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Fine-grained recognition algorithm of crop pests based on cross-layer
bilinear aggregation and multi-task learning
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Abstract

Fine-grained recognition of crop pests is a crucial concern in
the field of agriculture, as the accuracy of recognition and gener-
alization ability directly affect the yield and quality of crops.
Aiming at the characteristics of crop pests with a wide variety of
species, small inter-class and large intra-class differences in exter-
nal morphology, as well as the problems of uneven sample distri-
bution and noisy labels in fine-grained image datasets under com-
plex environments, we propose a fine-grained recognition model
of crop pests (MT-MACLBPHSNet) based on cross-layer bilinear
aggregation and multi-task learning, which consists of three key
modules: the backbone network module, the cross-layer bilinear
aggregation module, and the multi-task learning module. A new
union loss function is designed in the primary task of the multi-
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task learning module, which is used to alleviate the two problems
existing in the model training fine-grained image datasets. The
experimental results show that the model effectively balances the
model complexity and recognition accuracy in a comparative
analysis with several existing excellent network models on the
IP102-CP13 dataset, with the recognition accuracy reaching
75.37%, which is 7.06% higher than the baseline model, and the
F1-score reaching 67.06%. Additionally, the generalization of the
model is also verified on the IP102-VP16 dataset, and the model
outperforms most of the models in terms of recognition accuracy
and generalization ability, which can provide an effective refer-
ence for fine-grained recognition of crop pests.

Introduction

As a largely agricultural country, agriculture is one of the most
important basic industries in China. According to the comprehen-
sive analysis of relevant factors such as the source base of pests,
cultivation practices, and climate trends, it is predicted that major
crop pests and diseases in China will show an obvious recurrence
trend in 2023. This will severely threaten the safety of food pro-
duction and cause significant economic losses to agricultural pro-
duction. At present, crop pests are still one of the main hazardous
factors affecting agricultural production and need to be monitored,
given early warning, and controlled on time to protect the yield
and quality of crops. However, crop pests are characterized by a
wide variety of species, inter-class similarity in external morphol-
ogy, and intra-class variability, which makes their classification
more challenging. Therefore, with the increasing level of agricul-
tural modernization and intelligence, how to accurately, scientifi-
cally, and efficiently achieve fine-grained recognition of crop
pests has become a key task in the safe production of smart agri-
culture. Crop pest diagnosis based on traditional machine vision
technology mainly relies on manual intervention in feature design,
which is both time-consuming and energy-consuming and prone
to misjudgment. In recent years, the rapid development of deep
learning technology has allowed it to automatically extract crop
pest features for recognition in an end-to-end manner, effectively
avoiding the subjective factors of manual feature extraction. It has
made good progress and been widely used in the research field of
conventional classification and fine-grained recognition of crop
pests. For example, Li et al. (2020) first introduced multiple pre-
processing methods to remove the natural background of pests,
and then, with the help of a fine-tuned GoogLeNet (Szegedy et al.,
2015) network model, performed ten classes of crop pest conven-
tional classification and achieved better recognition results than
the ResNet-101 (He et al., 2016) model. Thenmozhi and Reddy
(2019) proposed a classification model of crop pests based on a
deep convolutional neural network and transfer learning (Li ef al.,
2022), and the experimental results indicated that it was effective
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in classifying pests in field crops. Nanni et al. (2020) proposed an
automatic classifier based on the fusion of the saliency method and
a convolutional neural network to classify 10 species of pests and
achieve better recognition accuracy. Li er al. (2020) proposed a
convolutional neural network (CNN) model based on optimized
GooglLeNet to identify corn borer pests, which effectively
improved the recognition performance. Wang et al. (2021) embed-
ded the improved convolutional attention module into AlexNet,
MobileNetV2 (Sandler et al., 2018), and other CNNs for fine-
grained recognition of crop pests and diseases, which resulted in a
certain improvement in accuracy. Wei et al. (2022) proposed a
multi-scale feature fusion network-based approach to crop pest
classification that achieved better classification performance on a
dataset of twelve types of pests. Zhang et al. (2023) designed a
structural optimization transmission network (SOT-Net) for hyper-
spectral image (HSI) and light detection and ranging (LiDAR) data
classification, where the information transmission process consists
of spectral structure branches optimized using a cross attention
mechanism and geometrical structure (spatial and elevation)
branches optimized by developing a symmetrical dual-modes
propagation module, and integrates self-aligned regularization into
the multi-source collaborative classification task during inference,
which enhances the robustness of the feature extraction and classi-
fication process. Wang et al. (2023) designed a multistage self-
guided separation network (MGSNet) for remote-sensing scene
classification based on the target-background separation strategy
and the introduction of contrastive regularization (CR) and
achieved good classification performance on three benchmark test
sets. Wang et al. (2023) proposed a representation-enhanced status
replay network (RSRNet) for multisource remote-sensing image
classification, which combines modal augmentation and semantic
augmentation to learn the structural features of the embedding
space, fuses multisource information with the cross-modal interac-
tive fusion (CMIF) method, and utilizes the status replay strategy
to mitigate the bias of the decision boundary of the classifier, mak-
ing it superior. Zheng et al. (2023) designed a deep residual net-
work based on multi-scale feature extraction to recognize rice
pests and achieved better classification results on a dataset of
twenty-two types of common rice pests. Although recognition
algorithms of crop pests based on deep neural networks have made
great progress in recent years, most of them are only single tasks
to study conventional classification and fine-grained recognition of
crop pests, and their recognition accuracy and generalization abil-
ity need to be further improved. Moreover, fine-grained recogni-
tion of crop pests remains an exceptionally challenging task, and
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one of the important research hotspots is how to achieve discrimi-
native feature extraction and characterization of crop pests’ inter-
class differentiation and intra-class similarity. Finally, due to the
high computational complexity and number of parameters in most
of the existing models, they fail to achieve an effective balance
between model complexity and recognition accuracy and are diffi-
cult to be deployed and applied in practical production.

Aiming at the above challenges, we propose a crop pest fine-
grained recognition model based on cross-layer bilinear aggre-
gation and multi-task learning using HOR-Shuffle-CANet
(Ruan and Liu, 2023) as the baseline model and use the IP102-
CP13 dataset and the IP102-VP16 dataset as research objects
to validate, which is intended to provide new ideas to meet the
practical needs of smart agriculture production. The contribu-
tions of this paper are summarized as follows:

- A lightweight CNN model (MT-MACLBPHSNet) based on
cross-layer bilinear aggregation and multi-task learning is pro-
posed for fine-grained recognition of crop pests. In particular,
the backbone network module improves the baseline model
with activation function optimization, depth-wise convolution-
al kernel enlargement, and embedded improved pyramid split
attention to extract pest fine-grained features at multiple
scales; the cross-layer bilinear aggregation module improves
the fine-grained feature representation of the model by fusing
different levels of features with Hadamard product operations;
and the multi-task learning module employs image feature
reconstruction as an auxiliary task to collaborate with the pri-
mary task of fine-grained classification of pests, complement-
ing the feature information between the two tasks to enhance
the recognition effect.

- A new union loss function based on the combination of the
softmax equalization loss and the bi-tempered logistic loss
learning strategy is designed to optimize the training model,
which is used to alleviate the problems of long-tailed distribu-
tion and noisy data for the fine-grained image dataset in the
field environment, and to make the model have strong general-
ization performance.

- Comprehensive experiments were conducted with the
extremely challenging IIP102-CP13 dataset and IP102-VP16
dataset as experimental materials, and abundant experimental
results demonstrate the superiority of the MT-MACLBPHSNet
model, which efficiently balances the number of model param-
eters, floating-point computation, and recognition accuracy,
and is characterized by its convenient migration and easy
deployment.
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Figure 1. Sample images from the IP102-CP13 dataset.
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Materials and Methods

Dataset

To validate the effectiveness and feasibility of the proposed
fine-grained recognition algorithm of crop pests, the IP102-CP13
dataset was constituted with images of 13 classes of corn pests

- pPress

Network architecture

The MT-MACLBPHSNet recognition model is composed of

three main components: the backbone network module, the cross-

with the highest imbalance ratio (IR) of farmland crops from the

largest and most challenging open-source benchmark for pest
images in field environments, IP102 (Wu et al., 2019), which was

utilized as a research subject for ablation study and comparison
study, as shown in Figure 1. Each class of crop pest images in this
dataset exhibits inter-class similarity, intra-class diversity, and
long-tailed distribution, which can accurately describe the real and

complex

agricultural practical

production

environment.

Consequently, this dataset holds good practical significance and
can better evaluate the performance of crop pest fine-grained
recognition algorithms. Among them, detailed information about
labels, species names, and numbers of images in the [P102-CP13
dataset is provided in Table 1, which will be used for experiments.

To verify the generalization ability of the proposed fine-
grained recognition algorithm of crop pests, the 16 classes of vitis
pest images with the highest IR of economic crops in [P102 were
used to constitute the IP102-VP16 dataset, which was used as the
research material for the generalization study.

As a majority of images in the above datasets have varying
sizes, to reduce recognition errors caused by irregular image sizes
and to meet the input image size requirements of subsequent net-
work models, the images are uniformly cropped and adjusted to

224x224, and then the online data augmentation of the images is

continued on this basis.

Data augmentation is a common method for extending data in
deep learning. The use of online data augmentation can avoid the
problem of storage load brought about by traditional offline data
augmentation methods while increasing the random diversity of
samples. In this paper, online data augmentation includes various
operations such as random rotation, horizontal flipping, vertical
flipping, color perturbation, noise addition, efc.

Table 1. IP102-CP13 dataset information.

layer bilinear aggregation module, and the multi-task learning
module. The overall architecture of this model is illustrated in
Figure 2.

When a crop pest image to be recognized is input to the MT-

MACLBPHSNet model:

It first enters the backbone network module for feature extrac-
tion. This involves passing through a shared encoder composed
of one convolutional layer and three CA-Res modules to
extract shallow-level common features. Subsequently, down-
sampling is performed using the max-pooling layer that retains
essential features, followed by multi-scale extraction of the
image’s more fine-grained deep-level semantic features by the
interactive layers of CA-Stage and IPSA modules, and subse-
quently, a convolutional layer is used to blend these features.
Among them, the three CA-Stages are modular layers com-
posed of Shuffle-CA Unit2 and Shuffle-CA Unitl, and the
numbers of Unit2 and Unitl in the modular layers are 1:3, 1.7,
and 1:3.

It then enters the cross-layer bilinear aggregation module for
feature fusion. Here, the shallow-level common feature maps
output Fg from the shared encoder, the deep-level semantic
feature maps output Fp from the CA-Stage2 modular layer,
and the global feature maps output Fg from the final Conv2
convolutional layer are sequentially fused across layers using
Hadamard product operations, and the feature vectors are
obtained by subsequent transformations.

Finally, it enters the multi-task learning module for fine-grained
classification of pests and image feature reconstruction. The
primary task is composed of a fully connected layer with 13
neurons, which generates the predicted category labels of the
input pest image. While the auxiliary task is divided into two
parts: a shared encoder and a decoder, the decoder is composed
of one transposed convolutional layer (TConv) and one convo-
lutional layer (Conv), which accomplish the feature reconstruc-
tion of the input image. The whole model is trained by jointly
optimizing the two tasks with a weight combination of a new

Species name Training Validation Testing

0 Grub 516 86 258
1 Mole cricket 989 165 495
2 Wireworm 532 88 267
3 White margined moth 88 14 45
4 Black cutworm 512 85 257
5 Large cutworm 294 49 148
6 Yellow cutworm 287 48 144
7 Red spider 317 53 159
8 Corn borer 1018 170 510
9 Army worm 642 107 322
10 Aphids 2456 409 1229
11 Potosiabre vitarsis 339 56 170
12 Peach borer 414 69 208
Total count 8404 1399 4212
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union loss function and a mean square error loss function as the
target loss function of the multi-task learning module.

Backbone network module

We use the MAHSNet model that we designed as the backbone
network of the MT-MACLBPHSNet model to efficiently extract
features from crop pest images. The MAHSNet model is a simple
and lightweight convolutional neural network, with its primary
parameters shown in Table 2.

Activation function optimization

The activation function plays a crucial role in deep convolu-
tional neural networks, which are mainly used to introduce non-
linearity and enhance the expressive ability of the network. The
widely used non-linear activation function ReLU has properties
such as accelerating convergence and mitigating gradient vanish-
ing (Li and Yuan, 2017). As can be seen from Figure 3, when the
neuron activation value is negative, the ReLU activation function
completely truncates the information flow to achieve non-linearity,
which results in the gradient not being able to be updated and is
prone to permanent neuron necrosis, making the network unable to
learn during back propagation, while the Mish activation function
(Misra, 2019) allows for the existence of a slight flow of the gra-
dient, retaining more information to flow into the neural network
for learning. When the neuron activation value is positive, the
Mish activation function is smoother than ReLU, with the gradient
gradually converging towards 1. It not only inherits the advantages
of the ReLU activation function but is also easier to optimize and
helps to improve the generalization performance of the model.
Therefore, the use of the Mish activation function in deep neural
networks is better than the ReLU activation function in terms of
accuracy, and we adopt the Mish activation function instead of
ReLU in the Shuffle-CA Unit module, as shown in Figure 4.

Depth-wise convolution kernel enlargement

In the typical network design process, depth-wise convolution
(DWConv) usually uses a 3x3 convolution kernel to perform con-
volution operations in the depth direction for each channel of the
input. As illustrated in Figure 4, to capture more detailed features
of the image, we substitute the original 3x3 convolution kernels
with larger 5x5 convolution kernels. Importantly, this does not sig-
nificantly increase the number of parameters. The use of a larger
kernel allows for the coverage of wider input areas, which in turn
increases the network’s receptive field (Luo et al., 2016) and intro-
duces more non-linear operations, which helps to improve the
expressive ability of the network and learn more complex semantic
feature information.

Improved pyramid split attention
To enable the model to capture discriminative pest features in

Table 2. Details of MAHSNet network parameters.

Name Filter/Stride Output size
Image - 224x224%3
Convl 3x3/2 112x112%24
CA-Resl - 112x112x24
CA-Res2 - 112x112%24
CA-Res3 - 112x112%24
MaxPool 3x3/2 56x56x24
CA-Stagel - 28x28%48
IPSA1 - 28x28x48
CA-Stage2 - 14x14x96
IPSA2 - 14x14x96
CA-Stage3 - 7x7%192
Conv2 1x1/1 7x7%1024
e P
Shuffle CA Uni || Shdfl-CA Unir2 | 1 Shuifle-L4 L |
Shutihe-CA Unrl |1 Shffle-CA Uaisl | 7 | Shmfla-£A Tt 3

2 IPSAS

IFSAl A5t
CA-Sta Com2
== e = -r

Figure 2. MT-MACLBPHSNet network architecture.
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the channel dimension, we introduce a global max-pooling branch C=C/S:
based on channel attention (ECANet) (Wang et al., 2020) and

design an efficient channel attention module (MPECA) that mixes F=Com(K = K,G)(X)
global max-pooling and global average-pooling strategies. K =2x(i+1)=1i=01,.5-1 1)
As shown in Figure 5, the MPECA module consists of three G =i+l

branches. The two branches first go through a global average-pool-

ing operation (retaining global features) and a global max-pooling Where K; represents the size of the i-th convolution kernel and
operation (focusing on locally significant features), respectively, G; represents the size of the i-th group in the group convolution.

and then adaptively determine the kernel size k£ to perform one- Step 2 - The MPECA Weight operation generates channel
dimensional convolution cross-channel interactions for informa-

tion fusion, and finally perform the sigmoid function activation to
generate weight information Z; and Z,. Then, these weights are
summed element-wise to get the new weight aggregation weight 10
information Z3, which is element-wise multiplied with the input
feature map of another branch to generate the ultimate weighted
output feature map. This process can suppress ineffective features
and highlight effective ones, thereby achieving feature filtering in
the channel dimension.

At the same time, to further enhance the network’s ability for
more fine-grained multi-scale feature extraction, we designed the

Improved Pyramid Split Attention (IPSA) module based on hybrid 7

pooling efficient channel attention with the original PSA module

(Zhang et al., 2022), as illustrated in Figure 6. 4
Certainly, the implementation steps of the IPSA module are as

follows:

Step 1 - The input feature map is divided into multiple branch- 07
es using the Improved Split and Concat (ISPC) module.
Subsequently, group convolutions with multi-scale convolution
kernels are applied to extract multi-scale features focusing on spa-
tial information on each channel feature map. This produces differ-
ent scale feature maps F;, which have the same channel dimension

=100 ] -5 -1.5 LA 25 50 1.5 10y

Figure 3. Comparison of Mish and ReLU activation functions.

l

Channel Split
ALy J' 1=1 Conv
BN&Mish !
_—l—.. 5x5 DWCony l BN&Mish
5%5 DWConv (stride=2) 5%5 DWConv
BN iBN (stride=2)
CA 1%1 Conv lBN
i BN&Mish 1xl Coly
1x1 Conv ,
BN&Mish
\ /ﬁi&mgh ,/
Concat Concat
i $
Channel Channel
Shuffle Shuffle
1 e
(a) Shuffle-CA Unitl (b) Shuffle-CA Unit2

Figure 4. Shuffle-CA unit.
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attention weights for different scale feature maps F;. These weights
are then concatenated dimensionally to form the entire multi-scale
channel attention weight vector;

Step 3 - The softmax operation is applied to recalibrate the
weights of the multi-scale channel attention vector, resulting in
recalibrated weights w after multi-scale channel interaction.

Step 4 - Element-wise multiplication is performed on the fea-
ture maps of the corresponding scales F; and recalibrated weights
w. This yields the feature maps N; after being weighted by multi-
scale channel attention.

Step 5 - The recalibrated feature maps N; are concatenated
dimensionally and finally yield feature maps N rich in multi-scale
information.

Cross-layer bilinear aggregation module
Conventional classification CNN only uses fully connected

k

layers to capture global semantic information from images, which
limits the feature representation capability of the network. On the
other hand, bilinear CNNs with higher-order feature interactions
utilize the outer product operation of the features to acquire sec-
ond-order information from images, which is more discriminative
and robust compared to first-order features, presenting obvious
advantages in fine-grained image classification (Lin et al., 2015;
Yuan et al., 2022; Kim et al., 2016). However, bilinear CNNs also
merely take the features extracted from the last convolutional layer
as image representations, which is not enough to describe the var-
ious semantic information of the object at a fine-grained level.
Furthermore, it ignores inter-layer feature interaction relationships
and the interconnectivity of fine-grained feature learning.
Additionally, the outer product operation is prone to dimensional
explosion. Therefore, we are inspired by the pooling idea of weak-
ly supervised fine-grained classification CNNs (Yu ef al., 2018)

Adaptive ConvlD
GAP
Sigmoid _ Z
_’ =
GMP I 7
| Sigmoid_ 2
Input = Output
(H>WxC) l (HxW=C)
1x1xC 1x1xC A d
Figure 5. Structure of the MPECA module.
Softmax
4444
MPECA Weight Module
s Output
v
IsPC e L ° >
H H
FF’ W
7 ... i @

Figure 6 Structure of the IPSA module.

OPEN a ACCESS

[Journal of Agricultural Engineering 2024; LV:1606]



and propose a method of cross-layer bilinear aggregation to effec-
tively fuse shallow-level common features, deep-level semantic
features, and global features generated in the backbone network
module. Through Hadamard product operations, the features from
two different hierarchical structures are element-wise fused in turn,
which extracts paired second-order bilinear feature information
within the same network across layers. This cross-layer modeling,
associated with paired local features, can effectively achieve inter-
layer feature interaction and advantageous information comple-
mentation. Such mechanisms are of great significance in fine-
grained image classification. Importantly, Hadamard product oper-
ations entail element-wise multiplication of corresponding chan-
nels in two feature maps, significantly reducing computational
complexity.

As shown in Figure 7, the steps of the cross-layer bilinear
aggregation module are as follows:

Step 1 - Matching shallow-level common feature maps Fg and
deep-level semantic feature maps Fp with differing resolutions
into the same dimensions. To achieve this, a method involving
max-pooling is used to reduce the resolution of feature maps Fi.
Subsequently, a 1x1 convolutional layer is employed to expand the
features from different hierarchical features into the high-dimen-
sional space. This approach not only retains the crucial information
of shallow-level common features but also ensures the spatial
information of deep-level semantic features.

F € R"™ and F, €ER™" represent the matched pairs of

hierarchical feature maps are then used Hadamard product opera-
tions to effect bilinear fusion, yielding shallow-deep fusion feature

maps F, € R"™".

Step 2 - Matching deep-level semantic feature maps Fp and
global feature maps F; with different resolutions into the same
dimensions. To achieve this, bilinear interpolation is employed to
enhance the resolution of feature maps F. Similar to the previous

-L(

step, a 1x1 convolutional layer is employed to expand features
from different hierarchical features into high-dimensional space.

F,€R"™ and F, €ER"™™ represent the matched pairs of hier
archical feature maps are then used Hadamard product operations
to achieve bilinear fusion, yielding deep-global fusion feature

RHxWxC

maps F, €

Step 3 - Using similar operations as above, shallow-deep

fusion feature maps F, &€ R""* and deep-global fusion feature
maps F, € R™™ are aggregated to generate classification

fusion feature maps F, € R™"

Step 4 - The classification fusion feature maps Fy undergo spa-
tial summation pooling to obtain the integrated information and are
finally converted into feature vectors ¢ by performing the symbolic
square root transformation operation and the L2 normalization
operation. This transformed feature vector & will be fed into the
subsequent multi-task learning module.

The above computational process is represented as Eq. (2).

F,=

Fpg=F,°
Fy=Fye

f{f}=;!~"\.[l:.‘!xw.j]

Eo

% o

S

:‘1

X7

x=vec(E(T)) ?)
V= sign (t}‘ﬂ:l

2=/,

i  GAP
: Bilinear Interpolation

f : 1= IConvd Mish

H - Hadamard produet operations

: Sum Poolingfsquare root trans formation opemation

Fusion & the L2 nonmalization operation

MY o MR Feature

Vector

Figure 7. Structure of the cross-layer bilinear aggregation module.
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Multi-task learning module

Multi-task learning involves simultaneously considering mul-
tiple related tasks in one or more models. Its objective is to utilize
the inner correlation among tasks to enhance the learning perform-
ance of single tasks (Zhang et al., 2020; Zhang and Yang, 2021).
As shown in Figure 2, to improve the recognition accuracy using
the multi-task learning framework, we adopt a commonly used
hard parameter sharing mechanism in multi-task learning. A multi-
task learning module is designed with fine-grained classification of
pests as the primary task and image feature reconstruction as the
auxiliary task. These two different tasks are mutually reinforcing
and together provide gradient information to the shared encoder
whose features are shared so that it can better enhance the model’s
generalization ability.

The objective loss function of the multi-task learning module
is as follows:

L2 :
L=tl, +wl, =tl, +tw-Y(y—3)
T+l = 7L, wﬂ;b, #) 3)

Where Ly represents the new union loss function for the pri-
mary task; Lysp represents the mean squared error loss function for
the auxiliary task; n is the total number of samples in the pest

image dataset; y; and j are the actual and predicted values of the

features, respectively; Tand 1 are two hyperparameters that main-
tain the weights of the losses of the two tasks in the overall loss. In
multi-task learning scenarios, the performance of the network
structure is affected by the loss of each task. A simple linearly
weighted summation of the losses of each task might result in con-
sistent scaling, but the weighting hyperparameters are difficult to
determine, and the model’s performance is highly sensitive to the

Table 3. Training process for the MT-MACLBPHSNET algorithm.

choice of weights. Therefore, we employ a strategy based on the
uncertainty of variance to automatically learn the relative weights
of different tasks, which serves as the basis for weighted loss in
multi-task learning (Cipolla et al., 2018; Wang et al., 2022). Table
3 summarizes the training process of the multi-task learning MT-
MACLBPHSNet algorithm. During training, the training parame-
ters that need to be set first are the initial learning rate, the iteration
index, the total number of iterations, efc.

The calculation formula during the gradient backpropagation
process is as follows:

iy

Ve “4)

L _ oL,
[ [

The updated formula for the weight W is as follows:

we = g O£
el ®)

The updated formula for the bias b is as follows:
L

isk-d g (©)

Among them, the new union loss function for the primary task
is a combined learning strategy based on the softmax equalization
loss (Tan et al., 2020) and the bi-tempered logistic loss (Amid et
al., 2019). The softmax equalization loss function can effectively
mitigate the existence of a long-tailed distribution of the dataset
and can focus on fewer classes of data samples to make the net-
work training fairer for each class, which in turn enhances the
model’s recognition accuracy. While the bi-tempered logistic loss

Algorithm: MT-MACLBPHSNet training algorithm

1) Initialize the network's weights parameters 7 and biases parameters & , the initial weight

hyperparameters 7 ,and yw the objective loss function

2) Iterate in the loop and execute step 3)

3) Increment the iteration index ¢ by 1, thatis /+1—/

4) Calculate the multi-task learning objective loss L' =7L, +yL,

5) Calculate the error by backpropagation through Eq. (4) for cach image

fai]
=1

-k

| &
]

6) Update Wand b using Eq. (5) and Eq. (6). respectively

7) Calculate the loss variance for the primary task Var(L’

8) Update 7, thatis {l +Var(1f.’w)]_l 7T
9) Update w , thatis [1 +Vﬂf'(fﬂf.usz)) ] —+y

) and the auxiliary task Var (L, )

L

10) If the network converges or reaches the total number of iterations, end the loop and output # and 5,

otherwise repeat from step 2)
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function can address two shortcomings of the standard logistic loss
function in training with noisy datasets, such as noisy data and out-
liers, this enhances the model’s adaptability to noise. Thus, the new
union loss function combines both these loss functions by config-
uring the weights, which can take into account their respective
characteristics and play the role of combined supervised learning.

The definition of the softmax equalization loss function is

given by the Equation: L, = —g_v,- log( 7, )

¥ =(! —exC/(C- ”)X.V. +&/(C-1)

o e’

P =

iﬂe
w, =1=-87,(f )1-,)
SLUON, @
Zh:

TR(A)="2

Where ¢ is the weight factor of label smoothing regularization
(LSR) in the range of 0<e<1, C is the number of classes; f is a ran-
dom variable used to balance the contribution of positive and neg-
ative samples, with a probability parameter y taking the value of 1
and a probability parameter 1-y taking the value of 0; f; is the fre-
quency of the class i in the dataset; 7 (x) is a threshold function
that outputs 1 when x<A is met, and 0 otherwise; A is a parameter
used to distinguish between tailed classes and others, and 7R is the
tail ratio used to set the value of A.

The definition of the bi-tempered logistic loss function is given

by Eq. (8).
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Where ¢, is the temperature parameter, and #, is the tail weight
parameter. The bi-tempered logistic loss reduces to the standard
cross-entropy loss when #j=t,=1; the bi-tempered logistic loss
becomes bounded, preventing large-margin noise samples from
pushing the decision boundary too far when 0<#/<1; the bi-tem-
pered logistic loss exhibits heavy tails when #>1, helping to keep

Table 4. Comparison of ablation the MAHSNET model.

the decision boundary away from small-margin noise samples; 4

is the linear activation of the class j, and #.(é) is the normalized
value for each sample.

The definition of the new union loss function is given by Eq.
(10).

Ly =Ly +PLy (10)

W T TRER

Where Lggp represents the softmax equalization loss function
with label smoothing regularization (LSR), Lgr represents the bi-
tempered logistic loss function with LSR, and p is a weight hyper-
parameter that acts as the adjustment coefficient between the two
loss functions. After several trials, this study automatically search-
es for the optimal weight hyperparameter p=0.83 through Bayesian
optimization.

Results and Analysis

Configuration

All experiments were conducted on a GPU cloud server con-
figured with 80 GB of RAM, an AMD EPYC 7642 48-Core
processor, an NVIDIA GeForce RTX 3090 GPU, and 24 GB of
video memory. The software environment included Python 3.8 and
PyTorch 1.9.1, an open-source deep-learning computing frame-
work.

Considering the performance of the test device, the number of
samples per batch was set to 64, and the number of iterations was
set to 300. The initial learning rate was set to 0.001, and the learn-
ing rate is updated by the warmup and cosine annealing decay
strategies. The optimization of the loss function is performed using
the AdamW algorithm.

Among them, the two hyperparameters (y=0.75, 2=0.00043)
of the softmax equalization loss function with LSR and the two
hyperparameters (¢;/=0.8, £>=1.2) of the bi-tempered logistic loss
function with LSR are used for the new union loss function of the
primary task.

Ablation analysis of the Backbone MAHSNet
model

We conducted ablation experiments to validate the feasibility
of the MAHSNet model of the backbone network. Using the HOR-
Shuffle-CANet as the baseline model architecture, we introduced
the Mish activation function, enlarged the depth-wise convolution
kernels, and embedded the [IPSA module for training on the IP102-
CP13 dataset. With the number of parameters (Params), the
amount of floating-point operations (FLOPs), the F1-score, and
accuracy as evaluation metrics (Vujovi¢, 2021).

From Table 4 it can be observed that the introduction of the
Mish activation function led to the accuracy of the model increas-

Model Params/M FLOPs/G F1-score/% Accuracy/%
Baseline 0.40 0.35 58.74 68.31+0.18
Baseline + Mish 0.40 0.35 61.42 70.63+0.11
Baseline + DW 0.42 0.36 60.81 69.28+0.20
Baseline + Mish + DW 0.42 0.36 61.72 70.97+0.14
MAHSNet 0.49 0.39 62.12 71.44+0.15
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ing by 2.32% without increasing the model’s parameters or com-
putational complexity. After enlarging the depth-wise convolution
kernels to 55, the recognition accuracy of the model also obtained
an improvement of 0.97%, although the number of model parame-
ters and computation was slightly increased. The inclusion of the
IPSA module enhanced the network’s feature extraction capability,
resulting in an effective accuracy improvement of 71.44%.
Ultimately, under the premise of only increasing the number of
parameters and computation amount, the MAHSNet model
demonstrated favorable recognition performance compared to the
baseline, with an Fl-score of 62.12 and a recognition accuracy
improvement of 3.13%. The above analysis shows that the
designed backbone network structure in this study is effective and
feasible.

Analysis of different loss functions to optimize the
MAHSNet model

To verify the performance of our designed new union loss
function for training the MAHSNet model, four different loss func-
tions, including the cross-entropy loss function (CELoss), the soft-
max equalization loss function (SEQLoss), the bi-tempered logis-
tic loss function (BTLoss), and the new union loss function
(NULoss), are selected for comparative analysis, respectively.
Figure 8 show the curves of training loss and validation accuracy
of the MAHSNet model optimized with different loss functions
over iterations. Additionally, the performance comparison of the
MAHSNet model is optimally trained using different loss func-
tions on the test dataset, as illustrated in Table 5.

As can be seen from Figure 8a, it’s evident that under the same
number of iterations, the optimized training model using the
NULoss exhibits better advantages than the rest of the loss func-
tion. It can better guide the model’s training, resulting in relatively
low training losses and faster convergence speeds. From Figure 8b,
it can be seen that under the same strategy, the model optimized
with the NULoss shows relatively higher recognition accuracy on
the validation set compared to the rest of the loss functions.

From the comparison of the experimental results in Table 5, it
can be observed that the softmax equalization loss function is more
advantageous than the cross-entropy loss function, which can alle-
viate the problem of imbalance in the distribution of the number of
each class in the long-tailed dataset. Although the approach using
the bi-tempered logistic loss function is less outstanding in terms
of the model’s recognition accuracy, it focuses more on noisy data,

Table 5. Comparison of performance using different losses.

which can facilitate model learning to handle datasets with such
characteristics. Ultimately, the NULoss, which is based on a com-
bination of the SEQLoss and BTLoss strategies, optimizes the
training of the MAHSNet model with a higher F1-score and recog-
nition accuracy. This loss function incorporates the respective
advantages of the above two loss functions, making it effective in
mitigating both the long-tailed distribution and adapting to noisy
data.

Ablation analysis of the MT-MACLBPHSNet
model

To further investigate the effectiveness of the MT-
MACLBPHSNet model, the cross-layer bilinear aggregation mod-
ule and the multi-task learning module are sequentially added for
ablation experiments based on the training of the MAHSNet model
optimized with the new union loss function.

From Table 6, it can be seen that the MACLBPHSNet model
with the added cross-layer bilinear aggregation module integrates
features from different layers, which effectively enhances the fine-
grained classification accuracy by 4.90% compared to the baseline
model. Through the joint learning of the multi-task learning mod-
ule, it can enable the MT-MACLBPHSNet model to further
explore the hidden common feature data between different tasks,
thus improving the recognition accuracy of the model more effec-
tively. Eventually, the MT-MACLBPHSNet model outperformed
the accuracy by 2.16% over the single-task model, enhancing the
recognition accuracy over the baseline model to 75.37% and F1-
score up to 67.06% on the IP102-CP13 test dataset. Thus, this
demonstrates the feasibility and effectiveness of the MT-
MACLBPHSNet model.

Comparison study

To further examine the performance of the MT-
MACLBPHSNet model for the fine-grained recognition of crop
pests, a comparison with the classical convolutional neural net-
work models such as ResNet-34, GoogLeNet, similar and excel-
lent lightweight CNN models like SqueezeNet, MobileNetV3-
Small (Howard et al., 2019), ShuffleNetV2 (Ma et al., 2018),
EfficientNet-BO (Tan and Le, 2019), GhostNet (Han e? al., 2020),
FasterNet-T1 (Chen ef al., 2023) and fine-grained image classifi-
cation models like BLCNN, BLShuffleNet, CBP (Gao et al,
2016), HBP, MC-Loss (Chang et al., 2020), etc. These models
were both comparative tests on the IP102-CP13 dataset in terms of

Model Loss F1-score/% Accuracy/%
MAHSNet CELoss 62.12 71.44+0.15
SEQLoss 62.24 72.13+0.09
BTLoss 62.17 71.68+0.12
NULoss 62.68 72.18+0.10
Table 6. Comparison of ablation the MT-MACLBPHSNet model.
Model Params/M FLOPs/G F1-score (%) Accuracy (%)
Baseline 0.40 0.35 58.74 68.31+0.18
MAHSNet 0.49 0.39 62.68 72.18+0.10
MACLBPHSNet 0.88 0.46 64.31 73.21+0.13
MT-MACLBPHSNet 0.89 0.59 67.06 75.37+0.11
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Params, FLOPs, Weighted File Size (WFS), Precision, Recall, F1-
score, and Accuracy. The results are illustrated in Table 7.
Meanwhile, Figure 9 was carried out to visualize the curve of val-
idation accuracy of similar and excellent lightweight network
models with the number of iterations.

As can be observed from Figure 9, network models with differ-
ent architectures and the number of layers have different effects on
the fine-grained recognition of corn pests. The MT-
MACLBPHSNet model that we proposed can extract the fine-
grained features of the corn pest images more adequately than the
rest of the similar and lightweight network models, and it has a
higher validation accuracy. Moreover, as indicated by Table 7, the
Fl-score and testing accuracy of the MT-MACLBPHSNet model
are higher than most of the CNN models mentioned above, and
second only to the MC-Loss model. However, the parameter count
of the MT-MACLBPHSNet model is 0.89 million and the size of
the weight file is 10.56 MB, which is only slightly higher than
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(a) Curves of training loss

lightweight networks like SqueezeNet and ShuffleNetV2, and
maintains a reasonable level of floating-point operations. In addi-
tion, the bilinear fusion of the outer product operation produces a
large amount of feature redundancy that affects the model deci-
sion, resulting in the poor performance of the customized BLCNN
model and the BLShuffleNet model based on the bilinear network
structure. Therefore, the MT-MACLBPHSNet model that we pro-
posed effectively balances the number of model parameters, float-
ing-point operations, and test accuracy. It proves to be more suit-
able for the fine-grained classification task of corn pests and meets
the application requirements for deployment on mobile devices.

Visualization analysis

Model visualization can intuitively reflect the areas of concern
of the model, and class activation mapping (CAM) can emphasize
the regions more important for model inference than other visuali-
zation techniques. Therefore, to demonstrate the effectiveness of

nw

g

Validation Accurseyi®a)
w

&

CELos
SEQLoss
BTLoss
N oss

L 1] il 150 o0 0 Wl
Epochs

(b) Curves of validation accuracy

Figure 8. Curves of training loss and validation accuracy.
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Figure 9. Comparison of variation curves for validation accuracy.
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the MT-MACLBPHSNet model, the new Gradient Class From Figure 10b, it is evident that when using the same origi-
Activation Mapping (Grad-CAM) technique is employed to visu- nal corn pest image, the MT-MACLBPHSNet model, which lever-
alize the class activation maps of both the baseline model and the ages the cross-level bilinear aggregation module to fuse features
MT-MACLBPHSNet model on the corn pest test dataset, as shown from different levels and incorporates multi-task learning with
in Figure 10 a,b. The first row of corn pests is grubs, while the sec-  joint image feature reconstruction, tends to focus on more areas of
ond row is small groundhogs. Among them, different colors in the corn pest features in the discrimination than the baseline model.
activation features represent varying levels of attention in different This indicates that there are more bases for the decision-making of

regions. In other words, the redder the color, the higher the atten- the model, resulting in more accurate recognition.
tion, which is more conducive to the fine-grained recognition of To analyze the effectiveness of the MT-MACLBPHSNet
corn pests. model for fine-grained recognition of corn pests, Figure 10c pres-
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Figure 10. Visualization of corn pests.

Table 7. The recognition performance of different models on the IP102-CP13 test dataset.

Model Backbone Params/M FLOPs/G  WFS/MB Precision (%) Recall (%) F1-score (%) Accuracy (%)
ResNet-34 - 21.29 3.68 128.00 68.18 65.53 66.69 75.1540.13
GoogLeNet - 5.62 1.52 64.50 66.61 63.84 65.10 74.02+0.10
FasterNet-T1 - 6.33 0.86 72.60 63.30 60.03 61.44 70.36+0.15
EfficientNet-BO - 4.02 0.40 46.40 65.71 64.67 65.08 73.87+0.09
GhostNet - 3.92 0.15 45.20 62.45 61.42 61.86 70.64+0.13
MobileNetV3-Small - 1.54 0.06 17.80 63.12 59.82 61.21 69.65+0.12
SqueezeNet - 0.74 0.73 8.54 61.13 55.48 57.75 67.48+0.20
ShuffleNetV2 - 0.36 0.04 5.29 59.79 57.81 58.56 67.63+0.16
BLCNN VGG-16 18.12 15.35 207.42 63.65 60.16 61.64 70.42+0.13
BLShuffleNet ShuffleNetV2 14.32 1.19 160.26 61.03 57.74 59.11 68.18+0.17
CBP VGG-16 14.82 15.34 169.64 64.01 61.83 62.77 71.94+0.24
HBP ResNet-18 17.51 2.13 200.56 66.65 64.98 65.76 74.56+0.17
MC-Loss ResNet-18 14.35 3.62 164.44 68.50 66.02 67.18 75.834+0.18
MT-MACLBPHSNet ~MACLBPHSNet 0.89 0.59 10.56 68.52 65.87 67.06 75.37+0.11
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ents the confusion matrices of the MT-MACLBPHSNet model for
the recognition results on the test dataset in the form of a standard-
ized matrix. Finally, the recognition precision, recall, and F1-score
of the 13 classes of corn pests are calculated as the performance
evaluation metrics of the model, as illustrated in Table 8.

The experimental results indicate that the MT-
MACLBPHSNet model achieves better recognition results than
the baseline model on most of the corn pests, but by indexing to
view labels 8 (corn borer) and 9 (army worm), there may be a high
degree of similarity between the different growth stages of some of
the images. The recognition accuracy for these two pest categories
is slightly lower compared to other categories, and so there is still
room for improvement.

Generalization study

To further evaluate the generalization performance of the MT-
MACLBPHSNet model, the IP102-VP16 dataset was used as the
experimental material. The model was compared with similar and
excellent lightweight CNN models such as SqueezeNet,
MobileNetV3-Small, ShuffleNetV2, EfficientNet-B0, GhostNet,
and FasterNet-T1, as well as fine-grained image classification
models like BLCNN, BLShuffleNet, CBP, HBP, and MC-Loss.

As can be seen from Table 9, the MT-MACLBPHSNet model
that we proposed similarly obtains a higher F1-score and accuracy
than most of the remaining good network models outside of MC-
Loss on the IP102-VP16 dataset, which further verifies that the

MT-MACLBPHSNet model has certain generalization ability and
scalability.

Conclusions

Based on the practical demands of agricultural production, we
have designed a fine-grained recognition model of crop pests (MT-
MACLBPHSNet) based on cross-layer bilinear aggregation and
multi-task learning, according to the characteristics of crop pest
fine-grained image datasets. Additionally, a combined learning
strategy based on the softmax equalization loss and the bi-tem-
pered logistic loss has been designed as a new union loss function
to optimize the training of the model. After a large number of
experimental demonstrations, the MT-MACLBPHSNet model
effectively balances the relationship between the number of
parameters, the floating-point operations, and the performance of
the model under the premise of guaranteeing recognition accuracy
and generalization performance. Finally, the model achieves a
recognition accuracy of 75.37% and an F1-score of 67.06% on the
IP102-CP13 test dataset. Impressively, the model’s parameter
count is merely 0.89 million, its computational complexity
amounts to 0.59 billion floating-point operations, and its weight
file size is a mere 10.56MB. These results firmly demonstrate the
model’s exceptional performance in fine-grained recognition of
crop pests. Furthermore, the model’s attributes include strong gen-
eralization abilities, ease of transferability, and seamless deploy-

Table 8. Recognition precision, recall, and F1-score for the [P102-CP13 test dataset.

Species name Precision (%) Recall (%) F1-score (%)
Grub 81.2 77.8 79.5
Mole cricket 88.9 91.5 90.2
Wireworm 82.5 83.7 83.1
White margined moth 87.2 86.0 86.6
Black cutworm 75.6 76.2 75.9
Large cutworm 80.8 75.0 77.8
Yellow cutworm 50.7 479 49.3
Red spider 52.4 52.8 52.6
Corn borer 31.7 28.1 29.8
Army worm 41.0 414 412
Aphids 83.9 62.4 71.6
Potosiabre vitarsis 72.1 71.9 72.0
Peach borer 62.7 61.7 62.2

Table 9. The recognition performance of different models on the IP102-VP16 test dataset.

Model Backbone Params/M FLOPs/G WFS/MB  Precision (%) Recall (%)  Fl-score (%) Accuracy (%)
FasterNet-T1 - 6.34 0.86 72.65 74.61 63.97 66.92 79.5240.10
EfficientNet-BO - 4.02 0.41 46.48 78.24 66.16 70.58 82.88+0.09
GhostNet - 3.92 0.15 45.20 71.02 62.64 65.87 78.59+0.12
MobileNetV3-Small - 1.54 0.06 17.80 77.21 60.96 66.79 79.06+0.14
BLCNN VGG-16 18.15 15.35 209.42 72.63 61.89 65.76 77.914+0.15
CBP VGG-16 14.83 15.35 169.92 74.65 63.85 67.88 81.04+0.09
HBP ResNet-18 17.52 2.13 200.66 76.48 66.70 71.21 82.95+0.05
MC-Loss ResNet-18 14.36 3.62 164.46 79.25 69.70 73.84 84.98+0.10
MT-MACLBPHSNet MACLBPHSNet 0.89 0.59 10.56 78.96 67.09 7143 83.87+0.07
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ment readiness.

However, the MT-MACLBPHSNet model has the limitation of
limited recognition performance when different pest growth stages
are highly similar. Although the MT-MACLBPHSNet model
employs cross-layer bilinear aggregation and multi-task learning,
these methods may not be able to completely solve the problem of
the high similarity in different pest growth stages. This is because
these methods mainly focus on improving the model’s characteri-
zation and generalization ability, while there may still be certain
deficiencies in dealing with the problem of the high similarity in
different pest growth stages.

In future research endeavors, the focus will be on expanding
the collection of fine-grained image datasets of crop pests, encom-
passing a broader range of characteristics such as inter-class simi-
larity and intra-class diversity. Additionally, there will be an explo-
ration and integration of novel network architectures and learning
strategies to further optimize lightweight network models. The
overarching goal is to further optimize lightweight network models
to continue improving the accuracy and robustness of the high sim-
ilarity problem in different pest growth stages within the field of
fine-grained recognition of crop pests, and to promote the develop-
ment of modern agriculture.
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