
Abstract
In the natural environment, the shape and color of fruits can

vary greatly due to various factors, and the growth of fruits is
irregular, shaded by leaves and branches, and there are phenomena
such as overlapping fruits. The complex background causes the
difficulty of fruit recognition by the picking robot to increase,
which affects the positioning of subsequent picking points, greatly

increasing the difficulty of picking, and even causing damage to
the end effector. To address such issues, this study adopts
panoramic photography to capture images of citrus fruit trees, and
proposes an AC-YOLO based citrus recognition method in the
natural environment of orchards. Firstly, in the Resblock module
of the YOLOv4 backbone feature extraction network, the AC net-
work structure is integrated with different levels of feature map-
ping to fuse context information as small targets. At the same time,
a self-attention mechanism is introduced to suppress the impact of
complex backgrounds and underlying noise, improving the detec-
tion ability of small target citrus; Finally, the Mish activation func-
tion is used to replace Leaky Re LU, improving the generalization
ability of the model and improving the accuracy of citrus detec-
tion. The panorama image is divided into sub images, and an
improved YOLOV4 model is used for recognition. By comparing
the orange recognition effects of different network models such as
Fast R-CNN, Center Net, YOLOV4 series algorithms, and
YOLOV5 series algorithms on the panorama image, the improved
YOLOV4 network model has an accuracy rate of 96.19%, a recall
rate of 95.47%, and an average accuracy of 97.27%, Compared
with the original YOLOv4 model, it has increased by 1.07, 2.59,
and 2.02 percentage points respectively. This method has a good
recognition effect for citrus in the natural environment of
orchards.

Introduction
Citrus is the largest type of fruit in the world, with a long his-

tory of cultivation (Guo et al., 2018; Vasconez et al., 2019; Lv et
al., 2022). The production of citrus requires a large amount of
manual work, and with the development of urbanization, issues
such as increased labor costs and low operational efficiency have
brought a certain degree of impact on the development of the cit-
rus industry (Bai et al., 2023). Automated picking robots can
improve picking efficiency, reduce damage to fruits, and reduce
labor costs (Ju et al., 2022). However, the operating environment
of the harvesting robot is complex and there are many uncertain
factors, making it difficult to harvest. Efficient and efficient fruit
and vegetable picking requires accurate target recognition and
three-dimensional positioning support (Barbashov et al., 2022).
The vision system of the harvesting robot runs through four
stages, namely, target detection, target recognition, three-dimen-
sional reconstruction, and three-dimensional positioning (Chen et
al., 2022; Hannan et al., 2009; Nehme et al., 2021; Xu et al.,
2022). The accuracy of target recognition and positioning will
directly determine the harvesting efficiency of the harvesting
robot, whether crops will be damaged, and whether the harvesting
robot body will be damaged due to collision (Zhuang et al., 2018).

Currently, researchers at home and abroad have conducted a
large amount of research on the recognition of fruit trees (Jana et
al., 2017). The main method for fruit recognition is visual recog-
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nition, or image recognition, which uses image acquisition equip-
ment to collect images, and then classifies and recognizes the
images (Mai et al., 2020).  Traditional image recognition mainly
involves manually extracting features from images, and then per-
forming fruit recognition (Wan et al., 2020). With the development
of computer technology, image recognition based on machine
learning and deep convolution neural networks has also been wide-
ly used in fruit detection.

Traditional visual fruit recognition: RGB images collected by
image acquisition devices include main features such as color,
shape, and texture. Early research generally focused on extracting
single features for fruit recognition. Liu et al. (2024a) extracted an
area where a detection target may exist based on the color charac-
teristics of the identified target, and then fitted a multiple elliptical
boundary model within the area. The fitted result was used as the
recognition result to achieve the recognition of overlapping
oranges, with an accuracy rate of 90.8% and an error detection rate
of 11.2%, respectively. 

Fruit recognition based on machine learning: the above manual
feature extraction methods are time-consuming and laborious and
require a large number of feature combination experiments to
obtain the best results. Since the 1980s, machine learning has
gained rapid development. Many scholars have integrated machine
learning theory with fruit recognition technology, mainly using
SVM, Canny, HOG, and other methods for feature extraction to
achieve fruit recognition. Wang et al. (2023a) used the Canny edge
detection operator to extract all contour information from the
image, and then constructed a three-dimensional convex object
contour function based on the three-dimensional characteristics of
the apple. The contour function filtered all contour information to
identify the apple, achieving an accuracy of 94%. Xiao et al.
(2022) established an adaptive red-blue color map (ARB) and used
absolute transform difference sum (SATD) block matching meth-
ods to identify potential fruit pixels. Then, based on texture fea-
tures, a support vector machine classifier was established to iden-
tify immature green fruits, achieving a recognition rate of 83.4%
(Bac et al., 2016). Wang et al. (2022) performed clustering analy-
sis on the image to extract potential target regions, then used the
normalized cut algorithm to extract target contour information, and
then used an interpolation algorithm to reconstruct the contour.
This solved the problem of difficulty in distinguishing overlapping
fruits, achieving a coincidence ratio of 93.81% between the identi-
fied region and the original target region under occlusion. 

Fruit recognition based on convolutional neural networks: in
2012, Krizhevsky and colleagues proposed the AlexNet convolu-
tional neural network for the first time, and its excellent perfor-
mance quickly attracted scholars’ interest (Krizhevsky et al.,
2012). With the development of convolutional neural networks and
the popularity of computer hardware, convolutional neural net-
works have evolved from being able to only classify simple images
at first to being able to identify various objects (Fang and Liang,
2022; Alaaudeen et al., 2024). More and more scholars have also
used convolutional neural networks to identify orchard crops. Wan
and Goudos (2020) have optimized the structures of convolution
and pooling layers in the Faster R-CNN model to make recognition
more accurate and faster. Compared with traditional recognition
methods, this algorithm has higher detection accuracy and lower
processing time, and has achieved an average accuracy rate of 91%
for detecting multiple types of fruit on a self-made fruit dataset
(Alaaudeen et al., 2024).

Currently, fruit tree fruit recognition is mainly based on image
recognition of local scenes and simple scenes (Liu et al., 2024a).
However, for most domestic orchards, local scene recognition and

simple scene recognition cannot meet the needs of precision gar-
dening. This paper proposes an AC-YOLO detection model for cit-
rus fruits in the natural environment of orchards. Aiming at the
problem that medium and small target citrus fruits are prone to
miss detection, an AC network structure is proposed, which fuses
different levels of feature maps as context information for small
targets. At the same time, a self-attention mechanism is introduced
to suppress the impact of complex backgrounds and underlying
noise, improving the detection ability of small target citrus fruits;
Finally, the Mish activation function is used to replace Leaky Re
LU, improving the generalization ability of the model and improv-
ing the accuracy of citrus detection. Experimental results show that
the improved algorithm has better detection performance than the
original algorithm on citrus dataset.

Methods 
Citrus data set

The selection of training dataset and image calibration are two
crucial steps in the target detection process. Due to the lack of pub-
licly available general citrus datasets, this paper constructs and
expands the g-citrus dataset to train and validate the citrus fruit
detection algorithm. Considering the influencing factors of citrus
fruit detection, 2300 citrus images were taken and collected from
different time, different environment, citrus shading and citrus
shape perspectives in this paper. Some examples of the citrus
dataset are given in the following figure. When training convolu-
tional neural networks, too small data sets can cause overfitting of
the model, resulting in weakened generalization ability of the
model, which is excellent in the training set but poor in the test set.
Appropriate data enhancement methods can enrich the images of
the data set and rationalize the data distribution, which can well
avoid the model overfitting problem and enhance the generaliza-
tion performance of the model.

At the same time, considering the influence of complex out-
door environment and illumination, this paper uses image transfor-
mation methods such as random brightness adjustment, random
rotation, random contrast adjustment and random cropping to
expand the data set, and divides the 2300 original images into 2000
training sets, 2300 original images into 2000 training sets and 300
verification sets. After data enhancement and expansion, the train-
ing set is 6000 images and the test set is 900 images (Figure 1). 

AC-YOLO algorithm
This paper mainly studies the detection of citrus fruits in natu-

ral environments, which is the basic work for realizing automatic
citrus fruit harvesting. A citrus picking robot collects images of cit-
rus fruits through an airborne binocular camera, preprocesses the
images to obtain 640 * 640 images, and extracts features using a
Darknet convolutional neural network. In order to solve the com-
plex problems in citrus detection, AC network is proposed to fuse
context information, suppress the impact of complex environ-
ments, and improve the accuracy and recall rate of citrus detection
(Liu et al., 2024b). 

After the analysis of the citrus fruit data set, most of the citrus
fruit labels are less than 0.1 of the original figure, that is, the actual
citrus fruits are mostly small targets. The deeper network layers of
Darknet-53 improve the feature extraction ability of the model
(Xiao et al., 2024). However, with the deepening of the network
layers, high-level features will disappear, especially the feature
information of small targets. Although the feature pyramid net-
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work FPN in YOLOv4 algorithm improves the detection accuracy
of small targets, its detection accuracy for small targets still fails to
meet the requirements compared with the detection of large and
medium-sized targets. Therefore, in order to obtain a deep learning
network more suitable for small target citrus fruit detection and
reduce the missed detection rate of small and medium targets in
citrus fruit, this paper first reduced the number of feature extrac-
tion network layers of the YOLOv4 model, rejected the 32 times
down sampling layer of the original network, and added 4 times
sampling layer to obtain more abundant texture information of
small targets, as shown in Figure 2.

AC network structure
In order to provide sufficient contextual information for small

citrus targets and mitigate the impact of complex backgrounds, this
paper proposes an AC network structure that integrates self-atten-
tion mechanism and contextual information, as shown in Figure 3.
The AC network structure fuses the higher level of the target fea-
ture layer with the low-level feature mapping enhanced by the

attention module to generate a new feature combination that con-
tains target context information (Guo et al., 2024). For example,
when using an 8-fold down sampling layer P3 to detect a target, its
contextual features come from the 4-fold down sampling layer P2
and the 16-fold down sampling layer P4 (Du et al., 2024). Before
feature stitching, convolution down sampling is performed on the
P2 feature layer to make it have the same spatial size as the target
feature layer P3, and the number of channels is set to 1/2 of the tar-
get feature layer. Deconvolution the P4 feature layer to obtain the
same scale as the P3 feature layer, with the channel number set to
1/2 of the P3 feature layer. Finally, the target features and context
features are superimposed to obtain enhanced feature information
P5. In the YOLOv4 network, there will be 5 consecutive 3 × 3 and
1 × 1 convolution layer. Generally speaking, the operation of
repeated convolution in high-level convolution can handle situa-
tions with multiple categories (Zhang and Su, 2023). However,
there is only one category for citrus detection on the road surface,
which means that the recognition effect of the model can be
improved by reducing the number of high-level convolution layers.
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Figure 1. Example of citrus dataset.
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Therefore, in this paper, the continuous 5-layer convolution layer
is reduced to 3 layers to improve the detection effect of citrus.
Among them, the addition of 4x down sampling features not only
enriches the texture information of small targets, but also brings in
more background texture information and noise, which has a neg-
ative impact on the detection effect. At the same time, citrus detec-
tion is mostly conducted in outdoor environments, with complex
and variable backgrounds, resulting in a high false detection rate of
the model. Therefore, a self-attention mechanism module (CBAM)
is added after sampling low-level features to reduce the negative
impact of the background and make the model pay more attention
to the target itself. The CBAM network structure is shown in
Figure 4. CBAM consists of a spatial attention module and a chan-
nel attention module, which weights useful information and sup-
presses noise and background feature information. Given an inter-
mediate feature graph F?RC×H×W as input, CBAM sequentially
calculates a one-dimensional channel attention graph MC?RC×1×1

and a two-dimensional spatial attention graph MS?R1×H×W. 
The complete attention process can be summarized in Eq. (1):

F'=MC (F)? F
F"=Ms (F')? F'         

where ? represents bitwise multiplication; when multiplied by

bits, the attention value is broadcast accordingly: the channel atten-
tion value is broadcast along the spatial dimension, and vice versa;
Fis the final refined output.

Each channel of a feature represents a classifier, and the chan-
nel attention mechanism is to select important channels and
increase their weight. The channel attention module in the CBAM
module uses global pooling and average pooling to separately uti-
lize different information and summarize spatial characteristics. As
shown in Figure 5, input the feature F?RC×H×W for global pooling
and average pooling. Then switch to shared MLP and get two 1’s
× one × channel description for C. The channel weight coefficient
Mc is obtained by adding the two feature layers and activating the
sigmoid. The spatial attention module focuses on the meaningful
areas in each channel. As shown in Figure 6, the feature layer F’ of
channel attention undergoes maximum pooling and average pool-
ing in turn, and then passes through the convolution layer and is
activated by sigmoid to obtain the spatial weight coefficient Ms.

The channel attention module uses the parallel pooling method
of Max and Avg to increase the weight of important channels
through the relationship between channels, reduce the weight of
channels such as background, and obtain more citrus feature infor-
mation to achieve better recognition and classification effects. The
spatial attention module also includes maximum pooling and aver-
age pooling, which undergo a single core convolution to enable the
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Figure 2. AC-YOLO network structure.
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Figure 3. AC network

Figure 4. Self-attention mechanism module structure.

Figure 5. Channel attention module.
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model to more accurately learn the location of the citrus. The sin-
gle core convolution in the spatial attention module defaults to a 7
* 7 convolution core, which can be adjusted according to different
detection targets when used.

Mish activation function
The role of the activation function is to map the input data of

neurons to a nonlinear domain, enabling neural networks to have the
ability to characterize nonlinear characteristics. As shown in Figure
7, if the neuron structure in the above figure does not have the non-
linear mapping ability given by the activation function, the resulting
output is always linear, and the neural network always obtains a lin-
ear model regardless of how many layers are added (Zheng et al.,
2024). However, the data distribution in nature is usually not a sim-
ple linear distribution, but a complex nonlinear distribution. Simple
linear models cannot fit the data distribution (Wang et al., 2023b).
Therefore, an excellent activation function can enable neural net-
works to have better nonlinear mapping capabilities, while enabling
neural networks to have stronger feature learning capabilities (Liu
and Liu, 2024). Sigmoid is one of the classical neural network acti-
vation functions. Eq. (2) is a sigmoid expression, and Figure 8 is a
functional coordinate diagram. From the graph, it can be concluded
that sigmoid is a monotonically continuous function. When the input
is from negative infinity to positive infinity, the output is (0,1), and
the optimization process is relatively stable during network training.
However, the soft saturation of sigmoid can easily lead to the phe-
nomenon of gradient disappearance during training, resulting in the
loss of the ability of neural networks to continue optimizing network
weights during training (Luo et al., 2023).

                                                                     

                                                          
(2)

The Tanh neural network activation function is similar to the
sigmoid activation function, and is also a monotonically continu-
ous function with soft saturation. It can map any value from nega-
tive infinity to positive infinity onto the [-1,1] interval. Eq. (3) is
the Tanh expression, and Figure 9 shows the coordinate graph of
the Tanh function. From the figure, it can be seen that the Tanh
activation function has a larger slope than the sigmoid activation
function, so it can make the training network converge faster.
However, the Tanh activation function is also prone to gradient dis-
appearance during training.

                                                                                      

                                                           
(3)

The ReLU activation function is essentially a piecewise func-
tion. Eq. (4) is the expression of the ReLU function, and Figure 10
is the coordinate diagram of the ReLU function. When x ≥0, the
function output is x, and the function derivative is equal to 1, with-
out saturation. Therefore, ReLU alleviates the problem of gradient
disappearance during the training of the network. Moreover, the
calculation process of the Re LU activation function is very simple
and fast. When x<0, the Re LU activation function is in a saturated
state and the value of the function is always 0, which causes the
network to generate many inactive neurons, also known as dead
neurons. The Death Sutra element does not play any role in the
process of network training, which results in a seemingly large net-
work with a large number of parameters, but only a small number
of neurons actually work, greatly reducing the efficiency of the
neural network.

                                                    
(4)

The Mish activation function can be expressed as follows:

                              
(5)
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Figure 6. Spatial attention module.

Figure 7. Neuron activation function.

Figure 8. Sigmoid activation function.

Figure 9. Tanh activation function..
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As shown in Figure 11, both Mish and Leaky Re LU activation
functions have the characteristics of upper unbounded and lower
bounded, and positive convergence rates are comparable. The
unbounded nature of the activation function ensures that gradient sat-
uration is avoided during model training and speeds up model train-
ing; Having a lower bound and a smaller negative value can ensure
the realization of regularization effects and the stability of the gradi-
ent flow of the network. However, compared to Leaky Re LU activa-
tion function, Mish activation function has better nonlinear character-
istics, making the model have better generalization ability, and can
improve the accuracy of the model in predicting citrus.

Results and Analysis
Evaluating indicator

Considering the requirements for the speed and accuracy of
citrus detection in practical applications, the experimental analysis
uses the average of accuracy, recall, and average accuracy as eval-
uation indicators.

i) Accuracy and recall:

where TP represents the number of samples where the detected tar-
get category is consistent with the real target category, FP repre-
sents the number of samples where the detected target category is
inconsistent with the real category, and FN represents the number
of samples where the real target exists but has not been detected.
The citrus dataset used in this article has many small targets, and
improving the recall rate is even more important.

                    Article

Table 3. Results of ablation experiment.

Algorithm                       P                        R              mAP@0.5/%

YOLOv4                             0.875                     0.862                       88.9
AC-YOLO                          0.898                     0.948                       91.2
                                            0.902                     0.933                       92.8
                                            0.912                     0.921                       93.6

Table 1. Prior frame combination.

Target feature layer             Prior frame combination

×4                                                       (20, 10) (26, 15) (31, 22)
×8                                                      (37, 30) (42, 22) (52, 56) 
×16                                                    (55, 19) (70, 32) (94, 98) 

Table 2. Experimental results of citrus data set.

Algorithm                               mAP@0.5                  APS ARS

YOLOv5                                                80.5                            11.5 29.8
AC-YOLO                                             78.8                            12.8 32.1

Figure 10. ReLU activation function.

Figure 11. Mish and Leaky Relu activation functions.
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Table 4. Comparison of different models for sub image-recognition results.

Network model                Precision (%)      Recall (%)            AP value (%)        F1 score          File size (MB)            Detection time

Fast R-CNN                                     93.55                     82.73                            89.87                       0.88                          124                                  0.276
Faster R-CNN                                  94.57                     91.45                            87.53                       0.71                          521                                  0.053
YOLOv4                                          95.12                     92.88                            95.25                       0.94                          244                                  0.052
Improved YOLOv4                         95.08                     88.73                            93.25                       0.92                           54                                   0.039
YOLOv5-l                                        95.48                     88.90                            93.66                       0.92                          225                                  0.054
YOLOv5-x                                       95.81                     88.43                            93.26                       0.92                          347                                  0.064
AC YOLO                                       96.19                     95.47                            97.27                       0.96                          171                                  0.052
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ii) Average accuracy:

Anchor parameter optimization
YOLOv4 draws on prior frame Anchors to predict the frame

coordinates, which are sets of prior frames with fixed width and
height. In the process of target detection, the size of prior frame
and the matching degree of target directly affect the speed and
accuracy of model detection. Therefore, it is particularly important
to set the matching Anchor parameter combination according to
the characteristics of citrus fruit labels in the citrus fruit data set.
The citrus fruit targets in the data set used in this paper are mostly
small targets, and the original prior frame size of YOLOv4 no
longer meets the detection requirements, so it is necessary to re-
cluster and optimize Anchor parameters. Considering that the K-
means algorithm has great randomness in the selection of the ini-
tial cluster center, which will have a negative impact on the clus-
tering results, this paper selects the k-means++ algorithm with less
randomness to perform the clustering calculation. The k-means++
algorithm was used to recluster the homemade citrus fruit data set.
Through multiple clustering comparison, when the combination of
prior frames is greater than 9 groups, there are redundant prior
frame combinations, so 9 groups of prior frames are the optimal
combination of citrus fruit data sets. The distribution of detection
scales is shown in Table 1.

Image recognition results
Training loss value and training process

The AC-YOLO model proposed in this article is used to train
the training set, and the trained model is used to detect the verifi-
cation set. The loss curve and verification set training process of
each training generation’s training set and verification set are

shown in Figure 12.
As can be seen from the training process in Figure 12, when

the number of iterations reaches 300, the loss curve of the verifica-
tion set tends to flatten out, and the evaluation indicators for the
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Figure 12. Training process of AC-YOLO model. a) Loss curve of
training set and validation set; b) each evaluation curve of valida-
tion set.

Figure 13. Visualization of our AC-YOLO detection results and some comparison methods in the natural environment of the orchard.
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verification set gradually stabilize. Finally, the loss rate of the val-
idation set fluctuates around 0.04, and the AP value of the valida-
tion set reaches over 93%, resulting in model convergence.

Quantitative comparison experiment
In order to verify that the proposed method can effectively

improve the efficiency of small target detection, the average accu-
racy of the evaluation indicators mAP@0.5, APs and ARs were
selected to conduct a comparative experiment on the citrus fruit
dataset, and the input image size was 640×640. As can be seen
from Table 2, on the basis of ensuring the detection accuracy, AC-
YOLO has achieved better results in the accuracy and recall rate of
small targets than YOLOv5 and super resolution methods, which
indicates that AC-YOLO can effectively improve the detection
effect on small target citrus fruits. In order to further verify that the
proposed method effectively improves the efficiency of citrus fruit
detection, target detection algorithms were selected to evaluate
index accuracy (P), recall rate (R) and average accuracy (m
AP@0.5) to conduct ablation comparison experiments on citrus
fruit data sets. As can be seen from Table 3, the addition of AC net-
work structure significantly improves the recall rate and accuracy
of the model, indicating that the AC structure effectively improves
the detection ability of the network for small target citrus fruits. At
the same time, the use of Mish activation function enhanced the
generalization ability of the model, further improving the detection
performance of the citrus fruit detection model.

Performance evaluation of different models
In the experiment, the training sets with the same partitioning

strategy were used to train the currently widely used target detec-
tion network models Fast R-CNN, Faster R-CNN, YOLOv4,
Improved YOLOv4, YOLOv5-l, YOLOv5-x, and the AC YOLO
model proposed in this article. The same test set data were tested
separately, and the results obtained are shown in Table 4.

As can be seen from Table 4, the Faster R-CNN model occu-
pies a large space and has an accuracy rate of only 57.94%, result-
ing in poor recognition performance. The accuracy and recall rate
of the Center Net model are relatively low, 93.55% and 82.73%,
respectively, which are lower than the YOLOv4 and YOLOv5
series algorithms. The YOLOv4-Lite model takes up less space
and has a faster detection speed, but the recall rate is only 88.73%.
The accuracy of YOLOv5-l and YOLOv5-x models is relatively
high, reaching 95.48% and 95.81% respectively, but the recall rate
is nearly 4 percentage points lower than YOLOv4. The improved
YOLOV4 model proposed in this article has a detection speed
comparable to that of the YOLOV4 model, with an accuracy rate
of 96.19%, a recall rate of 95.47%, and an AP value of 97.27%.
Compared with the previous YOLOV4 model, it has increased by
1.07, 2.59, and 2.02 percentage points, respectively, with an F1
score of 0.96. The recognition effect of the YOLOv4 model before
and after the improvement is shown in Figure 13.

There is a phenomenon of missing recognition in the recogni-
tion of citrus fruits using the model trained using the AC-YOLO
model, which is mainly reflected in the fact that in citrus images
taken on cloudy and sunny days, the missing recognition phe-
nomenon is relatively serious for fruit targets with severe occlusion
or deviation in fruit color caused by overexposure. The improved
YOLOv4 model in this article can effectively detect the fruits that
are not identified above by detecting the same image.

Conclusions
In order to solve the problem of high miss detection rate and

false detection rate in citrus detection under complex background,
this paper proposes an AC-YOLO based citrus detection algorithm
in orchard natural environment. By collecting citrus images and
labeling images in the natural environment of the orchard, and ana-
lyzing the characteristics of citrus on the road, this paper estab-
lished a citrus dataset in the natural environment of the orchard.
Then, K-means++algorithm is used to cluster and analyze the cit-
rus dataset to obtain the optimal Anchor parameter. Aiming at the
difficulties of citrus detection in orchard natural environment, this
paper proposes an AC network based on self-attention and context
feature information, and calls on Mish activation function to
enhance the generalization ability of the model, improving the
detection accuracy of citrus in orchard natural environment.

In this paper, the attention mechanism of AC network structure
and deep separable convolution are introduced to improve the
YOLOv4 network model for citrus recognition in the natural envi-
ronment of orchards. Through testing different target detection net-
work models and the AC-YOLO model proposed in this paper, the
results show that the model proposed in this paper performs better
than other models, with accuracy, recall, and average accuracy
reaching 96.19%, 95.47%, and 97.27%, respectively, with an F1
score of 0.96.

This paper proposes a boundary box matching and merging
algorithm based on threshold value, which combines the recogni-
tion results of citrus fruits in the orchard natural environment using
the AC-YOLO model. The accuracy rate of the merged citrus
recognition results reaches 96.17%, the recall rate reaches 95.63%,
and the average accuracy reaches 95.06%. Compared with the
direct recognition of citrus, the algorithm has significantly
improved the effect, and can better identify citrus fruits in the
orchard natural environment with larger resolution.
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