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Abstract 

With the rapid growth of global meat demand and the expansion of livestock farming, 

accurate and efficient sheep counting has become crucial in modern livestock 

management. However, traditional manual counting methods are inefficient and lack 

accuracy, while automatic counting systems based on RFID and GPS, though more 

precise, are costly and challenging to scale. To address this issue, this paper proposes an 



 

 

automatic sheep counting method based on Mask R-CNN, aiming to enhance the 

accuracy and robustness of object detection using instance segmentation technology 

from deep learning. Mask R-CNN not only provides pixel-level precise segmentation for 

each sheep but also resolves misdetections and missed detections in occluded and 

densely populated scenes by optimizing bounding box and mask thresholds. The study 

was conducted experiments sheep image data from an actual livestock farm in Inner 

Mongolia, China, and tested the model under various environmental factors, such as 

lighting, background complexity, and sheep density. The experimental results indicate 

that the optimized Mask R-CNN model performs exceptionally well in diverse scenarios, 

achieving a counting accuracy of 96.1% and a generalization accuracy of 88.8%, 

significantly outperforming traditional detection models like YOLOv5M (80.3%) and SSD 

(83.7%). This research not only demonstrates the excellent performance of Mask R-CNN 

in sheep counting tasks but also provides a low-cost, efficient automated management 

solution for modern livestock farms. 

 
Key words: sheep counting; Mask R-CNN; instance segmentation; object detection. 
 

Introduction 

With the continuous growth of the global population and changes in dietary structure, 

rising demand for meat consumption has driven the rapid development of animal 

husbandry, especially the sheep industry. According to FAO statistics in 2022, China’s 

mutton production accounted for 60% of the global total, with Inner Mongolia as the 

main production base, contributing 21% of the national output 

(https://www.thepaper.cn/newsDetail_forward_26574633). The intensification of 

modern livestock farming has raised the need for efficient management technologies, 

where accurate sheep counting is crucial for resource allocation, disease control, and 

operational efficiency. Traditional manual counting is no longer suitable for large-scale 

farming due to its time consumption, labor intensity, and susceptibility to human error. 

Tag-based automated counting methods such as RFID and GPS improve accuracy (Bridge 

et al., 2019; Wang, 2019), but are costly, complex to maintain, may cause stress to 

animals, and are difficult for small and medium-sized farms to install and use in weak 

network environments, limiting their adoption. Meanwhile, computer vision has gained 

attention in livestock management. Traditional machine learning approaches, relying on 

feature extraction and segmentation algorithms (e.g., region growing, morphological 

processing), can achieve livestock counting (de Lima Weber et al., 2023), but require 



 

 

favorable optical conditions and high computational cost. With advances in deep 

learning, methods like object detection (YOLO, Faster R-CNN), multi-object tracking 

(YOLO + DeepSORT), and image segmentation (Mask R-CNN) have been applied to 

livestock counting (Bharati and Pramanik, 2020). For example, YOLOv3 achieved 100% 

accuracy in cow counting, but struggles with occlusion in dense flocks (Wang and Xu, 

2019); YOLO + DeepSORT reached 93% accuracy but demands high detection 

performance (Zhang et al., 2024); Mask R-CNN, with pixel-level segmentation, achieved 

96% accuracy in drone images of cattle (Xu et al., 2024). However, most studies focus 

on lab settings, lacking validation in real farming environments, and current models still 

need improved generalization in complex scenarios (Dac et al., 2022). Therefore, this 

study applies Mask R-CNN to sheep counting, optimizes parameters to improve accuracy, 

and validates its effectiveness using real farm data from Inner Mongolia, aiming to 

provide a low-cost, efficient, and automated solution for modern livestock management. 

The main contributions of this study are: 

i) A Mask R-CNN-based sheep counting method, optimized for dense scenes and 

occlusion challenges. 

ii) A dual-threshold strategy to improve counting accuracy by filtering noisy masks. 

iii) Validation using real farming data and comprehensive comparison with YOLOv5, 

SSD, and DeepLabv3+. 

iv) Practical recommendations for low-cost deployment, supporting intelligent 

management in small and medium-sized farms. 

 

Materials and Methods 

This study addresses the needs of numerous small and medium-sized farms, as well as 

individual herders in Inner Mongolia, who require cost-effective and computationally 

efficient counting methods. In response to these demands and the high costs and 

computational requirements of existing methods, this research proposes a sheep counting 

model based on image segmentation within deep learning. 

Considering the target sheep herds in real farming environments, the study initially 

compares deep learning image segmentation methods, represented by models such as 

FCN (Long et al., 2015), Unet (Ronneberger et al., 2015), DeepLabv3+ (Chen et al., 2018), 

Mask R-CNN (He et al., 2017), and PANet (Liu et al., 2018). After comparing these 

models, Mask R-CNN is selected as the base network. The model generates segmented 

images, sets counting rules based on the mask generation logic of Mask R-CNN, and 

iteratively counts the masks that meet these criteria to achieve sheep counting. The 



 

 

overall technical workflow is illustrated in Figure 1. 

 

Evaluation metrics 

This study investigates a sheep image segmentation algorithm based on Mask R-CNN, 

introducing the concept of a confusion matrix and evaluating the model using various 

research metrics. These include mean average precision (mAP) for both object detection 

and image segmentation tasks, parameter count, inference speed per frame, and model 

size. 

The confusion matrix assesses the classification model's performance by comparing the 

model’s predictions with the actual labels, providing four key metrics: true positive (TP), 

representing correctly predicted positive cases; false positive (FP), indicating negative 

cases incorrectly predicted as positive; true negative (TN), showing correctly predicted 

negative cases; and false negative (FN), which represents positive cases incorrectly 

predicted as negative. These metrics enable the calculation of accuracy, precision, recall, 

and F1-Score, providing a comprehensive evaluation of the classification model's 

performance. 

Here are some evaluation metrics derived from the confusion matrix, along with their 

calculation methods: 

Recall: Indicates the number of correctly predicted positive samples in the dataset, 

calculated using the formula in Eq. (1). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(1) 

Precision: Indicates the number of true positive samples among the predicted positive 

samples, calculated using the formula in Eq. (2). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2) 

In the sheep counting task, the evaluation of the model requires a comprehensive 

consideration of both metrics. 

In object detection and instance segmentation, mAP evaluates multi-class performance. 

When there is only one class, mAP equals AP. As this study focuses solely on sheep, mAP 

= AP. Nonetheless, mAP is used to align with standard practice, enable comparisons, 

and support future multi-class extensions.  

1. Calculate the Intersection over Union (IoU) values between predicted boxes and 



 

 

ground truth boxes, determining the counts of TP, FP, and FN based on a threshold. 

2. Sort the predicted boxes by their confidence scores and calculate precision and recall 

at different confidence levels based on the counts of TP, FP, and FN. 

3. Plot the Precision-Recall (P-R) curve using the multiple sets of precision and recall 
values obtained in step 2. The area under the curve represents AP, calculated as shown 
in Eq. (3). 

𝐴𝑃 = 6𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	𝑑(𝑟𝑒𝑐𝑎𝑙𝑙) (3) 

4.Take the average of all AP values to obtain mAP, calculated as shown in Equation, 
where 𝑁 represents the total number of classes: (4).  

𝑚𝐴𝑃 =
∑ 𝐴𝑃!!
!"#
𝑁

(4) 

 

Additionally, this study considers the following metrics: the number of parameters 

(Params), the computational complexity (Macc), the inference speed per frame, and the 

model size (MS). The number of parameters indicates the count of trainable parameters 

that need to be optimized, while computational complexity reflects the number of 

multiply-accumulate operations in the model. The inference speed per frame indicates 

the time required to infer a single image, and model size indicates the storage space 

occupied by the model. 

Counting accuracy: The calculation method for counting accuracy is shown in Eq. (5). 

Count_Accuracy evaluates the accuracy of sheep counting, where total_projects refers 

to the number of sheep predicted by the model, annotated_count refers to the number of 

sheep in the ground truth annotations, and total_annotated refers to the total number of 

annotated data. 

𝐶𝑜𝑢𝑛𝑡$%%&'(%) =
A1 − 𝐴𝐵𝑆 E∑

𝑡𝑜𝑡𝑎𝑙*'+,-%./ − 𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑%+&!.
𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑%+&!.

0"!
0"1 FG

𝑡𝑜𝑡𝑎𝑙(!!+.(.-2
× 100% (5)

 

 

Dataset construction 

To accurately evaluate the sheep counting method based on Mask R-CNN model, video 

data was acquired from real agricultural scenes in Baita village, Hohhot City, Inner 

Mongolia. The dataset was collected at different time periods, covering various lighting 

conditions, different farming densities, and complex scene environments. We used a 

HIKVISION MINI PTZ camera mounted at a height of 3 meters above the ground to 

capture four 1920×1080 videos from different top-down angles. As shown in Figure 2. 

to capture four video segments from different overhead angles. Next, we extracted image 



 

 

frames from the videos and annotated each frame with bounding boxes and instance 

segmentation masks for the sheep. 

The final dataset consists of 3,600 annotated images with sheep bounding boxes and 

instance segmentation masks, covering various lighting conditions, densities, and sheep 

behaviors (walking, standing, lying down). The dataset was divided into 80% training 

(2,880 images) and 20% testing (720 images). To improve the model’s generalization 

ability, data augmentation techniques such as random rotations (±30°), flips, and scaling 

(0.8–1.2×) were applied to enhance diversity and robustness. The data were collected 

from a farm with 67 sheep, but due to the use of top-down camera angles, not all sheep 

were captured in a single image. 

 
Constructing a sheep counting benchmark model based on Mask R-CNN  
Model selection  
This study employs the accumulation of segmentation masks of sheep categories to 

achieve sheep counting. To this end, a suitable base algorithm must be selected to 

generate accurate segmentation images. We selected several popular deep learning 

image segmentation algorithms and conducted experiments based on the VOC public 

dataset to evaluate their performance across different metrics. These criteria will help us 

comprehensively assess the model's accuracy and resource consumption, enabling the 

selection of the most suitable algorithm for practical needs. The experimental results are 

detailed in Table 1. 

According to the experimental results, PANet achieved the highest mAP at 49.5%, 

followed by Mask R-CNN at 47.4%, with DeepLabv3+, FCN, and U-Net at 43.8%, 

41.6%, and 40.1%, respectively. The ~2% advantage of PANet over Mask R-CNN aligns 

with its design for enhanced multi-level segmentation, and this gap is not huge; therefore, 

Mask R-CNN remains a great choice. 

In terms of model parameters (Params), FCN had the most parameters at 73.8M, 

indicating a complex model structure, but its performance did not show a corresponding 

advantage. In comparison, Mask R-CNN had a moderate parameter count of 23.5M, 

making it suitable for applications with certain resource consumption constraints. PANet 

and DeepLabv3+ had parameter counts of 29.4M and 39.6M, respectively, showing 

improvements in accuracy compared to Mask R-CNN, but also increased resource 

consumption. U-Net had the fewest parameters at only 16.9M, making it suitable for 

resource-constrained environments. 

Regarding the inclusion of object detection functionality, both Mask R-CNN and PANet 



 

 

integrated this feature, enhancing their accuracy in handling occlusion and overlap issues 

in complex scenes. In contrast, FCN, DeepLabv3+, and U-Net did not integrate object 

detection capabilities, which may limit their segmentation effectiveness in practical 

farming scenarios. 

In terms of model size (MS), DeepLabv3+ was the largest among the four models, with a 

size of 320MB, necessitating consideration of hardware resource limitations during 

deployment. The model sizes of FCN, PANet, and Mask R-CNN were relatively moderate, 

at 282MB, 268MB, and 178MB, respectively. U-Net had the smallest model size at just 

121MB, making it suitable for resource-constrained applications. 

Considering that the proposed method will ultimately be applied to sheep counting tasks 

in actual farming scenarios, a trade-off between segmentation performance and resource 

consumption is necessary. Based on the above test results, FCN, DeepLabv3+, and U-

Net models were first eliminated. In the comparison between Mask R-CNN and PANet, 

PANet had a 2.15% higher accuracy than Mask R-CNN, but its model size was 33.6% 

larger than Mask R-CNN, and its parameter count increased by 19.9%. Therefore, 

considering the application requirements and resource consumption, Mask R-CNN was 

ultimately chosen as the base segmentation model for sheep counting. 

 

Sheep counting network structure and optimization based on Mask R-CNN 

The specific structure of the Mask R-CNN model is as follows: 

Feature extraction network: Mask R-CNN uses ResNet50 as the backbone network, 

combined with a Feature Pyramid Network (FPN) to obtain multi-scale feature maps at 

different layers. The FPN improves object detection and segmentation performance by 

integrating high-resolution and low-resolution features through a top-down pyramid 

structure. 

Region proposal network (RPN): Mask R-CNN first generates candidate regions (Regions 

of Interest, RoI) through the RPN, which then classifies each candidate region and 

performs bounding box regression. The RPN utilizes a sliding window approach to 

generate multiple anchor boxes and filters out the regions most likely to contain objects. 

Segmentation branch: Unlike Faster R-CNN, Mask R-CNN adds a segmentation branch 

after bounding box prediction, generating pixel-level masks for the objects based on the 

candidate regions. The segmentation branch uses convolutional layers to map each RoI 

to a fixed-size mask output. 

Model optimization: We enhance the Mask R-CNN by adjusting two key parameters—

box_thresh (bt) and mask_thresh (mt) Use bt and mt for all subsequent cases.). 



 

 

In Mask R-CNN, masks can more precisely outline the contours of objects, and effectively 

utilizing these masks can significantly enhance counting accuracy. To explore how to 

optimize counting precision using masks, we conducted experiments in this direction. 

During the training phase, the input to the mask branch consists of positive sample 

candidate regions generated by the Region Proposal Network (RPN), as shown in Figure 

5. By using the candidate regions provided by the RPN as training inputs, the model can 

adapt to various object positions and shapes in real applications, similar to the random 

cropping methods used in data augmentation. This approach improves the model's 

generalization ability and adaptability in actual farming scenarios by diversifying the 

training samples. 

During the prediction phase of Mask R-CNN, the input to the mask branch comes from 

the detection results in the Faster R-CNN framework, which differs from the training 

phase. As shown in Figure 6, the input bounding boxes at this stage undergo Non-

Maximum Suppression (NMS) to filter out a smaller number of precise candidate regions. 

NMS effectively eliminates overlapping or inaccurate candidate boxes, allowing the 

mask branch to only process high-quality bounding boxes, thus reducing computational 

load and achieving efficient inference. This method enhances the model's inference 

speed while ensuring segmentation accuracy, meeting the requirements for precision. 

Through analysis, adjusting the two thresholds during Mask R-CNN inference process 

can affect the resulting masks. First, the bounding boxes input to the mask branch during 

inference come from the bounding boxes obtained after Non-Maximum Suppression 

(NMS) in Faster R-CNN. By adjusting the NMS threshold, bt, different quantities of 

bounding boxes can be generated, subsequently affecting the number of masks produced. 

As shown in the red box in Figure 7a, when bt is lowered, more lower-scoring objects 

are included as candidate boxes. 

In the mask branch, Mask R-CNN maps the predicted values of each pixel in the output 

mask to a range between 0 and 1 using the Sigmoid activation function. Following this 

principle, this study sets mt to represent the probability of a pixel belonging to a sheep. 

By adjusting mt the area of the mask for the objects in the image changes; when mt is 

increased, certain pixels with lower probability values are discarded and not included in 

the mask generation. The effect of raising mt is shown in Figure 7b. 

The threshold bt controls which target regions can generate segmentation masks, while 

the threshold mt regulates the size of the generated masks. By following these principles, 

a counting model can be designed to enhance counting accuracy. 

When counting objects using segmentation masks, the thresholds bt and mt can be 



 

 

adjusted to optimize counting accuracy; bt controls which target regions generate 

segmentation masks, while mt determines the coverage of the masks. First, by setting bt, 

it is determined whether the incoming targets in the segmentation phase are sheep. 

Targets greater than bt are identified as sheep, while those below are considered 

background. In the segmentation phase, masks are generated for the regions confirmed 

as sheep. By default, Mask R-CNN sets mt to 0.5. In this study, the result without mt is 

defined as "Image 1," and the result with mt as "Image 2." If the mask area difference 

between the two exceeds 80%, the mask is considered noisy and excluded from the 

count. This method effectively excludes noise points, ensuring that stable targets are 

counted, thereby enhancing counting accuracy and reliability. Finally, by accumulating 

the masks of sheep that meet the counting criteria, the total number of sheep can be 

obtained. The counting process is illustrated in Figure 8. 

 
Results and Discussion 

Threshold analysis and effect on counting accuracy 

Table 2 shows the changes in counting accuracy under various thresholds. As the 

thresholds increase, the counting accuracy generally shows a trend of rising first and then 

falling. 

From the trend in Table 2, it can be seen that when bt is set to 0.6 and mt to 0.7, the 

highest counting result reaches 96.09%, while other combinations yield relatively lower 

accuracy. This is because, at a bt of 0.7 and an mt of 0.9, the segmented instances 

generate corresponding masks that accurately identify the sheep, resulting in correct 

counting. By selecting appropriate values for these two thresholds, the method effectively 

avoids occlusion and missed detection problems in dense sheep scenes. In contrast, with 

other combinations, the segmented instances do not generate the corresponding masks 

precisely, leading to missed detections or false positives, whereby parts that should be 

identified as sheep or those that are not sheep are misidentified, thus reducing the 

counting accuracy. 

To further investigate the relationship between counting accuracy and the two thresholds, 

this study conducted experiments on the impact of a single threshold on counting 

accuracy. The results are shown in Figure 9b, illustrating how the counting accuracy 

changes as the bt value varies from 0.6 to 0.98. The results indicate that bt does indeed 

influence the performance of Mask R-CNN in sheep counting tasks. Setting a lower bt 

allows the model to classify more areas as sheep, but it may also introduce false positives, 

such as mistakenly identifying similar objects or background interference as sheep. 



 

 

Conversely, a higher bt means the model will only select areas with higher confidence, 

which can lead to missed detections of some actual sheep. In this experiment, the best 

performance was observed at a threshold of 0.9, achieving a counting accuracy of 

95.50%. However, to combine with the mt threshold for a more comprehensive 

identification of sheep, this study opted to set the bt 𝑏. at 0.7. This value better controls 

the area of generated masks, ultimately improving overall counting accuracy. 

Figure 9a)shows the variation in counting accuracy as the mt value changes from 0.6 to 

0.9. Adjusting the mt can further enhance counting accuracy. When the mt is low, the 

area of the generated mask increases, meaning that even pixels with lower probability 

values are included in the mask. However, if the threshold is set too high, some pixels 

that should generate a mask may be overlooked, leading to a reduction in mask area and 

failing to meet the required ratio for counting, resulting in their exclusion. Therefore, this 

experiment selected a mt value of 0.9 to control the optimal range for mask generation, 

ensuring the most accurate sheep pixels are included in the count. This, in combination 

with the bt value, ultimately achieves the best counting accuracy. 

 

Experimental results and comparative analysis 

To further evaluate the performance of Mask R-CNN, we conducted comparative 

experiments with YOLOv5, SSD, and DeepLabv3+, assessing parameter size, 

computation, inference time, model size, and counting accuracy. A generalization test 

was also performed using 50 images (25 from the test set and 25 newly collected 

unannotated images). As shown in Table 3, Mask R-CNN demonstrated a good balance 

of performance, resource consumption, and adaptability, making it the preferred choice. 

Firstly, regarding the number of parameters, Mask R-CNN has 23.5M parameters, while 

YOLOv5M has 21.2M, representing a reduction of 9.8%, which helps decrease model 

complexity but results in lower performance in sheep counting. In contrast, SSD has a 

slightly higher parameter count at 25.1M, an increase of 6.7%, but its accuracy and 

generalization capability remain inferior to Mask R-CNN. DeepLabv3+ has the highest 

parameter count at 38.9M, exceeding Mask R-CNN by 65.4%, significantly increasing 

complexity and making it difficult to apply in resource-constrained scenarios. 

Secondly, in terms of computational load, Mask R-CNN has a load of 21.6G. 

YOLOv5M's computational load is 24.5G, an increase of 13.5%, but its accuracy in 

sheep counting is low and does not fully utilize computational resources. SSD has the 

lowest computational load at 15.5G, reducing Mask R-CNN's load by 28.4%, making it 

suitable for resource-limited environments, though it suffers from accuracy issues. 



 

 

DeepLabv3+ has the highest computational load at 31.4G, exceeding Mask R-CNN by 

45.3%, offering high accuracy but at a significant resource cost. 

In terms of inference speed, Mask R-CNN takes 0.222s to process an image, while 

YOLOv5M only takes 0.119s, which is 46.2% faster and more suitable for high real-time 

demands, although it has lower accuracy in sheep counting. SSD processes an image in 

0.212s, 4.3% faster than Mask R-CNN, but has low generalization capability. 

DeepLabv3+ is the slowest, taking 0.317s, which is 43.2% longer, making it unsuitable 

for efficient real-time sheep counting. 

In terms of model size, Mask R-CNN's size is 339MB, while YOLOv5M is the smallest at 

only 44.3MB, reducing size by 86.9%, making it suitable for edge device deployment, 

though it performs poorly in counting accuracy. SSD has a model size of 95.7MB, a 

reduction of 71.8%, but still lags behind Mask R-CNN in accuracy and generalization 

capability. DeepLabv3+ is sized at 304MB, only 10.3% smaller than Mask R-CNN, but 

its computational load and inference speed are less favorable. 

Regarding sheep counting accuracy, Mask R-CNN achieves 96.1%, outperforming all 

other models. YOLOv5M scores only 80.3%, showing a significant gap. SSD achieves 

83.1%, which is 13% lower than Mask R-CNN. DeepLabv3+ scores 92.4%, close to 

Mask R-CNN but still behind. In terms of generalization counting accuracy, Mask R-CNN 

is at 88.8%, performing best, while YOLOv5M and SSD are at 67.3% and 72.2%, 

respectively, showing poor adaptability. DeepLabv3+ scores 85%, slightly lower than 

Mask R-CNN. 

In summary, Mask R-CNN demonstrates excellent performance in counting accuracy and 

generalization ability. Despite its slightly higher resource consumption, it remains the top 

choice for practical sheep counting tasks. 

 
Counting and generalization experimental results of Mask R-CNN model 

The changes in mAP for the segmentation task during the training process of the basic 

Mask R-CNN counting model are shown in Figure 10. Since the initial model training 

utilized pre-trained weights, it was able to quickly learn features with high recognition 

capability from the dataset early on, resulting in a rapid increase in mAP to a high level. 

In the later stages of training, the mAP value gradually stabilized, indicating that there 

were no signs of overfitting during the training process and demonstrating the model's 

good generalization ability. 

In the inference prediction phase, the basic network performs overall quite well, as 

shown in Figure 11. The model is able to effectively recognize both occluded and 



 

 

clustered sheep targets. The output images from the basic model exhibit clear edges and 

accurate segmentation results, allowing for effective segmentation of sheep. This 

excellent segmentation capability provides strong support for image processing and 

sheep counting tasks, laying a solid foundation for practical application scenarios. 

While Mask R-CNN demonstrates excellent accuracy and generalization capability, its 

larger model size and computational resource demands may limit its effectiveness in 

scenarios requiring high real-time performance. YOLOv5, with its smaller model and 

faster inference speed, is suitable for applications where real-time performance is critical 

but accuracy requirements are lower. However, Mask R-CNN has clear advantages in 

handling complex target segmentation and overlapping issues. Therefore, for scenarios 

with slightly constrained resources, considering compression techniques for Mask R-

CNN, such as model pruning and quantization, can help reduce computational resource 

consumption. 

The above discussion clearly illustrates the performance of different parameters and 

models under various conditions, highlighting their strengths and weaknesses. Mask R-

CNN performs exceptionally well and is suitable for sheep counting tasks, but it requires 

further optimization for resource-constrained environments. 

 
Conclusions and future prospects 

This study effectively addresses the issues of target density and occlusion in complex 

scenes instance segmentation technology. The counting accuracy reached 96.1%, 

significantly outperforming traditional detection methods. The innovation of this research 

lies in the first application of Mask R-CNN to sheep counting tasks, utilizing pixel-level 

segmentation to enhance precision, and achieving a balance between accuracy and false 

positive rates by optimizing bounding box and mask thresholds. 

Additionally, this study conducted multi-scene testing based on real farming data from 

Inner Mongolia, validating the model's adaptability and robustness in complex 

environments and demonstrating its broad application potential. However, the 

computational complexity of Mask R-CNN remains relatively high. Future work could 

improve its real-time performance through model compression and lightweight 

architectures. Expanding to larger-scale datasets would further enhance the model’s 

generalization. In addition, integrating multi-modal sensing technologies—such as 

drones and infrared sensors—could improve the comprehensiveness and accuracy of 

livestock monitoring. Reducing image resolution to lower computation time could also 

enable the use of lower-cost, lower-resolution cameras to build a networked surveillance 



 

 

system that not only counts animals but also tracks their movement, providing richer 

information beyond simple counting. Overall, this research provides a low-cost and 

efficient technological solution for intelligent management in animal husbandry and 

points the way forward for future optimization of model performance and expansion of 

application scenarios. 
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Table 1. Comparison of deep learning image segmentation experiments 

Algorithm mAP（%） 
Params/M Use of object 

detection 
MS/ M 

FCN 41.6 73.8 No 282 
Unet 40.1 16.9 No 121 

DeepLabv3+ 43.8 39.6 No 320 
Mask R-
CNN 

47.4 
23.5 Yes 178 

PANet 49.5 29.4 Yes 268 
 

 
Table 2. Counting accuracy of box_thresh and mask_thresh combinations 

Box_thresh Mask_thresh Counting Accuracy!%" 
0.5 0.7 89.8 
0.6 0.8 92.5 
0.7 0.9 96.1 
0.8 0.9 93.2 
0.9 0.95 90.3 
0.6 0.7 88.1 
0.5 0.8 85.8 
0.7 0.8 94.2 
0.8 0.7 91.0 
0.9 0.8 88.7 

 
Table 3. Comparison and generalization experiments. 

Model Params/M Macc/G 
Single frame 

time/s 
MS/M 

Counting 
accuracy 

Generalization 
counting 
accuracy 

Mask R-
CNN 

23.5 21.6 0.22 339 96.1% 88.8% 

Yolov5M 21.2 24.5 0.12 44.3 80.3% 67.3% 
SSD 25.1 15.5 0.21 95.7 83.1% 72.2% 

DeepLabv
3+ 

38.9 31.4 0.32 304 92.4% 85% 

 
 
 
 



 

 

 

 
Figure 1. Technical roadmap. 
 
 
 

 
 

 
 

Figure 2. MINI PTZ Camera. 
 

 



 

 

 
 

Figure 3. Sheep annotation schematic. 
 

 

 
 
Figure 4. Structure diagram of counting network based on MaskR-CNN. 

 
 
 
 
 
 



 

 

 
 
Figure 5. Mask R-CNN training process. 
 
 
 

 
 
Figure 6. Mask R-CNN prediction process. 
 
 
 

 

 
Figure 7. Effects of adjusting box_thresh and mask_thresh thresholds. 



 

 

 
 

Figure 8. Counting flowchart. 
 
 

 
 
Figure 9. Relationship between threshold and counting accuracy. 
 



 

 

 
 

Figure 10. Basic Mask R-CNN mAP curve graph. 
 

 

 
 

 
 

Figure 11. Basic Mask R-CNN network rendering. 
 
 
 
 

 


