
Abstract 
Mechanical damage of tea plant is a serious problem in tea

production. This work employed metal oxide semiconductor
(MOS) gas sensors and gas chromatography-mass spectrometer
(GC-MS), as an auxiliary technique, to detect tea plants with dif-
ferent types of mechanical damage in different severities. Various
algorithms were applied. The results showed the uniformity of the
results of gas sensors and GC-MS. While, it was hard for gas sen-
sors to discriminate among tea plants with different types of
mechanical damage. However, the feasibility of gas sensors for
predicting the damage severity in different damaged types based
on gas sensors was proven, which was more meaningful. Finally,
multi-layer perceptron neural networks (MLPNN) were employed
and the results showed that the correct discrimination accuracy
rate for damage severity was 99.07% for the training set and

95.83% for the testing set, which indicated that MLPNN was an
excellent algorithm for damage severity determination. This study
provided a new technique for mechanical damage of tea plant
detection and was very meaningful for tea plant protection.

Introduction
Tea (Camellia sinensis) with great flavor and a high content of

beneficial substances (Yang et al., 2023), is the most widely con-
sumed beverage aside from water (Tang et al., 2024).
Furthermore, the tea plant is grown around the world and is an
important crop in many countries. Morocco, Japan, and China
have consumed green tea for centuries (Abiri et al., 2023).
Especially for China, who is the homeland of tea that boasts a
long-standing history of tea planting, tea is one of the most signif-
icant economic crops (Jiang et al., 2023). Tea leaves and buds are
raw materials of tea, and their health is therefore a crucial factor
for producing high-yield and high-quality tea.

However, tea plant easily suffers mechanical damage, which is
a type of stress that occurs mostly because of environmental fac-
tors and pests’ feeding, causing several negative impacts on the
plant and leading to severe consequences for marketing and con-
sumption. Firstly, mechanical damage will cause morphological
and physiological changes in plants and decrease the nutritive
value of fruit (Miller, 1992). Secondly, mechanical damage influ-
ences the physiological processes of plants, especially photosyn-
thesis. The decrease in leave area because of mechanical damage
lowers the quantity of biomass produced through photosynthesis
and some defense materials are induced influencing photosynthe-
sis (Nykänen et al., 2004). Moreover, the photosynthetic rate
decreases when the foliage of this plant is damaged (Zangerl,
2002), even for the photosynthetic rate of undamaged leaves
(Lautner et al., 2005). In addition, mechanical damage makes the
infestation of disease easier (Chacón-Fuentes et al., 2023; Lee et
al., 2006), which leads to a decrease in quantity and quality of tea.

However, there is not an appropriate method to detect it.
Machine vision (Ghooshkhaneh and Mollazade, 2023) is a widely
applied technology for damage detection in agriculture. But, as to
the situation in this study, the mechanical damage usually hides in
leaves, which makes it difficult to detect based on machine vision.
On the other hand, a lot of research about the reaction of plants to
mechanical damage have been reported and the results show that
volatile organic compounds (VOCs) emitted by plants changed
after the plant suffered damage (Bezerra et al., 2021; Holopainen
et al., 2010). The reason is that the VOCs, which mainly contain
green leaf volatiles, are stored in plant cells and emitted immedi-
ately after mechanical damage.

The type and severity are two main parts of mechanical dam-
age, and they should be combined to study. For different types of
mechanical damage, the evaluation indexes of their severities are
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quite different. For example, it is very hard to compare the severity
of mechanical damage between the types of cut and scratch. And,
the previous studies about it are not found. Hence, in this study, tea
plants with different types of mechanical damage in different
severities were detected by gas sensors and gas chromatography-
mass spectrometer (GC-MS) for giving a more comprehensive
result. Gas sensors (Ma et al., 2023), which are a nondestructive
technique that mimics the human olfactory system detecting
volatiles emitted by samples, therefore have the potential to detect
plants with damage. The working principle of this technique is that
a large number of different compounds contribute to define a mea-
sured smell, the sensor array then provides a pattern output that
represents a combination of all the components, also known as
“fingerprints” of data (Piłat-Rożek et al., 2023). The metal oxide
semiconductor (MOS) gas sensors are widely used for their lower
power consumption and low susceptibility to humidity and temper-
ature (Sibi et al., 2024). Furthermore, it is an easy operation and
quick detection technique, which make it potential for actual appli-
cation. On the other hand, GC-MS is a precise and stable detection
technique, and able to determine the constituents of volatiles and
their amounts. Furthermore, constituents presenting in low-con-
centration and complex matrices are also available (Aghoutane et
al., 2023). In this study, the mechanical damage characteristics of
tea plants were presented as VOCs and explored in detail.
Mechanical damage type and severity were studied together.
Furthermore, the damage severity of different damaged types was
predicted in one model for giving more practical results. The
objectives were: i) to prove the difference of VOCs emitted by tea
plants with different types of mechanical damage in different
severities using GC-MS; ii) to evaluate the ability of gas sensors in
discriminating among tea plants with different types of mechanical
damage; iii) to evaluate the ability of gas sensors in predicting
damage severity of tea plant.

Materials and Methods
Samples preparation

Tea plant cultivar “clone Longjing43” (25~30 cm high and
8~10 leaves for each plant) was employed in this study. They were
provided by the Tea Research Institute, Chinese Academy of
Agricultural Sciences. These tea plants were cultivated for experi-
ments specifically and taken care of carefully, making sure that
each tea plant was healthy. Moreover, each tea plant was trans-
planted to the laboratory one week before the experiment and kept
under controlled conditions (24±2 C, 75-85% of relative humidi-
ty). Ten treatments (tea plants with no damage, with cut damage in
three severities: one cut, two cuts and three cuts, with scratched
damage in three severities: one scratch, two scratches and three
scratches, and with punctured damage in three severities: five
punctures, ten punctures and fifteen punctures) were carried out in
this experiment and labeled as group Undamaged, 1Cut, 2Cut,
3Cut, 1Scratched, 2Scratched, 3Scratched, 5Punctured,
10Punctured, 15Punctured, respectively. For GC-MS measure-
ment, 3 tea plant samples were prepared for each group, while for
gas sensors measurement, 20 tea plant samples were prepared for
each group.

For the damaged type of cut, the length of it was 20 mm for
each leaf. Groups 1Cut, 2Cut and 3Cut had one, two and three
leaves damaged, respectively. For the damaged type of scratch, the
area of it was 1 mm2 for each leaf. Groups 1Scratched, 2Scratched
and 3Scratched had one, two and three leaves damaged, respec-

tively. For the damage type of puncture, groups 5Punctured,
10Punctured and 15Punctured had 5 needle pricks, 10 needle
pricks and 15 needle pricks, respectively. The treatment can be
seen in Figure 1.

GC-MS measurement
Purge-and-trap coupled with GC-MS was employed to deter-

mine VOCs in different samples (Andrews et al., 2015). In this
experiment, 8 h was used for collecting VOCs. Then, the collected
VOCs were eluted with 900 μL of dichloromethane. Ethyl caprate
was taken as the internal standard, and 3 μL of Ethyl caprate
dichloromethane (50 μL/L) was injected into the eluted solution by
a syringe with a range of 10 μL. The solution made above was ana-
lyzed by GC-MS.

In this study, VOCs were analyzed in an HP 6890 series gas
chromatograph equipped with a flame ionization detector and cou-
pled to an HP 5973 mass spectrometer selective detector (Agilent
Technologies, Palo Alto, CA, USA). An HP-5 methyl siloxane
chromatographic column (30 m, 0.25 mm internal diameter, and
0.25 μm film thickness; Alltech, Deerfield, IL, USA) was used for
separation. Helium (24 mL/min) was used as the carrier gas.

A splitless injection was carried out (injection temperature
250°C and remained for 3 min for desorption; injected volume 2
μL). Following injection, the column temperature was pro-
grammed from 45°C (2 min) to 140°C at 3°C/min, then increased
to 200°C at 6°C/min, and finally reached 260°C at 20°C/min. The
ion source temperature was set to 230 °C. The electron impact of
mass spectra was recorded at 70 eV ionisation energy within a
mass range of 40~350 amu. Compounds were identified by com-
paring the recorded mass spectra with the National Institute of
Standards and Technology (NIST 11.0) mass-spectral library. In
addition, the retention indices (RI) were calculated using a homol-
ogous series of n-alkanes (C8-C20) (Sigma-Aldrich Shanghai
Trading Co., Ltd., Shanghai, China).

Gas sensor measurement
In this study, an E-nose system (PEN2, Airsense

Analytics,GmBH, Schwerin, Germany) equipped with ten differ-
ent gas sensors is applied. Their characteristics of them are given
in Table 1. Prior to the measurement, each sample was put into a
Ziploc bag, and the bag was sealed with clips for 30 minutes,
ensuring that headspace volatiles were stable enough for detection.
During the measurement process, the tea plant headspace volatiles
were pumped into a chamber where gas sensors were in it. The
flush time (the time of zero gas passing through the sensor array)
was set to 50 seconds with a rate of 600 mL/min, while the mea-
surement time (the time sample gas passing through the sensor
array) was 80 seconds with a rate of 200 mL/min. The data was
collected and recorded by computer once per second.

Data analysis methods
The stable value of signal response is a widely applied feature

in gas sensor results analysis (Jiang et al., 2017). In this study, the
80th of the signal response of each sensor was extracted as stable
values and applied for the next analysis. The principal components
analysis (PCA) is a method seeking to use a linear combination of
the original variables to derive an index measure of multilateral
data while capturing their maximum variance (Lu et al., 2020;
Tonin et al., 2024) and is able to handle high-dimensional and
highly correlated data by projecting the data onto a lower-dimen-
sional subspace that constrains most of the variance of the raw
data. Finally, several principal components (PCs) are selected for
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their higher contribution rates. By contrast, locally linear embed-
ding (LLE) is a nonlinear method that computes low-dimensional,
neighbourhood-preserving embeddings of high-dimensional inputs
(He et al., 2023). This algorithm attempts to discover nonlinear
structures in high dimensional data by exploiting the local symme-
tries of linear reconstructions and is able to learn the global struc-
ture of nonlinear manifolds (Wang, 2012). Linear discriminant
analysis (LDA) is a supervised method and allows easy visualiza-
tion of almost all the information contained in the dataset.
Furthermore, it is able to extract useful information from the data
to explore the data structure, including correlations between vari-
ables and relationships between subjects (Lin et al., 2021).

K-means cluster analysis is a kind of “hard” partitioning meth-
ods, in which each point is assigned to only one particular cluster.
K-means cluster analysis starts with k cluster centers that are cho-
sen at random or according to some heuristic procedure. In each
iteration, each instance is assigned to its nearest cluster center,
resulting in a re-calculation of the cluster center. This process is
repeated until a convergence criterion is met. The k-means is pop-
ular for its ease of interpretation, speed of convergence and adapt-
ability (Sheikhhosseini et al., 2021).

Multi-layer perceptron neural network (MLPNN) is one of the
most popular neural networks in use today (Seo and Min, 2023).
An MLPNN consists of three layers, including one input layer, one
output layer, and one or more hidden layers. The number of neu-
rons in the hidden layers is determined by a trial-and-error proce-
dure. Neurons between two layers are connected through commu-
nication links-associated weights, which are determined by a learn-
ing (training) algorithm (Zhu et al., 2021).

The data processing methods (LDA, k-means cluster analysis
and MLPNN) were analyzed by SPSS version 22 (SPSS Inc.,
Chicago, IL, USA). PCA and LLE were performed by MATLAB
2020a software (MathWorks, Natick, MA, USA).

Results
Results of GC-MS

The main VOCs emitted by tea plants with ten different groups
were identified by GC-MS and their amounts are presented in
Figure 2. In Figure 2a the results of group Undamaged are illustrat-
ed, while Figure 2 b,c,d represent the results of groups Cut,

Scratched and Punctured in three different damage severities,
respectively. The x-axis is the value of RI and the y-axis is the
amount of each VOC. One RI corresponds to one certain VOC.
The values of RI were compared with those in other literatures,
which made the identified VOCs more reliable. Finally, six main
VOCs (tetrachloroethylene, α-pinene, 3-carene, limonene, nonanal
and naphthalene), whose RI are 801, 930, 1006, 1026, 1104 and
1178, respectively, are presented. In Figure 2, VOCs emitted by
group Undamaged are quite different from those emitted by groups
with mechanical damage. For group Undamaged, only one of six
VOCs is detected. While, for groups with mechanical damage, six
VOCs are all detected. As shown in Figure 2, for the groups with
the same type of mechanical damage in different severities, the
amounts of VOCs are different and their amounts increase as the
raise of severity of mechanical damage generally. For the groups
with mechanical damage, the amounts of VOCs for groups with
cut and punctured damage are similar, which range from 30 to 400
ng/8hours. While, for the groups with scratched damage, the
amounts of VOCs are relatively low. However, their amounts
would increase and be similar to those of the other two groups if
the severity of scratched damage becomes more serious.
Furthermore, the proportions of VOCs among groups with differ-
ent types of mechanical damage are similar, where the amounts of
α-pinene, 3-carene and limonene are relatively high and those of
the other three VOCs are low.

According to the description above, VOCs emitted by group
Undamaged are quite different from those emitted by groups with
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Table 1. Sensors used and their main applications.

Number in array      Sensor name        General description                                                                                              Reference

S1                                            W1C                 Aromatic compounds                                                                                                         Toluene, 10 ppm
S2                                             W5S                 Very sensitive, broad range sensitivity, react on nitrogen oxides, very 
                                                                          sensitive with negative signal                                                                                                NO2, 1 ppm
S3                                            W3C                 Ammonia, used as sensor for aromatic compounds                                                          Propane, 1 ppm
S4                                             W6S                 Mainly hydrogen, selectively (breath gases)                                                                         H2, 100 ppb
S5                                            W5C                 Alkanes, aromatic compounds, less polar compounds                                                      Propane, 1 ppm
S6                                             W1S                 Sensitive to methane (environment) ca. 10 ppm. Broad range, similar to no. 8               CH3, 100 ppm
S7                                            W1W                 Reacts on sulphur compounds, H2S 0.1 ppm. Otherwise sensitive to many 
                                                                          terpenes and sulphur organic compounds, which are important for smell, 
                                                                          limonene, pyrazine                                                                                                                 H2S, 1 ppm
S8                                             W2S                 Detects alcohol’s, partially aromatic compounds, broad range                                           CO, 100 ppm
S9                                            W2W                 Aromatics compounds, sulphur organic compounds                                                            H2S, 1 ppm
S10                                           W3S                 Reacts on high concentrations >100 ppm, sometimes very selective (methane)       CH3, 10 CH3, 100 ppm

Figure 1. Four treatments for the tea plant.
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mechanical damage. On the other hand, for the groups with the
same type of mechanical damage in different severities, their
amounts of VOCs follow a certain rule and are easily identified.
However, for the groups with different types of mechanical dam-
age, the amount range and proportion of VOCs have similarities,
which make it hard for discrimination. The possible reason is that
the VOCs, which are stored in plant cells and emit after mechani-
cal damage, are the same for different types of mechanical damage.
In addition, that is the main factor for the change of VOCs after
mechanical damage and influences the VOCs most. 

Results of gas sensors
In this study, three types of mechanical damage (cut, scratch

and puncture) were employed and undamaged tea plants were
included as the controlled group. PCA, LLE and LDA were
applied for visualizing the groups’ distribution and their results are
shown in Figure 3 and Figure 4. Figure 3 is the results of PCA.
Figure 3 a,b represents the score plot and the loading plot, respec-
tively. In Figure 3a, the red, yellow, cyan and blue points are the
groups Undamaged, Cut, Scratched and Punctured, respectively.
The two PCs explain 97.13% of the total contribution variance,
which is sufficient enough to represent the whole information of
gas sensor results. Moreover, four clusters can be seen, which indi-
cates the possibility of discrimination. From Figure 3b, the rela-
tionships of sensors and PCs can be seen. The point of each sensor

is far away from the zero-point, which indicates a close relation-
ship. Furthermore, S1, S3 and S5 have similar performances. S6
and S8 are similar. Combining with Figure 3 a,b, the correlation
between gas sensors and each sample could be seen, which indi-
cates the feasibility of those gas sensors. For example, Group
Undamaged is relevant to S6 and S8. Group Cut is correlated with
S1, S3 and S5. All in all, four groups could be discriminated cor-
rectly and gas sensors are feasible for tea plant detection.

Then, LLE and LDA were employed, and the results are shown
in Figure 4. Better results are obtained. Especially for Group
Undamaged, it is far away from other groups. On the other hand,
the results of GC-MS also show a big difference between group
Undamaged and other groups, which indicates the consistency.
Next, more in-depth research was carried out. PCA, LLE and LDA
were employed again to deal with the results of gas sensors in
detecting tea plants with different types of mechanical damage in
different severities. Figure 5 and Figure 6 represent the results of
PCA, LLE and LDA, respectively. Nine groups (three types of
mechanical damage in three severities) are included. Points of
groups 1Cut, 2Cut, 3Cut, 1Scratched, 2Scratched, 3Scratched,
5Punctured, 10Punctured and 15Punctured are black square, red
circle, orang upper triangle, yellow lower triangle, green diamond,
green left triangle, light blue right triangle, blue hexagon and dark
blue five-pointed star, respectively.

Figure 5 a,b are the score plot and the loading plot, respective-
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Figure 2. Six main VOCs emitted by tea plants with ten different treatments were identified by GC-MS. a) Undamaged tea plants; b) tea
plants with cut damage; c) tea plants with scratched damage; d) tea plants with punctured damage.
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ly. As shown in Figure 5a, two PCs explain 97.13% of the total
contribution variance, which is sufficient enough to represent the
whole information of gas sensor results. The results of Figure 5b
are similar to those of Figure 3b, which indicates the reliability of
PCA. However, groups are clustered and hard to be discriminated.
Hence, LLE and LDA were employed again. The results of LLE
(results in Figure 6a are similar to those of PCA in Figure 5). Two
main parts can be divided. The first part includes groups 2Cut,
3Cut, 10Punctured and 15Punctured, while the second part
includes groups 1Scratched, 2Scratched, 3Scratched and
5Punctured. Group 1Cut stayed between these two parts.
Moreover, it could be easily found that the first part is the tea
plants with higher severity of mechanical damage, while the sec-
ond part is the ones with lower severity. On the other hand, three
types of mechanical damage (cut, puncture and scratch) are clus-
tered in one part, which indicates the unfeasibility of gas sensors in
discriminating among tea plants with different types of mechanical
damage. In Figure 6b, the group’s distribution becomes clearer,
and the group’s distribution from left to right is groups 3Cut, 2Cut,
15Punctured, 10Punctured, 1Cut, 5Punctured, 3Scratched,
2Scratched and 1Scratched respectively, if all groups are projected
onto the x-axis. Combined with Figure 2 (the amount of VOCs), it
also could be considered as the decrease in severity of mechanical
damage. Besides, groups 2Scratched and 3Scratched overlap, the
reason of which might be that their damage severities are too sim-

ilar for detection and the severity of scratched damage is hard to be
distinguished because of low damage severity.

According to the description above, the mechanical damage
type is hard to discriminate if combined with damage severity.
However, there is a relationship between damage severity and gas
sensor output. Clearer and more accurate results of the relationship
are necessary. Hence, K-means cluster analysis and MLPNN were
employed for next analysis. For K-means cluster analysis, nine
classes were set because there were nine groups for discrimination.
The results are shown in Table 2. Each row means each tea plant
group, and each column means the class of K-means cluster anal-
ysis. Moreover, the class that highest number of tea plants belong-
ing to is considered as the target one. For example, there are 10
samples of group 1Cut belonging to class 1, which is the highest.
Hence, group 1Cut is considered as in class 1. Then, six main parts
could be finally clustered. The first part contains group 1Cut, the
second part contains groups 2Cut and 3Cut, the third part contains
groups 1Scratched, 2Scratched and 2Scratched, the fourth, fifth
and sixth parts are groups 5Punctured, 10Punctured and
15Punctured, respectively. Furthermore, the groups in the same
part are the neighbour according to Figure 6b, which indicates its
correctness. Moreover, the severity of each class also can be seen
combined with Figure 6, whose severities from slight to serious are
the second part, sixth part, fifth part, first part, fourth part and third
part, respectively. On the other hand, the groups’ distribution gives
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Table 2. Rresults of K-means cluster analysis.

Class                                  1                    2                          3                    4                  5                   6                 7                     8                    9

1Cut                                         10                                                                              1                     1                      1                    1                        3                       3
2Cut                                                                  15                                                                                                                                                                             5
3Cut                                                                  20                                                                                                                                                                              
1Scratched                                1                                                      2                                              1                     14                                             2                        
2Scratched                                1                                                      3                                                                     16                                                                       
3Scratched                                2                                                      1                                                                     17                                                                       
5Punctured                               2                                                      1                                                                      1                                             16                       
10Punctured                                                                                                                                                                                   1                                                19
15Punctured                                                      2                                                                                                                          17                                                1

Figure 3. PCA results of tea plants with different types of mechanical damage. a) Score plot; b) loading plot.
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a guide for MLPNN analysis next. For MLPNN, a model with
three layers was employed. The activation function was set as the
sigmoid transfer function and the learning rate was set as 0.3. 180
samples (20 samples for each group) were divided randomly into
training and testing subsets, 108 samples (12 samples of each

group) for the training set and 72 samples (8 samples of each
group) for the testing set. The groups that were hard to be discrim-
inated were considered as in the same part for the similarity of
damage severity. The number of parts was the output dimension of
MLPNN, which was determined by the results of the K-means
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Figure 4. Visualization analysis of tea plants with different types of mechanical damage. a) Results of LLE; b) results of LDA.

Figure 5. PCA results of tea plants with different types of mechanical damage in different severities. a) Score plot; b) loading plot.

Figure 6. Visualization analysis of tea plants with different types of mechanical damage in different severities. a) Results of LLE; b)
results of LDA.
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cluster analysis. Hence, six parts, which also can be considered as
six damage severity degrees, were divided. The correct discrimina-
tion accuracy rate was obtained. Finally, its results show that the
correct discrimination accuracy rate for damage severity is 99.07%
for the training set and 95.83% for the testing set, respectively,
which is good enough for damage severity prediction.

Discussion
The results of GC-MS and gas sensors have been displayed

above. Furthermore, the relationship about damage severity among
different types of mechanical damage became clearer and clearer
from the visualization analysis (PCA, LLE and LDA) to K-means
cluster analysis and MLPNN.

According to the results of GC-MS (Figure 2), there is only
one main VOC (Tetrachloroethylene) detected by GC-MS for
undamaged tea plants. Hence, the other five VOCs can be consid-
ered as emission because of mechanical damage. On the other
hand, the amount range and proportion of VOCs are both similar,
which makes it hard for discrimination based on VOCs. It also
means that it is hard for gas sensors to discriminate among tea
plants with different types of mechanical damage, which is incon-
sistent with the results of Figure 3 and Figure 4. The possible rea-
son is that the damage severity of tea plants with different types of
mechanical damage detected by gas sensors is different and causes
the good discrimination results of Figure 3 and Figure 4. It is very
hard to obtain the same severity of mechanical damage with differ-
ent types. Hence, the true item that discriminated by gas sensors is
the severity of mechanical damage. Furthermore, according to the
results of GC-MS, the VOCs emitted by tea plants with the same
type of mechanical damage in different severities are also different,
which indicates that it is highly possible to discriminate among
them based on VOCs. However, the discrimination performances
of damaged and undamaged tea plants are all great according to
either GC-MS or Figures 3 and 4.

Hence, the discrimination performance of damaged tea plants
needs to be discussed next. According to the results of Figure 5 and
Figure 6, it is hard to discriminate among tea plants with different
types of mechanical damage, which corresponds to the results of
GC-MS. In more detail, the amount of VOCs emitted by group
3Cut is the highest and those of VOCs emitted by scratched groups
are relatively low, which is consistent with the results of LDA. By
contrast, the damage severity is able to be evaluated from serious
to slight generally, which is a more important parameter for evalu-
ating damage loss. 

For K-means cluster analysis, nine groups are divided into six
parts based on the damage severity scale, which is similar to the
results of LDA. However, according to Figure 6b and Table 2,
there are still some samples that overlap with other groups. Hence,
MLPNN was employed for more accurate and detailed results.
Finally, its results show that the correct discrimination accuracy
rate for damage severity is 99.07% for the training set and 95.83%
for the testing set, respectively. The results indicate the good per-
formance of MLPNN and the feasibility of damage severity pre-
diction, which is more meaningful for pant protection than damage
type prediction. This study provides a new method for damage
severity prediction of tea plant. 

Conclusions
This study employed E-nose with gas sensors to detect tea

plants with different types of mechanical damage in different
severities. GC-MS was applied as an auxiliary technique. The dis-
crimination ability of different types of mechanical damage and
their damage severities were studied, respectively. Conclusions
were reached here:

i) The results of GC-MS showed that the amount’s range and
proportion of VOCs were all similar for the groups with different
types of mechanical damage, which made it hard for discrimina-
tion based on VOCs. However, for the groups with different
mechanical damage severities, their amounts of VOCs were differ-
ent and increased as the increase of severity of mechanical damage
generally.

ii) In combination with the results of GC-MS, it was unfeasible
to discriminate among tea plants with different types of mechanical
damage based on VOCs. However, it was assured that the group
Undamaged could be identified from the damaged groups.

iii) Three algorithms (PCA, LLE and LDA) were employed to
visualize the discrimination results of tea plants with three types of
mechanical damage in three severities. LDA had the best perfor-
mance and the results showed the groups’ distribution as the
increase of damage severity and indicated that it was potential for
gas sensors in predicting the damage severity of tea plants.

iv) K-means cluster analysis indicated six damage severity
scales, which corresponded to the results LDA and was set as a
parameter for MLPNN. The prediction results of MLPNN were
good enough, whose correct discrimination accuracy rate for dam-
age severity was 99.07% for the training set and 95.83% for the
testing set. All in all, the results proved that the severity of different
mechanical damage types was able to be identified by gas sensors,
which was more meaningful for pant protection. Furthermore, gas
sensors have the characteristics of simple operation and quick
detection, making them potential for practical applications.
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