossi et al. (2023). A novel portable sensor system was proposed for rapid, field-deployable 
determination of peroxide index (PI) and total phenolic content (TPC) in olive oil. These parameters 
are related to the oxidative stability of a virgin olive oil and are usually determined in chemical 
laboratories, with expensive equipment, toxic solvents, and skilled employees. Thus, the new system 
addresses the need for quality control in small production environments that lack access to laboratory 
facilities. Moreover, it is compact and uses Bluetooth connectivity for wireless data transmission.  
This work and the studies presented highlighted the advancements in portable, IoT, and low-cost 
optical sensors and their potential in improving real-time monitoring and traceability of agri-food 
products, enhancing quality control and guaranteeing consumer expectations. 
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Figure 1. The hyperspectral prototype.  
A) 3D-printed components: 1. main case; 2. frontal lens hold; 3. square aperture; 4. spacers; 5a. holder 
of the holographic polyester grating; 5b. holder of the glass-based grating; 6. RaspiCam support; 7. 
8. spacers: 9. lid.  
B) Commercially available: 10. holographic polyester grating; 11. glass-based grating; 12. Raspberry 
Pi 3B+; 13. Raspicam NoIR v2.1; 14. front lens; 15. macro +10 lens.  
C) Assembled prototype. 
 
 
 
 

 
 

Figure 2. Physical working principle of a transmission grating to instantaneously split the broadband 
light.  
 
 



   
 

 
 

 
Figure 3. Schematic representation of the calibration acquisition set-up. 
 
 
 

 
 
 
Figure 4. Emission peaks of the RGB channels detected with JAZ Spectrometer. 
 

 
 
Figure 5. Schematic representation of the acquisition set-up used for the testing phase. 
 

!"#$%

&"#$%

&"#$%

D()*H,)*$-H.L
)H0-0-()*

1#2.L03*4#5SL5,

7.)-0)

8%.H-)204*
8.%)L*

9.H:#$0;*H



   
 

 
 

 
Figure 6. ROIs of the halogen light source image obtained with the polyester grating: zero order 
image (a); right (b1) and left (b2) first order of diffraction. 
 



   
 

 
 

 
 
 

Figure 7. Comparison between the RGB images and their intensity graphs obtained with the polyester 
grating: a1) image of the Red LED; a2) intensity graph of the R-image; b1) image of the Green LED; 
a2) intensity graph of the G-image; c1) image of the Blue LED; c2) intensity graph of the B-image. 



   
 

 
 

 
 
Figure 8. Comparison between the RGB images and their intensity graphs obtained with the glass-
based grating: a1) image of the Red LED; a2) intensity graph of the R-image; b1) image of the Green 
LED; a2) intensity graph of the G-image; c1) image of the Blue LED; c2) intensity graph of the B-
image. 



   
 

 
 

 
 
 

Figure 9. Image acquired without darkroom and the halogen lamp. It shows the Region of Interest 
(in the middle), the “adjusted” centroids (in pink) and the diffracted spectral area of each RGB 
channel (in blue for B-light, in green for G-light, in red for R-light). 
 
 
 

 

 
 
 

Figure 10. Diffraction spectra of the halogen lamp obtained using the glass-based grating: a) 
diffraction spectra of the left area of diffraction of the grating; b) diffraction spectra of the right area 
of diffraction of the grating. 
 



   
 

 
 

 
 
 

Figure 11. Normalized and averaged spectra of all the sample extracted from the left first order of 
diffraction obtained with (a) glass-based grating and (b) polyester grating. 
 
 
 

 
 
 

Figure 12. PCA performed on the spectra obtained with the glass-based grating: a) loadings plot; b) 
scores plot of the two first PCs. 
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Figure 13. PCA performed on the spectra obtained with the polyester grating: a) loadings plot; b) 
scores plot of the two first PCs. 
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Figure 14. Normalized and averaged spectra extracted from the left first order of diffraction obtained 
with the glass-based grating at each time point (i.e., t1, t2, and t3): (a) yellow apples; (b) red apples; 
(c) yellow-red apples; (d) green apples. 
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Figure 15. Normalized and averaged spectra of each replica extracted from the left first order of 
diffraction obtained with the polyester grating at each time point (i.e., t1, t2, and t3): (a) yellow apples; 
(b) red apples; (c) yellow-red apples; (d) green apples. 
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Figure 16. PCA performed on the spectra obtained with the glass-based grating: (a) averaged data 
for each time and pre-processed with SNV and SG second derivative; (b) loadings plot; (c) scores 
plot of PC1 and PC2. 
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Figure 17. PCA performed on the spectra obtained with the polyester grating: (a) averaged data for 
each time and pre-processed with SNV and SG second derivative; (b) loadings plot; (c) scores plot 
of PC1 and PC2. 
 

 
 
Figure 18. Normalized and averaged spectra obtained with (a) glass-based grating and (b) polyester 
grating of yellow apples with healthy tissues (H), and with damaged tissues at two subsequent time 
points (D1 and D2). 
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Figure 19. PCA performed on the spectra obtained with the glass-based grating: (a) averaged data 
for each time and pre-processed with SNV and SG second derivative; (b) loadings plot; (c) scores 
plot with samples coloured by the tissue type; (c) scores plot with the samples coloured by the type 
of tissues and time of damage. 
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Figure 20. PCA performed on the spectra obtained with the polyester grating: (a) averaged data for 
each time and pre-processed with SNV; (b) loadings plot; (c) scores plot with samples coloured by 
the tissue type; (d) scores plot with the samples coloured by the type of tissues and time of damage. 
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