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Abstract 
Optical proximal sensing is playing an increasingly important role in the development of advanced 
strategies for monitoring and optimizing vineyard management. Technological advancements are now 
enabling the creation of smart systems that support growers in data-driven decision-making processes. 
This review investigates the specific needs and challenges of modern viticulture and then explores the 
current applications and future perspectives of optical sensing technologies such as spectroscopy, 
multispectral and hyperspectral imaging, and thermography for assessing grape ripening and 
monitoring vine water status. Special attention is given to optical technologies that are particularly well-
suited for viticultural applications, as they address key demands for high-quality, real-time, and 
sustainable information. Recent innovations include the integration of optical sensors with spectral 
platforms, IoT systems, and robotics within agricultural machinery technologies that are especially 
relevant for managing vineyards under increasing climatic stress. Therefore, this review also highlights 
emerging trends, for the development of autonomous and distributed sensing networks, and their 
incorporation into next-generation decision-support systems. By synthesizing existing knowledge and 
outlining future directions, this work aims to provide researchers and practitioners with a forward-
looking perspective on how optical proximal sensing can contribute to build a more resilient, efficient, 
and precision-driven viticulture system. 
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EFC Extractable flavanol content R2

CV Coebicient of determination in cross-
validation 

EPC Extractable phenolic content R2
P Coebicient of determination in prediction 

FPI Fabry-Perrot interferometer RGB Red Green Blue 
FWHM Full width at half maximum RMSE Root Mean Square Error 
gs Stomatal conductance RMSECV Root Mean Square Error in cross-

validation 
HSI Hyperspectral Imaging RMSEP Root Mean Square Error in Prediction 
Ig stomal conductance index RPD Ratio Performance Deviation 
IoT Internet of Things RS Remote Sensing 
KNN K-Nearest Neighbours RWC Leaf water content  
LDA Linear Discriminant Analysis SECV Standard Error in cross-validation 
LED Light Emitting Diode SEP Standard Error in prediction 
LoRaWan Long Range Wide Area Network SIMCA Soft Independent Modelling by Class 

Analogy 
MEMS Micro-Electromechanical Systems SQC Statistical Quality Control 
MIR Mid-infrared SVM Support Vector Machine 
MLR Multiple Linear Regression SVM-R Support Vector Machine Regression 
MOEMS Micro-opto-electromechanical 

systems 
SWOT Strengths Weaknesses Opportunities 

Threats 
MPLS Modified Partial Least Square Tc  Leaf temperature 
MSPC Multivariate statistical process control TSS Total Soluble Solid 
NB-IoT Narrowband-IoT UV Ultraviolet 
NDGI Normalized Diberence Greenness 

Index 
VARI Visible Atmospherically Resistant Index 

NDGIopt Normalized diberence greenness index 
(optimized wavelength) 

VARIopt Visible Atmospherically Resistant Index 
(optimized wavelength) 

NDVI Normalized Diberence Vegetation 
Index 

Vis Visible 

NIR Near-Infrared WABI Water Absorption Indexes  
NPQ Non-photochemical quenching WI Water Index 
NRI Normalized reflectance index WSNs Wireless Sensor Networks 
opt Optimized wavelength ρ Correlation coebicient of Spearman 
PAT Process Analytical Technology ΨPD  Predawn water potential 
PC Principal Component ΨS  Stem water potential 
 

Introduction 
Challenges of the viticulture sector 
The wine sector operates within a complex context where market dynamics, pricing strategies, and 
financial aspects are paramount (Camillo et al., 2023). Vineyard managers are constantly called upon 
to ensure their operations' profitability and economic sustainability. The guarantee of obtaining 
(continuously over the years) grapes in adequate quality and quantity reducing the uncertainty linked to 
the variability of weather phenomena, assumes a crucial aspect to strengthen the enterprises of the 
sector guaranteeing productive, economic, and employment returns.  



Summer stresses, resulting from frequent heat waves (days with particularly high daytime maximum 
temperatures and nighttime minimums) during grape ripening, along with late spring frosts, represent 
constant pitfalls for the productivity of vineyards and the quality of their grapes. Vineyard areas are in 
the context of an expected increase in the frequency and intensity of heat waves and, as a result, it is 
essential to anticipate the development of strategies to reduce the risks involved (Ioriatti et al., 2023). 
In the viticulture sector, the vineyard manager's decisions depend on the probability of different 
situations occurring. However, it is important to consider that changes in decision processes, as well 
as deviations from the plan, often entail non-negligible costs.  
Therefore, a change in a decision led by an unfulfilled prediction (or incorrect interpretation) can 
potentially cause higher damages than the ones that may have originated from seasonal variability. The 
challenge is to provide better knowledge to support the increase of crop systems’ yield production at 
high-quality standards. This implies new integrated approaches able to sustain ecological integrity and 
biodiversity while seeking long-term resilience and cost-efficient strategies (Bramley, 2022). While the 
wine market opens up new markets, it also intensifies competition. Producers must navigate complex 
standardized productions, quality standards, and consumer preferences to establish a foothold in the 
global market (Morrish et al., 2022). This requires keen monitoring of vineyards and a commitment to 
producing wines that meet consumers' taste-evolving preferences while maintaining the distinctive 
characteristics of origin production (e.g., DOC and DOCG). Precision viticulture allows for more 
efficient resource utilization by employing data-driven technologies to monitor and manage vineyards 
(Abu et al., 2022; Bwambale et al., 2022). This can enhance decision-making processes related to 
irrigation, fertilization, and disease control, improving overall crop yield and quality. The use of field 
sensors can lead to detailed mapping of the quality status of vineyards, for both grape ripening and vine 
water status. 
New perspectives about digital innovations and integrated approaches can be of major importance in 
answering this challenge (Lezoche et al., 2020; Santesteban et al., 2013; Arnó Satorra et al., 2009), by 
helping to identify the probability thresholds to safely trigger a decision, which is critical for the 
decision-making process. 
Hence, new techniques using sensors, spectral platforms, Internet of Things, and robotics integrated 
with agricultural machinery (Fasiolo et al., 2022; Hallik et al., 2022; Milella et al., 2019) are being used 
to map two of the most important aspects of modern vineyard management (i.e., grape maturation and 
plant water status). This is increasingly important in current scenarios of extreme weather events and 
water shortages, under pressure to optimize plant protection products to be applied in vineyards and 
other crops, ensuring maximum precision while supporting agronomic processes. 
Among the main techniques already used in viticulture, the optical ones seem to be most suitable to 
face the current viticulture needs in terms of provided information and sustainability (Ferro et al., 2023; 
Moreno et al., 2023; Ye et al., 2022). Optical sensors in viticulture refer to spectroscopy, 
hyperspectral/multispectral imaging, and thermography, capable of acquiring optical fingerprints at 
different spectral regions  to collect relevant data to vineyard monitoring and management. Indeed, the 
optical technology allows for real-time and stand-alone monitoring with low costs, it is non-destructive 
and chemical-free, capable of drastically reducing the need for manpower, and also providing 
information with an adequate temporal and spatial resolution (Pampuri et al., 2021b, Casson et al., 
2020) promising for precision applications in viticulture 4.0.  
 
Fundaments of the optical sensing and multivariate data processing 
Optical sensing is an analytical method of acquiring, processing, and interpreting data that record 
interactions between electromagnetic radiation (composed of photons) and a specific target (Borràs et 



al., 2015). These interactions involve the reflection, absorption, and transmission of a flux of photons 
by the target matter and the emission of radiation (Corti et al., 2018) (figure 1). At research level, the 
optical techniques, based on IR, UV, and Vis, are widely applied in agriculture and for food fingerprinting 
(both in pre- and post-harvest) to ensure authenticity, quality, and safety of food product (Cavaco et al., 
2022; Tugnolo et al., 2019).  
In the IR region, near-infrared (NIR, 4000–14,286 cm−1; 700–2500 nm) and mid-infrared (MIR, 400–4000 
cm−1; 2500–25,000 nm) spectroscopy comprises the absorbance of radiation at molecular vibrational 
frequencies occurring for the O-H, N-H, and C-H groups and the C-C, C-O, C-N, and N-O groups in 
organic materials, respectively (Malegori et al., 2018; Tugnolo et al., 2020). Instead, electronic 
transitions are responsible for radiation absorption in the UV region (25,000–40,000 cm−1; 250–400 nm) 
and in the Vis region (14,286–25,000 cm−1; 400–700 nm) (Beghi et al., 2017; Gómez-Caravaca et al., 
2016). Moreover, the region from 750 to 15,000 nm is used to monitor the temperature (thermography) 
by evaluating the IR radiation emitted by an object. Thermography provides key facts on the dimension, 
heat distribution as well as structural analysis (Fernández-Cuevas et al., 2015). The main factor that 
influences the amount of radiation is the emissivity (energy ratio emitted from a sample at the surface 
temperature) (Ali et al., 2020; Still et al., 2019). 
The resulting information derived from the interaction between photons and the target can be handled 
in terms of punctual information (spectroscopy) or image information (thermal imaging and 
hyperspectral/multispectral imaging). The advantage of imaging techniques is characterized by the 
presence of spatial resolution (Sx and Sy), which measures the geometric relationship between the 
image pixels. In thermography, the information retrieved from the thermal image could be used to 
describe the thermal distribution without exerting any energy on the sample. The spatial resolution can 
be used in mutual combination with the spectral resolution (Sλ, which measures the variations in 
illumination within the image pixels as a function of wavelength) in multispectral (up to 10 wavelengths) 
and hyperspectral (more than 10 wavelengths) imaging techniques (Khan et al., 2018). These data are 
represented in the form of a 3-Dimensional data cube where each slice of the cube along Sλ, represents 
a specific band from the electromagnetic spectrum (Amigo, 2020; Stuart et al., 2019). However, 
especially the hyperspectral techniques, they have a limited adoption for some disadvantages like 
purchase and engineering costs of the plant, more complex data analysis and difficult integration with 
farming practices (lack of familiarity with the technology) (Vignati et al., 2023). 
Modern optical instruments rapidly detect photons interactions across wavelengths, producing large 
volumes of data that require efficient processing and storage (Cortés et al., 2019). Modern optical 
instruments rapidly detect photon interactions across wavelengths, producing large volumes of data 
that require efficient processing and storage (Bro and Smilde, 2014). 
Chemometrics uses supervised and unsupervised mathematical and statistical approaches employing 
formal logic to design or select optimal measurement procedures and experiments and, to maximize 
and isolate relevant chemical information in the data (Wold and Sjöström, 1998). In the chemometrics 
branch fell all those techniques of artificial intelligence (e.g., data mining, machine learning, and deep 
learning) applied to natural systems (Amigo et al., 2021). Such techniques are normally applied to data 
structures represented by a bidimensional (second order tensor) or three-dimensional (third-order 
tensor) matrix (Figure 1). As reported in Figure 2, before carrying out any type of processing on the data 
matrix, mathematical pre-treatments (e.g., normalization and/or scaling) are needed. Then, the 
process continues with: i) exploratory data analysis (which summarizes the main information contained 
in the data), ii) model calibration and validation, and ii) model transfer (Cortés et al., 2019). 
Preprocessing of optical spectral data aims to reduce noise, correct artifacts, and enhance useful 
signals. Techniques such as smoothing (e.g., Gaussian, moving average, Savitzky-Golay), baseline 



correction (e.g., SNV, MSC), and derivation are commonly applied to improve spectral quality (Oliveri 
et al., 2019). Finally, different normalizations and/or scaling treatments (like mean centering, 
autoscaling, range scaling, Pareto scaling, etc.) become fundamentals to homogenize the data to 
perform a correct explorative and modeling phase. Since the variance values depend on the scale of 
the variables, it becomes difficult to compare and impossible to combine information from variables of 
different nature (coming from different type of sensors) or from the same nature (e.g., wavelengths) but 
coming from different devices, unless properly normalized (Boulet and Roger, 2012; Rinnan, 2014; 
Biancolillo and Marini, 2018).  
Then, with the aim of i) extracting useful information, ii) correlating the variables, iii) eliminating 
anomalous data, and iv) hypothesizing the subsequent work procedures, a valid unsupervised 
exploratory data analysis is essential to summarize the main features of data in easy-to-understand 
form (visual graphs). For this purpose, PCA can be used conveniently to summarize and explore the 
data using plots and figures (Bro and Smilde, 2014).  
Supervised regression and classification approaches are focused on predicting qualitative properties 
or belonging classes (e.g., origin, infections or vine water stress classes). For these purposes, MLR, 
PCR, PLS, SVR, ANN and CNN are broadly used for regression (Liakos et al., 2018) and LDA, PLS-DA, 
KNN, SIMCA, SVM, ANNDA are used to define membership of each sample to its appropriate class 
(classification). To evaluate the model performance different indexes described elsewhere are used for 
regression (Nicolaï et al., 2007) and classification (Ballabio and Consonni, 2013; Oliveri and Downey, 
2013; Zhong et al., 2018).  
However, the developed models are usually calibrated on a limited set of training data. The models 
based on optical data, generating large and complex spectral databases, suffer from robustness over 
time caused by small variations of influence factors such as temperature, cultivars, and instrumental 
disturbances (Zeaiter et al., 2006). For this reason, calibration models should be regularly checked and 
corrected to maintain their robustness in the long term or to be used on other cultivars. The 
implementation of the calibration models in these new domains (i.e., cultivars) poses specific 
challenges. Therefore, the calibration models should be easily adapted to the sources of variability that 
new measurements can bring to avoid their prediction performance degradation. For these reasons, 
Zeaiter et al. (2006) and Diaz (2022) proposed two approaches based on the dynamic orthogonal 
projection capable of maintaining (in a supervised manner) the model robustness or efficiently 
transferring the calibration without standard samples (i.e., in an unsupervised manner). The models 
would inform the decision support tool to create better decision models leading the growers through 
clear decision stages and presenting the likelihood of various outcomes resulting from different options 
(Navarro-Hellín et al., 2016).  
 
Optical technology in viticulture 
Within the viticulture sector, the development of optical instruments and applications (especially in the 
Vis/NIR spectral range) is considerable (dos Santos Costa et al., 2019). This is due to a strong need to: 
i) reduce the costs of routine analysis, ii) reduce the environmental impact, iii) improve the 
management practices (and consequently the quality of the final product), iv) build and hold a historical 
dataset based on the optical acquisitions aiming at improving the predictive models and therefore 
refine the decision-making process for the future campaigns (Tardaguila et al., 2021; Ghozlen et al., 
2010).  
Optical instruments have been present in winery laboratories for decades but, currently, the trend is to 
move from the laboratory to the field (Figure 3) (Tardaguila et al., 2021). Recent research has 
demonstrated alternative optical methods and instruments of remote and proximal sensing that 



allowed a more cost-effective evaluation of the grape quality insight directly in the field (Power et al., 
2019). 
RS technology is the acquisition of information by space-borne satellites, aircraft, and UAVs without 
any physical contact with the target, and with different application methods and types of sensors. RS 
detects and records the sunlight radiation reflected from the surface of objects on the ground. The 
capability of a sensor to detect these objects is quantified in terms of the sensor’s spatial, radiometric, 
spectral, and temporal resolution. 
However, despite RS is a landmark for the current agricultural sector, many small companies are not 
capable of fully embracing this technology. Some reasons behind this include i) a limited understanding 
of the efficacy of RS, and the techno-economic benefits of such technologies,(ii) the limited availability 
and training of RS-based decision-support tools, iii) crop architecture and size for target identification, 
iv) costs,(v) and interoperability with data and tools from a variety of sources (Khanal et al., 2020). 
Concerning the wine sector, vineyards also represent a real challenge for the application of RS 
technologies. This is due to the discontinuous nature of grapevine canopies and to the grapevine 
canopies that don't completely block or cover the underlying terrain causing noisy backgrounds and 
shadows that influences the measured reflectance signals (Borgogno-Mondino et al., 2018). Moreover, 
grape quality prediction has been attempted by different means (e.g., by correlating the vigor of plants 
with fruit/wine quality) but remains quite challenging (Bonilla et al., 2013; Priori et al., 2013). 
For these reasons, the use of PS can be a convenient or complementary option. PS is defined as the use 
of field-based sensors with a detector placed directly in contact or close (a few meters) to a specific 
target (e.g., soil, plant, crop). These sensors provide information related to the properties of the objects 
analyzed through signals coming from physical measures (Rossel et al., 2013). 
A wide range of proximal sensing tools for vineyard management has been documented in the literature. 
Predictive models for grape water status and ripeness parameters have been developed using on-the-
go, contactless sensing platforms operating in the Vis and NIR regions (Diago et al., 2018; Fernández-
Novales et al., 2019). Moreover, studies have employed handheld or operator-driven instruments to 
build multivariate models and indices for monitoring variables like pH, acidity, water potential, and 
stomatal conductance (Diago et al., 2016; Urraca et al., 2016; Giovenzana et al., 2015; Rapaport et al., 
2015; Giovenzana et al., 2014; Ghozlen et al., 2010). 
New commercial miniaturized modules are available on the market of optoelectronic components, 
mainly equipped with a set of light sources, photodiodes, filters, or micro-spectrometers on a package. 
These instruments in combination with digital circuitry, wireless transceivers, MEMS, make it possible 
to integrate sensing, data processing, wireless communication, and power supply into low-cost 
millimeter-scale devices (Spachos and Gregori, 2019). The resulting miniaturization and cost reduction 
of electronic components is leaving room for a completely new approach to data acquisition and 
management, using WSNs based on small battery-powered nodes (Spachos, 2020). The availability of 
miniaturized optical devices is driving the research to develop IoT sensors that are highly sensitive to 
the detection of substances in an environment, such as chemicals or biological materials (Misra et al., 
2020). In viticulture, the sensors can be directly installed in proximity to the target (vine leaf or grape 
bunch) to remotely monitor the vineyard during the crop season.  
This review aims to critically examine the current and emerging applications of proximal optical sensing 
techniques in vineyard control and management, with an emphasis on the evaluation of grape 
maturation and vine water status. Beyond presenting the state of the art, the review highlights future 
trends, opportunities for technological integration, and the role of these sensing tools in the 
development of next-generation precision viticulture systems.  
 



Grape maturation control 
Monitoring the grapevine ripening process is the most crucial aspect for winemakers. It is now well-
accepted that the quality of a wine depends on the qualitative features in terms of the chemical 
characteristics of the grapes used to produce it (Giovenzana et al., 2018b). Therefore, this probably 
makes the time of harvest one of the factors with the greatest impact on the quality and value of the 
final product together with the vineyard management prior to the harvest date. The conventional grape 
maturation assessment methodologies rely on wet-chemistry analysis of the grape composition in the 
laboratory (Pampuri et al., 2021). These methods are reliable but suffer from the limited number of 
samples probed, the distance to the field, and the time gap between sample collection and results. 
Furthermore, they are i) destructive, ii) time-consuming, iii) labor-intensive, and iv) are not sustainable 
from an environmental impact point of view, which are critical factors in view of more sustainable 
production (Casson et al., 2019). Zambelli et a.l (2022) conducted a Life Cycle Assessment study on the 
analyzes conducted to measure TSS, pH and TA and demonstrated how optical analyzes performed 
with a portable prototype are the greenest solution as this technology proved to be 3.2 times more 
sustainable than the wet-chem method. 
Over the years, many approaches have been followed toward more effective methods which could 
explore many samples and give a rapid and comprehensive overview of the ripening process. Optical-
based measurements are particularly suited to this end, and for this reason sensing techniques based 
on UV, Vis, NIR, and IR are widely used in agriculture and for food fingerprinting. Indeed, the literature 
shows many applications where the advantages of optical sensing based on either benchtop or 
portable instruments are widely explored (Table 1). 
The limited adoption of optical technology (especially for devices in the NIR and IR region) by the 
viticulture sector can be attributed to both costs and technical limitations. To change this scenario, and 
to improve the support to vine-growers and winemakers, research activities are privileged by simplified, 
easy-to-use, cost-effective systems for real-time assessment of fruit ripeness directly in-situ. For this 
purpose, the use of silicon detectors in the Vis/NIR region can be considered a real cost-effective 
alternative to acquire optical data. This makes it possible to break down the cost barrier in precision 
viticulture, allowing reliable monitoring of grape composition within the vineyard at an effective cost. 
One step forward has been recently given by Gutiérrez et al. (2019), who reported the quantification of 
TSS and anthocyanins in grape berries under field conditions using on-the-go his system between 400 
and 900 nm, acquired from a moving platform. HSI is a very powerful technology able to yield a large 
amount of relevant information, although the drawbacks in analyzing (extract useful information) and 
compute this large amount of information are still a limiting factor for the large-scale application of this 
technique. For this reason, the same authors (Fernández-Novales et al., 2019) proposed a proximal 
(0.30 m) optical on-the-go spectroscopic system operating in the 570–990 nm spectral range mounted 
on a motorized moving platform for measurements on the canopy. The authors proved that this 
technology is a real alternative to appraise and map the vineyard grape composition variability (in terms 
of TSS, anthocyanin, and total polyphenols concentrations) with a high spatial and temporal resolution 
and in a fast and non-destructive way. Moreover, Vallone et al (2019), over the traditional prediction of 
the technological maturation parameters (TSS and pH), proposed an ordinary least squares model 
using a Vis/NIR device (600-1000 nm) for the prediction of the pedicel detachment force on cv. Syrah 
and Chardonnay, due to their enormous importance in grapes’ mechanical harvest. The results showed 
a R2 = 0.85, SECV = 1.008, and Bias = -0.83 for Chardonnay grapes, and R2 = 0.87; SECV = 0.362, and 
Bias = -0.11 for Syrah grapes. 
All these innovative approaches are becoming crucial in view of an industry (grape and wine) more 
efficient and completely interconnected. For winemakers, the development of inexpensive optical 



sensing instrumentation equipped that can be placed in proximity to the fruits for continuous 
monitoring during the ripening period for several weeks without an operator (thanks to its stand-alone 
features) could be an interesting opportunity for future development. In the context of precision 
agriculture, the development of new sensors, especially based on spectroscopy, enables high-
resolution data acquisition that could be used to track crop development and ripening. The capability 
to assess ripening in a fast, non-destructive way, would substantially and positively impact the 
processes of harvesting (operating procedures, scheduling, and classification) and could change the 
habits of winegrowers proposing new monitoring solutions. 
 
Vine water status monitoring 
Proximal optical sensing of vine water status can be performed by detecting different regions of the 
spectra. Table 2 summarizes the different indexes and the chemometric models reported in the 
literature to predict the grapevine water status. 
The region of thermal infrared has been widely explored in literature and it founds its major application 
in thermal imaging (Gutiérrez et al., 2021; Tardaguila et al., 2021). Several studies measured the 
temperature of leaves and the relative indexes using thermal imaging to estimate the early response of 
vines to water stress. Leaf temperature (Tc) can be used as an indicator of water status, but an enhanced 
performance is reported when it is normalized to the environmental conditions through thermal indexes 
(García-Tejero et al., 2016). The most common thermal indexes are the stomatal conductance index (Ig) 
(Jones et al., 2002) and the Crop Water Stress Index (CWSI) (Idso et al., 1981). These indexes are strongly 
related to gs when measured during the middle of the day (García-tejero et al., 2016; Pou et al., 2014). 
Matese et al. (2018) calculated CWSI to evaluate the water status of three vine cultivars (Vermentino, 
Cabernet Sauvignon, and Cagnulari) under different irrigation regimes. In the study, the analyzed water 
managements were discriminated by CWSI, and the obtained results were consistent with gas 
exchange measured in leaves. 
Besides thermal IR, also the NIR spectral band can be detected and applied to proximal sensing of 
grapevine water status. In a pot experiment under controlled conditions, Rapaport et al. (2015) found a 
change in the reflectance of this region of the spectra between well-watered and water-stressed plants. 
Reflectance from leaves of plants under water deficit was higher than the control in the range 1380 – 
1590 nm, corresponding to a peak of water absorbance. Under field conditions, De Bei et al. (2011) 
reported lower absorbance in the NIR region for stressed vines than for well-watered ones. Using a 
chemometric approach, the authors were able to fix models for the prediction of stem water potential 
(ΨS), leaf water potential (ΨL), and gs on three different varieties: Cabernet Sauvignon, Shiraz, and 
Chardonnay. The same approach was performed by Tardaguila et al. (2017) using several Vitis varieties: 
Albariño, Pedro Ximenez, Verdejo, White Grenache, Grenache, Cabernet Sauvignon, Marselan, and 
Tempranillo. Selecting the NIR region the authors were able to predict ΨS and the relative leaf water 
content (RWC). In both studies (De Bei et al., 2011; Tardaguila et al., 2017), better models were obtained 
by absorbance from the abaxial leaf surface than the adaxial, although both surfaces provided 
consistent models. Diago et al (2018) predicted ΨS of Tempranillo by on-the-go spectral measurements 
in the NIR region. Specific wavelengths in the NIR regions have been selected to define the Water Index 
(WI) (Peñuelas et al., 1993). A close relation between WI and gs was reported by Serrano et al. (2010) on 
Chardonnay in both pot and field experiments, whereas González-Flor et al. (2019) found a significant 
regression between WI and ΨPD. 
The Vis region was also used to monitor the vine plant water status. For example, Rapaport et al. (2015) 
identified two spectral ranges that were affected by water stress, both included in the Vis region: 530 – 
550 nm and 700–750 nm. Another pot experiment was described by Briglia et al. (2019) to assess the 



effectiveness of Vis and NIR imaging to be a proxy for water stress phenotyping. The authors identified 
the dark green region as the most promising for proximal sensing, showing the strongest relation to ΨS. 
Pôças et al. (2015) compared several optical indexes available in the literature and selected the Visible 
Atmospherically Resistant Index (VARI) and the Normalized Difference Greenness Index (NDGI) to 
predict the predawn water potential (ΨPD) after optimization of the wavelengths. Both indexes are 
calculated using wavelengths in the Vis region. In Pôças et al. (2017) a normalized reflectance index 
(NRI) reported a higher correlation to predawn water potential than WI. In the study, the two indexes 
were used along with the index D1 (the ratio between the first derivatives of the hyperspectral curve for 
the reflectance values at 730 nm and 706 nm) and the day of the year (DOY) in models to predict 
predawn water potential, calibrated on Touriga National and validated on other cultivars. Tosin et al. 
(2020) selected two optical indexes in the range of Vis (ARI and NRI) and two structural variables 
(irrigation treatment and test site) to fix logistic selection models to predict the ΨPD of three varieties 
(Touriga Nacional, Touriga Franca, and Tinta Barroca) under field conditions. A similar approach to 
predict ΨPD is reported by Tosin et al. (2021): four optical indexes were calculated in the Vis region 
(SPVIopt1, SPVIopt2; PRI_CI2 and NPCI) and used in regression models along with the previous value of 
predawn water potential (Ψ0) measured using the reference method based on a Scholander chamber. 
Information from the Vis/NIR region has been used to develop some optical indexes. A chemometric 
model was fixed by Giovenzana et al. (2018a) on the variety Biancolella to predict ΨPD by the Vis/NIR 
spectra. In Vis/NIR chemometric models, González-Fernández et al. (2019) obtained the best results at 
around 1450 nm using raw data, whereas at 826 nm and 1520 nm with derivative pre-processing. 
Serrano et al. (2010) found a relation between the Normalized Difference Vegetation Index (NDVI) and 
ΨPD on Chardonnay in ten commercial vineyards. Involving the water absorption peak in the NIR and the 
Vis range around 550 nm, Rapaport et al. (2015) developed three indexes (WABI-1; WABI-2; WABI-3) 
which reported high relation to gs, ΨPD, and non-photochemical quenching (NPQ). Finally, a recent study 
(Virnodkar et al., 2020) identified grapevine as the crop where more spectral indexes were reported in 
the literature for water stress detection. According to the authors, the most frequent indicator of water 
stress based on spectral proximal sensing is CWSI, followed by WI, and the ΨS is the most used 
reference parameter. 
 

Perspectives of the proximal optical sensing technology 
The multiple aspects of technological evolution are accelerating the development of new sensors and 
devices based on optical technology in different fields but with a very significant impact on agriculture 
(including viticulture). Conceptually, two possible architectures for Sensor Network applications as 
shown in Figure 4, can have a direct influence on how the hardware and software solutions are 
developed nowadays. On one hand (Figure 4A), there are sensor nodes with high processing 
capabilities, able to collect data from sensors and run local signal processing with data model 
prediction (known as Edge IoT sensor nodes). A result (parameter) is then transmitted to a cloud 
database with the purpose to directly show this data in a simple user interface (it is also possible to 
observe immediately the result in the display of the instrument). Conversely to this architecture, it is 
possible to simply collect optical (raw) data and immediately transmit it to a cloud database which will 
be able to run faster and more complex signal processing and model prediction algorithms (Figure 4B). 
There is an obvious advantage of this latter architecture that allows for much less complex hardware 
sensor nodes with lower power consumption and lower costs than the former architecture, contributing 
to the deployment of larger networks of sensors (with higher density) reinforcing the possibility of 
expanding the size of the datasets to be acquired. Such networks rely on energy-efficient wireless 



technologies (Sadowski and Spachos, 2020) to be used in remote areas that include WiFi, Bluetooth, 
ZigBee, GPRS/3G/4G, LoRa, and SigFox protocols within the Radio-frequency bands of 868/915MHz 
and 2.4GHz, or depending on the operation context, a combination of those wireless communications, 
to bring real-time data and processing through the IoT to the Cloud as in LoRaWan and NB-IoT. A large 
number of sensors that address physical and chemical parameters in the soil, water, and air (e.g. 
humidity, temperature, soil moisture, pH, nitrates, etc.) have been used and are commercially 
available.  
A potential limitation of this architecture is the size of the data payload, which should be kept to a 
minimum to be compatible with the standard IoT communications protocol. Moreover, nodes with 
capabilities to run edge processing (Figure 4B) are usually more power-hungry, with higher 
hardware/software complexity and bulkier dimensions (large boxes or systems that require an operator 
to run them). 
For the development of a new generation of stand-alone and on-the-field grape analytical methods as 
in the architecture concept of Figure 4A, the sensor node hardware has to meet three fundamental 
criteria: to have highly integrated photonics components and modules (wafer and wafer/package level 
micro-spectrometers), to have low power consumption, and to be cost-effective, helping to bring the 
process control of grape maturation into the hands of the growers/winemaker. The parameters of the 
vine and grape control to the home base station in the farm, without human intervention, can only be 
achieved by developing modular systems that allow for future integration of cost-effective multi-mode 
sensors. 
Semiconductor fabrication trends in recent years have pushed the boundaries for photonics 
technologies allowing for increased miniaturization of optical sensors as a key feature for the 
implementation of disrupting analytical strategies. Table 3 shows how different operation principles 
and fabrication technologies contributed to the miniaturization process despite evident trade-offs with 
performance, cost, and power consumption. The silicon CMOS (complementary metal-oxide 
semiconductor) fabrication processes intrinsically set the operation range of photodetectors into 
Vis/NIR wavelengths between 350nm and 850nm. Other fabrication processes based on III-V materials 
allow to address the fabrication of photodetectors in the pure NIR range between 1000 nm and 2000 
nm but those materials are not compatible with CMOS requiring heterogeneous integration (multi-die 
or multi-module assemblies). Optical wavelength discrimination can be achieved by using optical pass-
band filters or gratings. Grating technologies are those with the highest detection efficiency (Hillmer et 
al., 2021). Optical resolutions of 2 nm to 15 nm within the visible range are common and can be seen in 
some commercial compact spectrometers such as the ones commercialized by Hamamatsu 
(Hamamatsu Photonics K.K., Naka-ku, Hamamatsu City, Shizuoca, Japan) and Ocean Insight (Ocean 
Insight, Orlando, FL, USA). The hardware complexity of these devices, which include a mixture of MEMS, 
CMOS, and other elements in their assembly not only increases the costs but also its footprint making 
them less suitable for miniaturized sensor nodes. 
An alternative to the gratings technology is another MEMS-based fabrication process, the Fabry-Perrot 
interferometer (FPI) used as a programmable optical filter. MEMS and MOEMS are microscopic devices 
with electrical functionality and moving parts (Rai-Choudhury, 2000). The mechanical motion is 
actuated using electrical driving principles, which can be electrostatic, magnetic, or piezoelectric 
(Tortschanoff et al., 2013). Their application requires its integration (assembly) with a single 
photodetector and consequently has lower footprints, but also a high voltage to drive the FPI MEMS 
structure which makes this more complex to use. Commercial offers are mostly available for NIR 
applications (e.g. Hamamatsu C14272) and only research-based developments can be found for Vis 
range applications. The interest in the use of these systems, especially for NIR applications, is based 



on the possibilities of real-time field measurements of organic matter (e.g., vines and grapes for the 
parameters reported in Tabled 1 and 2) in combination with the availability of other sources of data of 
different nature thanks to mobile Internet services. NIR offers a good balance of effort of measurement 
and quality of the results combining chemometrics and access to a database service with reference 
data that has been obtained using standard laboratory methods (the reference database mentioned in 
Figure 4). 
A final alternative shown in Table 3, is the spectral sensors. These devices hold a combination of the 
photodetector (matrix of 6 to 20) and optical filters assembled on top of the CMOS sensor die. A 
selection of specific optical bandpass filters is chosen according to the application requirements, by 
reducing the silicon size, power consumption, and complexity of signal processing which has a direct 
impact on the production costs. These characteristics make the spectral sensors an interesting 
alternative for the simultaneous detection of multiple optical bands. 
Currently, these devices (after proper customization) offer sufficient computation power, and both 
access to online data (“the cloud”) or storage on the device itself, as illustrated in Figure 4. Moreover, 
they can be improved by using predictive models based on artificial intelligence methods and the 
possibility to include feedback and statistics from many other measurements performed in the field. 
This can pave the ground for the future of reference data in several fields (Grüger, 2021). 
A potential example of this new trend is the possibility of using an optical stand-alone sensor that can 
be placed in proximity of the target (e.g., vine leaf and grape) for field data acquisitions. Such an 
approach (although the number of sensors to be installed to have a meaningful representation of 
vineyard conditions is an issue yet to be resolved) can maximize the capability to acquire information 
on both a temporal and spatial basis. The latter aspects are critical for viticultural areas where the 
implementation of other monitoring techniques cannot reach an adequate level of accuracy, due to 
their complexity (e.g. areas with complex orography). These simplified devices can be considered as 
integrated micro spectrometers, where their components/modules could be assembled into an optical 
detection head (e.g. flexible strip) installed directly in the grape bunch or on the grapevine, including 
power, signal pre-processing, and communications for “on-line” process monitor (Figure 5). An 
example of this approach is a concept patented by the authors (Freitas and Piteira, 2018) that proposes 
a fully integrated, small, low-cost, standalone monitoring device used to monitor fruit status to help the 
growers to support the decision-making process (Oliveira et al., 2024; Jenne et al., 2024).  
The micro spectrometer should cover the UV-Vis-NIR range using an integration of LED light sources, 
photodiode/interference filter arrays, and processing electronics at the wafer level or wafer package 
level. The modular architecture of the concept makes it feasible to perform different optical 
measurement modes (e.g., reflectance and fluorescence) by customizing the optical components of 
the sensor (e.g. integrating optical filters for fluorescence and different LEDs for illumination) according 
to the objectives of the optical measurement. 
Another key aspect of the new generations of miniaturized optical sensors is their potential for 
integrating WSN into agriculture (Ojha et al., 2015). WSNs are essential tools to monitor multiple 
parameters of interest in large areas with an adequate degree of resolution that can then be integrated 
into decision support systems. For example, this concept was applied to the irrigation management of 
a vineyard (Maraš et al., 2020), which is one of the most challenging and complex topics of the 
viticulture of the 21st century (Mirás-Avalos and Araujo, 2021). Hence, it is expectable that optical 
sensors will have a pivotal role in the next generation of WSNs. 
WSNs are nowadays, widely used in agriculture monitoring helping farmers’ decision-making towards 
higher quality and productivity crops (Popescu et al., 2020). The extension of WSN to crop proximal 
sensing requires that their design addresses specific challenges (Jawad et al., 2017): to have a versatile, 



low-power, and low-cost IoT device able to connect multiple sensors for in-field data collection (Morais 
et al., 2021), to optimize IoT device power consumption and battery lifetime (Jawad et al., 2017), to 
optimize communication range within the operation and climate conditions, to provide real-time data, 
and to be reliable, fault-tolerant and secure (Prodanović et al., 2020). Moreover, the vineyard sensors 
distribution should cover the spatial variability at best. Some approaches can be followed, for example, 
the sensor can be placed in areas with different vegetative expressions (canopy porosity) and soil 
physical properties as proposed by Fuentes-Peñailillo et al. (2021).  
WSNs can also significantly improve the quality and the development timeline of information fusion 
(Figure 6) which is still in its early stage (Zecha et al., 2018). The fusion of such different sources of 
information would be the first step toward a completely new monitoring method using a complex 
combination of sensors as a new concept of process analytical technology (PAT) applied in viticulture. 
The conventional approaches based on wet chemical analysis or optical methods combined with a 
supervised predictive models could pave the ground for a new monitoring approach that qualitatively 
follows the entire crop season. The grape and vine optical data can be integrated into decisional 
support software creating decision models with closed-loop structures that adapt to weather 
conditions (e.g. temperature, relative humidity, precipitation, wind speed, atmospheric pressure, etc.) 
to prevent possible diseases, stress conditions and identify the best harvest moment (Navarro-Hellín 
et al., 2016; Rose et al., 2016; Pérez-Expósito et al., 2017).  
By moving from a univariate measuring approach (wet-chemical analysis performed every week) to a 
multivariate one, monitoring of the quality should move from traditional statistical quality control (SQC) 
to multivariate statistical process control (MSPC) contextualized in agriculture (Kourti, 2019). A 
multivariate measuring system provides for each sampling point several highly correlated variables 
(optical and not) that can be handled by multivariate projection methods (e.g., PCA) enabling the 
reduction in the data dimensionality by taking advantage of its correlated structure (Kourti, 2006) The 
principal components needed for the description of the process variability could then be used for MSPC 
chart construction by representing these components against each other or against process time. Such 
an approach can be able to direct visualize changes occurring along the process or trends which can 
be potentially related to specific conditions of the grapevines like the occurrence of water stress or to 
detect infections. 
The integration of such innovative PAT tools has the potential to be widely used in the viticulture field 
(and with proper adaptations in a broad range of optical monitoring applications e.g., other fruit ripening 
monitoring), and will help vine growers to monitor the crop season autonomously (with minimum 
external intervention). The PAT tools will certainly result in higher quality of the grapes being supplied to 
the winery, also allowing irrigation optimization (when allowed to avoid severe water stress) and 
predicting the harvest time. This will allow the farmer to inform the winery about the ongoing grape 
ripening status before harvesting. It can be an extra added value in regions where climate change 
effects are present (e.g., high aridity), and in vineyards where extreme conditions (combination of high 
temperature and low soil humidity) lead to untimely or severe stress in the vine/grape. 
To summarize the strengths, weaknesses, opportunities, and threats from review outputs given the 
application of proximal optical sensing for control and management inside the wine sector, a SWOT 
table was created (Table 4), based on published literature and through interviews involving winegrowers 
and other stakeholders of the sector.  
 
Conclusions 
This review has examined the current landscape and emerging perspectives of proximal optical sensing 
technologies for vineyard control and management. The literature reveals that these non-invasive 



techniques provide timely, precise, and sustainable means of assessing critical parameters such as 
grape ripening and vine water status. Their integration into vineyard workflows enables the collection of 
high-resolution data, offering growers valuable insights that support informed, data-driven decisions. 
Relevant is the synergy between proximal optical sensing and advanced data analytics. They have led 
to the development of decision support systems that enhance vineyard performance and resource 
efficiency. These systems are increasingly vital in the face of climate-related challenges, which demand 
adaptable and resilient agricultural practices. 
However, to ensure broader adoption and end-user accessibility, key challenges must still be 
addressed. These include the standardization of sensor calibration, data interpretation protocols, and 
the development of affordable, easy-to-use sensing platforms suitable for real-world vineyard 
conditions. 
Looking ahead, proximal optical sensing stands as a cornerstone technology in the transition toward 
precision viticulture and digital farming. With continued progress in sensor miniaturization, wireless 
communication, and AI-driven modeling, these tools are poised to become integral components of 
next-generation, autonomous vineyard monitoring systems. In a sector increasingly shaped by climate 
variability and sustainability demands, proximal sensing technologies will play a crucial role in securing 
grape quality, optimizing inputs, and supporting decision-making ultimately shaping the viticulture of 
the 21st century (Ammoniaci et al., 2021). 
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Table 1. Optical sensing applied in viticulture for real-time detection of maturation quality parameters 
of wine grapes.  

Reference 
parameter 

Variety 

Optical sensing/ 
Region of the 
spectra 
[nm] 
 

Spectral 
index or 
chemom
etric 
model 

Model coefficients Reference 

TSS   
Origin 

Chardonnay 
Benchtop 
spectrometer 
800-2500 

PLS 
PLS-DA 

R2 = 0.70, SECV=1.27 
Acc = 97.2% 

Arana et. 
al., 2005 

TSS 
Firmness 

Corvina 
Portable 
spectrometer 
400-1000 

PLS 
R2 = 0.62, RPD = 1.87 
R2 = 0.56, RPD = 1.79 

Beghi et. 
al., 2015 

EPC 
EFC 
EAC 

Tempranillo 
+ Syrah 

Portable 
spectrometer 
908-1676 

PLS-DA 
Acc=69.6 
Acc=87.0 
Acc=78.3 

Baca-
Bocanegra 
et. al., 2019 

TSS 
Total 
anthocyanins 
Yellow 
flavonoids 

Syrah 
Benchtop 
spectrometer 
450-1800 

PLS, PCR 
R2 = 0.95 – 0.92 
R2 = 0.94 – 0.92 
R2 = 0.75 – 0.75 

Dos Santos 
Costa et. 
al., 2019 

TSS 
Total 
anthocyanins 
Yellow 
flavonoids 

Cabernet 
Sauvignon 

Benchtop 
spectrometer 
450-1800 

PLS-PCR 
R2 = 0.96 – 0.94 
R2 = 0.98 – 0.97 
R2 = 0.74 – 0.74 

Dos Santos 
Costa et. 
al., 2019 

TSS 
Titratable acidity 

Chardonnay 
Portable 
spectrometer 
400-1000 

PLS 

R2 = 0.71, SEP=1.8 ºBrix, 
RPD=1.94 
R2 = 0.81, SEP=2.2 gdm-2, 
RPD=2.32 

Giovenzana 
et. al., 2015 

Amino acids 
TSS 

Grenache 

Benchtop 
spectrometer 
570–1000 and 1100–
2100 

PLS 
R2 ≥ 0.60 
R2 = 0.90, SEP=1.6 ºBrix, 
RPD=3.79 

Fernández-
Novales et. 
al., 2019 

pH 
TSS 
Pedicel detach 
force 

Syrah 600-1000 
Ordinary 
Least 
Square 

R2 = 0.99 
R2 = 0.99 
R2 = 0.87 

Vallone et. 
al., 2019 

pH 
TSS 
Pedicel detach 
force 

Chardonnay 600-1000 
Ordinary 
Least 
Square 

R2 = 0.99 
R2 = 0.99 
R2 = 0.85 

Vallone et 
al., 2019 

TSS 
Titratable acidity 

Chardonnay 
Selected bands 
630, 690, 750, 850 

MLR 

R2 = 0.66, SEP = 1.9 ºBrix, 
RPD = 1.74 
R2 = 0.85, SEP = 1.8 gdm-

2, RPD = 2.50  

Giovenzana 
et. al., 
2015 

Anthocyanin Shiraz 
470 nm, 516 nm, 635 
nm 

Nonlinear 
Least 
Squares 

R2=0.87, RMSE=0.22 
Bramley et. 
al., 2011 



TSS 
titratable acidity 
firmness 
anthocyanins 

Sangiovese 
Cherry meter 
560,640 

Nonlinear 
Least 
Squares 

R2 = 0.92 
R2 = 0.87 
R2 = 0.89 
R2 = from 0.68 to 0.97 

Ribera-
Fonseca et. 
al., 2016 

TSS 
titratable acidity 
pH 
Anthocyanins 

Nebbiolo 

Selected bands 
450, 500, 550, 570, 
600, 650, 610, 680, 
730, 760, 810 and 
860 

Multiple 
linear 
regressio
n 

R2 = 0.86, SECV=1.51 
ºBrix, RPD=2.65 
R2 = 0.47, SECV = 0.83 
gdm-2, RPD =1.44 
R2 = 0.45, SECV = 0.09, 
RPD = 1.33 
R2 = 0.50, SECV = 5.21 %, 
RPD = 1.46 

Pampuri et. 
al., 2021 

TSS Tempranillo 
Portable 
spectrometer 
1595.7-2396.3 

PLS 

RMSEP = 1.42 ºBrix, R2 = 
0.91 
RMSEP = 1.48 ºBrix, R2 = 
0.47 
RMSEP = 1.68 ºBrix, R2 = 
0.38 

Urreca et. 
al., 2016 

TSS, total soluble content; RPD, ratio performance deviation; R2, determination coefficient in validation; Acc, classification 
accuracy in validation; SECV, standard error in cross-validation; SEP, standard error in prediction; PLS-DA, partial least 
squares discriminant analysis; EPC, extractable phenolic content; EFC, extractable flavanol content; EAC, extractable 
anthocyanin content. 
  



Table 2. Spectral indexes or chemometric models are used as a proxy for the water status of the 
grapevine. Best relations to the water stress parameters are reported for each work. 

Reference 
parameter 

Region of the 
spectra – 
Wavelengths 
(nm)  

Spectral index 
or 
chemometric 
model 

Model coefficients Reference 

gas Thermal infrared Tc R2 = 0.48 García-tejero et al., 
2016 

gs Thermal infrared CWSI R2 = 0.61 García-tejero et al., 
2016 

gs Thermal infrared Ig R2 = 0.76 García-tejero et al., 
2016 

gs Thermal infrared Ig R2 = 0.78 Pou et al., 2014 
ΨS 1000–1850 PLS r = 0.84; R2

p
 = 0.71 De Bei et al., 2011 

ΨL 1000–1850 PLS r = 0.74 De Bei et al., 2011 
gs 1000–1850 PLS r = 0.58 De Bei et al., 2011 
ΨS 1600–2400 MPLS rc = 0.82; rcv = 0.77 Tardaguila et al., 2017 
RWC 1600–2400 MPLS rc = 0.83; rcv = 0.77 Tardaguila et al., 2017 
ΨS 1100–2100 PLS R2

c
 = 0.74; R2

cv
 = 0.71; R2

p
 = 

0.69 
Diago et al., 2018 

gs 900; 970 WI R2 = 0.95 Serrano et al., 2010 
ΨPD 900; 970 WI R2 = 0.41 González-Flor et al., 

2019 
ΨS  Dark green R2 = 0.71 Briglia et al., 2019 
ΨPD 520; 539; 586 VARIopt R2 = 0.80 Pôças et al., 2015 
ΨPD 531; 587 NDGIopt R2 = 0.79 Pôças et al., 2015 
ΨPD 561; 554 NRI ρ = 0.86 Pôcas et al., 2017 
ΨPD and ΨL 400–1000 PLS R2

c
 = 0.70; R2

p
 = 0.69 Giovenzana et al., 

2018 
ΨPD 900; 680 NDVI R2 = 0.57 Serrano et al., 2010 
NPQ 1490; 531 WABI-1 R2 = 0.86 Rapaport et al., 2015 
ΨPD 1500; 538 WABI-2 R2 = 0.89 Rapaport et al., 2015 
gs 1485; 550 WABI-3 R2 = 0.80 Rapaport et al., 2015 
Tc Thermography ANOVA R = 0.94 Costa et al., 2019 
gs Infrared 

Thermography 
ANOVA R2 = 0.94 Leinonen et al., 2006 

Tc, leaf temperature; CWS, crop water stress index; Ig, stomal conductance index; PLS, partial least square; MPLS, modified partial least 
square; WI, water index; VARIopt, visible atmospherically resistant index (optimized wavelength); NDGIopt, normalized difference greenness 
index (optimized wavelength); NRI, normalized reflectance index; NDVI, normalized difference vegetation index; WABI-1, WABI-2, WABI-3, 
water absorption indexes; ANOVA, analysis of variance; R2, coefficient of determination; r, correlation coefficient of Pearson; ρ, correlation 
coefficient of Spearman; c, calibration; cv, cross-validation; p, prediction; opt, optimized wavelength. 

 
 
 

 



Table 3. Characteristics of the major optical technologies applicable to the development of optical sensors for proximal sensing in viticulture. 

Optical 
Technology 

Optical 
range/nm 

Optical 
Resolution/nm 

Integration 
potential/size 

range 

Fabrication 
process 

Power 
requirements 

Stand-alone 
operation 

Cost 
(USD) 

Reference 

Mini 
spectrometers 

350-810 2.2 – 13.1 
+ 

cm2 
MEMS + 
CMOS 

500mA@5V Yes ~1500 
Ocean ST Vis 

micro 
spectrometer 

Grating-based 
spectrometers 

340-850 12-15 
++ 

cm2 
MEMS + 
CMOS 

20mA@5V No ~200 
Hamamatsu 
C12880ma 

Tunable Fabry-
Perrot 

1350-2150 20 
++ 

mm2 
III-V material + 

MEMS 
FPI 1mA@10-

50V 
No ~100 

Hamamatsu 
C14272/73 

Spectral sensors 

750-1100 
*FWHM ~10 

Peak separation 5 
+++ 

mm2 
CMOS 

2.5mA@3.3V 

No 
~4-

7@100 
units 

AS7421 

380 – 1000 20-50 210μA@3.3V AS7343 

410 - 940 20 5mA@3.3V AS7265x 

FWHM, full width at half maximum; MEMS, micro-electromechanical systems; MOEMS, micro-opto-electromechanical systems; CMOS, complementary 
metal-oxide semiconductor; +, low; ++, medium; +++, high. 

 



Table 4. Strengths, weaknesses, opportunities, and threats from review outputs in a view of the 
application of proximal optical sensing for control and management inside the wine sector. 

 Helpful Harmful 

Internal 

STRENGTHS WEAKNESSES 
• Automation with remote control 
• Reduced manpower 
• Lower risk of human error 
• Low-cost analysis 
• Real-time measurement 
• Extensive technical support and network 
• High product quality, scalability, reliability, and 

flexibility 
• High sustainable solution (Zambelli et al., 2020) 
• Higher wine value 

• Uncontrolled environmental 
conditions could affect sensors’ 
performances (Ghiani et al., 2021) 

• High number of sensors for wide 
areas to get representative 
measures (Pampuri et al., 2021a)  

External 

OPPORTUNITIES THREATS 
• Patentable devices (Guidetti et al., 2022 ; Freitas 

and Piteira, 2018) 
• Viticulture and enological sector undergoing 

technological modernization, addressing the 
Industry 4.0 approach (Sà et al., 2021) 

• Strong attention to environmental sustainability 
issues (https://sdgs.un.org/goals, SDGs 9 and 12) 

• Strong link with traditional 
production methods 

• Reduced orientation to innovation 
in SMEs managed by the old 
generation 

• No established use 
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Figure 1. The rationale of the differences between punctual information and image information. 

 

 
 

 

 

Figure 2. Main chemometrics steps for data exploration and modelling. 



 

 

Figure 3. Different optical sensors management based on acquisition levels: plant, canopy, and crop. 

 

 

 

Figure 4. Data pipeline architectures for a sensor network based on simplified optical devices (e.g. 
spectral sensors) (A) and portable spectrophotometers (B). 



 

Figure 5. Maturation control stand-alone sensor.  

 

 

 

 

 

Figure 6. Field sensors network for a data fusion approach. 
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