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Abstract

Recent studies suggest that plant disease identification via
machine learning approach is vital for preventing the spread of
diseases. Identifying multiple diseases simultaneous on a single
leaf is one of the most irritating issues in agricultural production.
However, the existing approaches are difficult to meet the require-
ments of production practice in accuracy or interpretability. Here,
we present residual attention based multi-label learning frame-
work (RAMDI), a method for predicting apple leaf diseases in nat-
ural environment. Built upon an attention based multi-label learn-
ing framework, the channel and spatial attention mechanisms are
investigated and embedded in residual network for multi-label dis-
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ease prediction, which takes advantage of channel-wise and spa-
tial-wise attention weights. Experimental results indicate that the
RAMDI achieves 0.976 accuracy, 0.986 F-score, and 0.979 mAPs,
outperforms the existing state-of-the-art apple leaf disease identi-
fication models. RAMDI not only predicts multi-disease on a sin-
gle leaf simultaneously, but also reveals the interpretability among
positive predictions that contribute most to identify the key fea-
tures that are significant for the leaf diseases. This method
achieves the following two achievements. Firstly, it provides a
solution for detecting multiple diseases on a single leaf. Secondly,
this approach gains an interpretable understanding for apple leaf
disease identification.

Introduction

The United States Department of Agriculture (USDA)
released a report that the global apple production is estimated to
reach 81.8 million tons in 2021, a rise of 1.6% year-on-year
(Alice, 2021). As one of the most valuable and popular fruits
around the world, apple is processed into various foods or condi-
ments. However, apple production is struggling with various dis-
ease intrusions, which restricts the improvement of apple yield
and quality. Traditional manual identifying diseases is labor-inten-
sive and time-consuming. Moreover, multiple diseases occurring
on a single leaf concurrently creates a great challenge for precise
identification (Zhou ef al., 2021). To mitigate the strong depend-
ence on human labor, it is significant to replace manual identifica-
tion with automatic detection on behalf of the development of
computational approaches.

Generally, symptoms of fruit diseases appear on the leaves
first, which makes the leaf disease identification particularly
important. Timely identifying disease on leaves prevents fruits
from being invaded. To date, many silico prediction methods have
been proposed to identify apple leaf diseases, mainly include con-
ventional machine learning methods and various variants of deep
learning approaches. The conventional machine learning
approaches, such as image processing methods (Ayyub, et al.,
2019), support vector machine (Chakraborty ef al., 2021), ACS-
LBP (Liet al., 2016), 2DSLDR (Shi et al., 2017), HloT (Pandiyan
et al., 2020) and so on. These methods have achieved satisfactory
results in apple leaf disease identification tasks. In addition, as the
deep learning architectures achieve unprecedented performances
in massive data processing, numerous of apple leaf disease identi-
fication models are released in recent years. Such as FCNN-LDA
(Agarwal, et al., 2019), leaf spot attention network (Yu, et al.,
2020), focus loss function method (Zhong et al., 2020), RegNet
(Li et al., 2022), MEAN-SSD (Sun et al., 2021) and CA-ENet
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(Wang et al., 2021). Together, these works greatly advanced our
understanding of the apple leaf disease identification in different
species under various conditions. However, the existing methods
suffered from the following limitations.

Firstly, most of the existing studies only focus on the single
leaf with single disease, mainly including Alternaria blotch, brown
spots, gray spot, mosaic and rust, but failed to support multiple
diseases occurring on single leaf simultaneously by an integrated
predictive model, and the study of the interplay between different
diseases is limited. Ayyub et al. (2019) proposed an image process-
ing-based apple disease identification approach. The traditional
image processing methods such as image segmentation, feature
extraction (color, texture and shape), feature combination and the
support vector machine were employed to identify apple diseases
Pandiyan et al. (2020) designed a heterogeneous Internet of Things
procedural (HIoT) system to point out leaf disease in an efficient
manner. The [oT was identified as a repetitive and persistent space
to find the impact gesture in leaf image, and it was used for real-
time resembling apple leaf diseases. Li et al. (2022) presented a
new lightweight convolutional neural network RegNet to identify
5 apple leaf diseases (rust, scab, ring rot, panonychus ulmi, and
healthy) with a high accuracy. When given many multi-label dis-
ease instances, the independent-based predictions are likely to
make a substantial proportion of false-positive or false-negative
results in practice, therefore it should be considered with extra cau-
tion. One apple leaf disease may be accompanied by other dis-
eases, such as scab and frog eye leaf spot, rust and frog eye leaf
spot, etc. The highly reliable disease identification model should
consider the coexistence of multiple diseases and their interde-
pendence.

Secondly, most of the existing works rely on the public
datasets or collecting data from the Internet, failing to fully take
into account of the farmland environmental factors such as climate,
humidity, temperature and illuminance, etc. Chakraborty, et al.
(2021) and Sun et al. (2021) collected an apple leaf disease dataset
under the experimental environment with simple background. Yu,
et al. (2020) used the dataset with similar background of apple leaf
disease. Zhong et al. (2020) adopted Al Challenger dataset for
training models. Agarwal, ef al. (2019) developed the apple leaf
diseases identification method using PlantVillage dataset.
However, the trained model is difficult to achieve the satisfactory
prediction effect in real planting environment. It is crucial to take
advantage of the data collected from field environment to mini-
mize the potential technological bias whenever such datasets are
available.

Lastly, most of the existing works pay more attention to
improve identification accuracy but rarely provide a clear interpre-
tation of the predictions. Although some works carefully interpret
their designed architectures (Wang et al, 2021), few existing
works give insightful analysis into the working process for individ-
ual predictions. The occurrence of each disease is often accompa-
nied by a variety of factors, taking advances of interpretable atten-
tion mechanism, and visualizing them is helpful to understand the
causal relationship. However, most of the existing models remain
significant for positive predictions, which are of little help to
understand the result forming mechanisms.

Based on the above reasons, it is a strong motivation to design
a unified state-of-the-art deep architecture that supports multi-label
disease identification using field planting environment dataset with
integrating multiple technologies. The RAMDI is proposed here,
an attention-based multi-label learning approach for prediction and
interpretation multiple apple leaf diseases. Five categories of apple
leaf diseases are supported by the presented model, including scab,
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rust, powdery mildew, frog eye leaf spot and healthy. To the best of
our knowledge, when a type of disease occurred, it is possible
accompanied by other categories of diseases at the same time. For
example, when it suffered from the fiog eye leaf spot disease, the
scab, or rust is usually also occurred. The attention based multi-
label learning of our method enables accommodation of the shared
structure of different diseases while fully exploiting their distinc-
tive features. As the features of multi-disease on a single leaf are
more difficult to handle, multiple attention mechanisms are inves-
tigated and integrated to capture the features of each disease and
interpret every individual prediction.

Materials and Methods
Raw data acquisition and preprocessing

Raw data acquisition

The development of an apple leaf disease identification archi-
tecture typically requires disease profiling data at base resolution
for training and testing purposes. Part of the raw images were cap-
tured using digital cameras or smartphones in the orchards of Qi
Xia, Yantai Shandong province, China from 2019 to 2021, and part
of the instances were taken from many apple cultivars at Cornell
AgriTech (New York, USA; Geneva, Switzerland) in 2019 to
ensure the diversity of training data (Thapa et al., 2020), which
covered most of the apple cultivars over widespread. A total of
27,883 raw images were obtained, prioritizing those derived from
multi-label diseases and generated under different weather condi-
tions in an orchard environment, as shown in Figure 1. After data
cleaning, the invalid data of disease instances are eliminated, and
21,631 images are curated into one-hot encoding labels such as
Figure 2, which describes the part of the implementation instances
(including 4,624 health images (0), 4,831 frog eye images (1),
1,684 powdery mildew images (2), 2,860 rust images (3), 4,826
scab images (4), 1920 rust and frog eye images (1,3), 886 scab and
frog eye images (1,4)).

Data preprocessing

The raw data were captured by cameras or smartphones with
different channels or resolutions. To the best of our knowledge, the
necessary condition for deep learning models to perform well is
with massive data of uniform size. Consequently, all of the images
were resized to 224x224x3, and the augmentation methods includ-
ing geometrical and intensity transformations such as horizontal
flipping, rotation, aspect ratio, contrast and brightness and noise
were employed to mitigate overfitting. All of the instances are split
into training set, validation set and test set with percentage ratios
of 70%, 15% and 15%. The training set is carried out for training
models, validation set is used for monitoring overfitting and opti-
mizing hyperparameters. The overall performance of the models is
assessed on test set.

Related works

This study presented an attention based multi-label learning
deep architecture for multiple apple leaf diseases identification,
which is closed to 2 branches such as attention mechanism and
multi-label algorithm. A brief review that leads to the proposed
methodology is given as follows.

Attention mechanism
Attention mechanism plays a crucial role in various vision
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tasks that invests more resources in specific target regions and
ignores useless information around as humans do, thereby enhanc-
ing the association of the labels with the image regions. The visual
attention mechanisms are briefly categorized into spatial attention,
branch attention, channel attention and temporal attention accord-
ing to data domain. Spatial attention mechanism, as an adaptive
spatial region that solves the problem of “where to pay attention”,
predicts the most relevant and important spatial positions. SENet
(Hu et al, 2020), Non-Local (Wang et al., 2018), SASA
(Ramachandran et al., 2019) and ViT (Dosovitskiy ef al., 2021) are
the most popular spatial attention approaches. Branch attention uti-

lizes a multi-branch structure to solve “which to pay attention to”
by a dynamic branch selection method, the important ones are
selected from the different masked branches. Condconv (Yang et
al., 2019) is the typical representative model using a branch atten-
tion method to increase the capability of networks efficiently.
Channel attention mechanism is regarded as an object selection
process that adaptively decide the weights of each channel to deter-
mine what need to pay attention to. There are various channel
attention methods along with their development process respec-
tively in recent years, such as SENet, global second-order pooling
attention block (Gao et al., 2019), the lightweight style-based
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Figure 2. Part of labelled apple leaf disease images.
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recalibration attention block (Lee ef al., 2019), gated channel
attention transformation (Yang et al., 2020), the efficient channel
attention block, multi-spectral channel attention block, multi-spec-
tral channel attention block (Qin et al., 2021) and so on. Temporal
attention focusing on the problem of “when to pay attention”,
which is usually used in video processing.

Multi-label learning algorithm

Multi-label learning solves the problem that a single instance
is associated with a set of labels simultaneously. The multi-label
learning aims to predict the correct set of labels on a single
instance as accurately as possible, which shows significant impli-
cations in practical applications such as scene analysis, image
annotation and plant disease identification. As the high-dimension
feature space and numerous noises existing in multi-label data, it is
a high challenge to apply widely. In recent years, multi-label learn-
ing has been explored in learning separated-label and multi-label
relationship using various techniques. The separated-label
approach such as Binary Relevance adopts a classifier such as
ANN or RBF to learn each class individually and evaluate the out-
put in the target space. The multi-label relationship methods such
as ML-ZSL (Lee et al., 2018) incorporates knowledge graphs to
describe multi-label relations in the semantic label space. MRDM
(Huang et al., 2021) uses the dependence of class labels to associ-
ate the data space with label space for multi-label feature selection.
It is a great opportunity and challenge to predict plant disease using
multi-label based approaches. For example, various diseases
occurred on a single leaf as shown in Figure 3. How to identify
these diseases simultaneously is one of the objectives to be solved
in this work.

Evaluation metrics

The evaluation metrics such as accuracy (Acc), precision (Pre),
loss, recall, F-score (Fs), hamming score, hamming loss and mAPs
were adopted in this work. Accuracy is utilized to measure the pro-
portion of positive predictions in all samples. Precision is used as
the proportion of positive predictions among positive samples
determined by classifiers. Recall is introduced as the proportion of
the positive predictions in the positive samples. F-score is used as

scab

frog eye leaf spot

Identification models

the harmonic average of precision and recall, which is adopted as
the evaluation metrics for early stopping and calculated by averag-
ing each metric for multiple classes. Hamming loss is introduced
in multi-label classification problem, which counts the number of
misclassified labels. Hamming score returns the average accuracy
of all samples, and the accuracy rate is the proportion of the num-
ber of positive predictions that correctly predicted labels to the
truly positive labels. Finally, mAP is the abbreviation of mean
average precision, which calculate the mean value of the average
precision in all categories.

Proposed method

Model architecture

In this work, a residual attention based multi-label architecture
RAMDI was proposed for apple leaf disease prediction. The
RAMDI framework is shown in Fig.4. Given a set of labelled base-
resolution apple leaf disease instances, RAMDI learns the mapping
between the image features and the disease category automatically.
Once this mapping is learned, the RAMDI with residual attention
mechanism enables us to interpret the model and extract the key
features that contribute most to the positive prediction. There are 4
residual attention stages in RAMDI framework. Each stage con-
tains 3 convolution layers with BatchNormalization and RelLU
activation function, and the attention block is embedded in residual
attention stage. The global average pooling layer is employed to
condense a set of information, and then input the condensed fea-
tures into full connection layer with Sigmoid activation function
for prediction.

Residual attention block

In this work, the residual attention stage is designed for feature
learning, and the channel attention and spatial attention mecha-
nisms are investigated and embedded in the improved residual net-
work for feature learning as shown in Figure 5. Two pooling meth-
ods such as maxpooling and averagepooling are utilized to con-
dense the input feature information respectively, and the matrix
addition operation is employed between the two condensed fea-
tures with element-wise sum and fed into channel attention and

(1) Frog eye leaf spot
(2) Scab
)

—

Output labels

Figure 3. Multi-label learning for leaf disease identification.
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spatial attention mechanisms respectively as demonstrated in (1).
G = Sigmond(G. ® G, (1)

where denotes the attention weights, and the Sigmond activation
function is implemented for normalizing the attention vectors. G¢
and Gj are the expanded channel and spatial attention vectors
respectively, which are indicated in (2) and (3).

G, = E(CA(conv(Maxpool () @ comv( Avgpool (F))))

2

G, = E(SA(com(Maxpool(F)) @ conv( Avgpool(F ) 3)

where denotes the expand operation, which ensures the same fea-
ture dimensions between the input and output vectors. CA4 and S4
denote the channel attention and spatial attention operations,

denotes the conviD operation, Maxpool denote the maxpooling

and averagepooling operations respectively. @ denotes the ele-
ment-wise sum operation, and denotes the input features. Together,
the residual attention block can be stated as (4).

R=F®G®F) “4)
where R denotes the output features of residual attention block.

In the residual attention block, the original features are respec-
tively input into 3 exploited branches including attention branch,
weight multiplication branch and residual connection branch.
Attention branch aims to trim invalid informative and enhance the
key valuable feature weights. Weight multiplication is designed to
condense the valuable features that contribute to the true positive
predictions, and the residual connection branch is utilized to miti-
gate overfitting and learn the categorical features of apple leaf dis-
ease images. It is expected that these vectors can well synthesize

RelLU RelU elLU Sigmoid
) — — - .
: | &=
] — ]
I - :
Conv2D & BN Conv2D & BN Conv2D & BN  Attention block :GlobalAvetagePooling FC layer Qutput
I
""""""""" Residual attentionblock
Figure 4. The architecture of RAMDI model.
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Figure 5. The architecture of residual attention block.
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the valuable information needed for each prediction branch.

In this work, the RAMDI model maps each vector to the prob-
ability of each disease type simultaneously. The proposed RAMDI
model is optimized by weighting binary cross-entropy loss func-
tion in different tasks. Specifically, the two attention mechanisms
are implemented to account for possible interaction of different
diseases, and the Sigmoid activation function assigns the possible
prediction results by one-hot encoding approach, which helps to
extract diseases feature patterns in a dense manner and aims to
generate high dimensional representations of it.

Experiment and results analysis

In this work, the Cent 7.5 Linux operating system with python
language, pytorch 1.7 and cuda 10.1 framework was deployed, and
the 4xNVIDIA 2080Ti GPUs were employed for accelerating
computing in the experiments.

Implementation details

In general, the hyperparameters are optimized based on the
validation sets, while the final prediction results are implemented
on the test set. In this work, the stratified 5-fold cross-validation is
introduced for training in the experiments, while K-fold cross-val-
idation is employed to mitigate overfitting or vanishing gradient in
deep learning architectures, especially for those who have small or
imbalanced training set. The stratified 5-fold cross-validation is
implemented by extracting the training set according to the propor-
tion of categories, which take advantage of all the data categories
while it is a small amount. The hyperparameters utilized in this
work is exhibited in Table 1.

Loss function

In multi-label learning approaches, there are 2 state-of-the-art
loss functions such as Dice and binary cross -entropy are employed
in this work. The Dice loss is more immune to the data-imbalance
issue, which attaches similar weights between false positives and
false negatives. The Dice loss is adaptive in (5).

Dice loss = — E 2pr1qu +p ]
Pr!+qr]+p| (5)

where denotes the sum of simples,denotes the individual example,
is the positive simple, is a factor to both the nominator and the
denominator. The binary cross-entropy loss function is adopted for
multi-label learning with a robust manner which defined in (6).

Wﬂ, =log(p)
=log(1- p) (6)

Table 1. The hyperparameters in the proposed method.

where Ypositive denotes the positive prediction labels and Yaegarive is
the negative prediction labels, and p is the positive prediction prob-
ability. The binary cross-entropy loss function could continuously
reduce the cross entropy between outputs and the labels in the
training process, so that the output of label 1 closer to 1 and label
0 closer to 0. In this work, the two loss functions are both imple-
mented, and the experiment performance is demonstrated in
Section 3.2.

Activation function
The Sigmoid activation function is utilized with one-hot encod-
ing to adapt multi-label problems, which demonstrated as (7).

’ 1
S@W=—s %)

where is the output probability of the function andis a linear vector,
andis tend to 0 or 1 when the positive or negative predictions are
inputted. It is expected to activate the value of each prediction at
once, and output the probability of each positive prediction respec-
tively. In this work, the one-hot encoding method utilizes N-bit
state register to encode N states, and each state has its own register
bits, and only one of them is valid at any time. The workflow of
Sigmoid activation function with one-hot encoding is illustrated in
Figure 6.

Results and analysis

To comprehensively evaluate the performance of the proposed
RAMDI model, the comparison approaches and evaluation metrics
are stated here. To ensure a fair and interpretable comparison, the
classic deep learning approach ResNet-50 was selected as the rep-
resentative CNN model, and 2 different loss functions and 2
embedding methods were combined into 4 models for comparison.
The experimental results on test set are detailed in Table 2. Taking
Resnet-50 as the baseline, the 2 loss functions such as Dice and
binary cross-entropy (BCE) were implemented respectively, the 2
embedding methods such as embedding in block (see Figure 4) and
embedding in stage (see Figure 7) were designed in this work.
Subsequently, the state-of-the-art attention models such as SENet
(Hu et al., 2020), CBAM (woo et al., 2018), ECA (Wang et al.,
2020), and Swin transformer (Liu et al., 2021) were introduced for
comparison.

This work aims to design an interpretable classifier that could
achieve an exciting performance in the identification of multi-label
apple leaf diseases. Various combinations of the loss functions and
attention embedding methods are investigated and the RAMDI
with binary cross-entropy loss function achieved a satisfactory per-

Hyperparameter Value

Training strategy

Stratified 5-fold cross-validation

Optimization function Adam

Loss function Binary cross-entropy, Dice
Activation function ReLU

Batch size 64

Epochs 200
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formance. Importantly, to assess the contribution of the attention
embedding approach used in our model, the channel attention and
spatial attention are implemented respectively and add the outputs
as an attention block. This approach could take advantage of the
two attention mechanisms with encouraging results. For pooling
operation, the maxpooling and averagepooling are employed to
trim the input features respectively and add the outputs as input
into attention block, which retains valuable information to the
greatest extent. Besides, the Sigmoid activation function and one-
hot encoding were cooperated to execute the multiple labels
assignment tasks.

Discussion

A residual attention based multi-label learning model was
designed in this work. It predicted multiple occurring diseases on
a single apple leaf simultaneously and present the interpretation

Identification models

pag

that contributed to the predictions. To fully exploit the inherent
structure of the prediction models, two different embedding
approaches and two loss functions were combined respectively. It
was found that the binary cross-entropy loss function drastically
improved the predictive performance. To deal with the dataset bias,
the data augmentation and stratified 5-fold cross-validation train-
ing strategy was adopted for training stage, which increased the
training effect effectively. It is encouraging that the overall per-
formance of the proposed RAMDI model outperforms the conven-
tional machine learning approaches and the existing start-of-the-art
multi-label models.

Interpretability

A satisfactory model needs not only achieve high prediction
accuracy, but also grasp interpretability from its internal structure.
The proposed RAMDI model adopts residual concatenated atten-
tion mechanisms and multi-label prediction blocks to explain visu-
ally how the model makes specific expected decisions.

label
1

x [
< Il

H-

|
.
I
.

. X3
Sigmoid
= <

X5
sample

«

Figure 6. The flow chart of multi-label learning.
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Figure 7. Attention mechanisms embedded in residual attention stage.
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Specifically, this section focuses on why the proposed approach is
valued most while identifying different diseases, and acquired the
kernels which contributed most in the positive predictions.

To the best of our knowledge, when multiple diseases occurred
on a single leaf simultaneously, it is a disturbing job to predict dis-
ease with multiple symptom features using single-label machine
approaches. The attention mechanisms such as spatial attention
and channel attention are transplanted to address the problems of
“what is the leaf disease” and “where is the leaf disease”. Since the
input images are capable of picking out specific elements from the
features to make output, thus the two attention mechanisms give
the model ability to determine and place weights on the relevant
place of the input instances for each prediction work as expected.
Consequently, it can be seen that the attention mechanisms effec-
tively filter out the noisy information of the false prediction infor-
mation by visualizing the attention tensor weights as shown in
Fig.8, the most critical represent parts are identified in RAMDI
model while making each prediction.

By calculating the gradient of output tensors with respect to
their input, the residual connection keeps gradient stable conver-
gence, which reflects the contributions of the input tensors to the
output in the proposed RAMDI model. In addition, the binary

cross-entropy loss function measures the contribution of each input
instance to each disease prediction and assigns its contribution
scores to the corresponding label in the output matrix. The thresh-
old parameter is introduced to define whether the output is positive
or not according to the contribution scores, which could visualize
the attribution maps of the importance in the predictions.

Limitations

Different from the single-label prediction models, multi-label
learning faces more uncertainties and incline to close to the practi-
cal planting environment. The occurrence of one disease may be
accompanied by others. identifying multiple diseases timely is of
great practical significance to control the spread of diseases.
However, it is impossible to address a general disease identifica-
tion model the limited training data, and few-shot learning with
multi-label may be a possible solution. In addition, the implicit
variables relationship of different labels needs to be further
explored to determine the weight of the corresponding labels. It is
significant to analyze the correlation labels to improve the per-
formance of prediction models. The attention mechanisms are
employed to improve model performance in accuracy and robust-
ness. However, the increase of computing resources makes it diffi-

Table 2. Experimental results on test set.

Approaches Evaluation metrics |
PP Acc Loss Pre Recall Fs HS HL mAPs
Resnet-50 (baseline) | 0.959 | 0.020 | 0.982 | 0.984 | 0.980 | 0.975 | 0.0102 | 0.959
Resnet-
50 SENet block 0.965 | 0.019 | 0.983 | 0.983 | 0.981 | 0.977 | 0.0096 | 0.961
Resnet-
< | 50_SENet stage 0.961 | 0.020 | 0.981 | 0.983 | 0.979 | 0.971 | 0.0104 | 0.959
‘S | Resnet-
E 50 CBAM block 0.961 | 0.020 | 0.982 | 0.982 | 0.979 | 0.974 | 0.0107 | 0.954
7 | Resnet- 0.945 | 0.029 | 0.972 | 0.975 | 0.970 | 0.963 | 0.0153 | 0.935
2|50 CBAM stage : : : : : : : :
_3 Resnet-
2 | 50 ECA block 0.964 | 0.019 | 0.983 | 0.984 | 0.981 | 0.976 | 0.0097 | 0.964
Resnet-
50 ECA stage 0.951 | 0.025 | 0.976 | 0.979 | 0.974 | 0.968 | 0.0130 | 0.947
Resnet-50 ours stage | 0.954 | 0.026 | 0.975 | 0.979 | 0.974 | 0.969 | 0.0127 0.953
Resnet-50 ours_block | 0.954 | 0.024 | 0.978 | 0.980 | 0.976 | 0.970 | 0.0121 | 0.950
Resnet-50 (baseline) | 0.958 | 0.021 | 0.981 | 0.975 | 0.978 | 0.974 | 0.0078 | 0.972
Resnet-
50 SENet block 0.966 | 0.021 | 0.985 | 0.982 | 0.983 | 0.980 | 0.0067 | 0.974
Resnet-
_ | 50 SENet stage 0.971 | 0.019 | 0.985 | 0.979 | 0.981 | 0.978 | 0.0066 | 0.973
£ | Resnet- 0.969 | 0.022 | 0.980 | 0.978 | 0.978 | 0.975 | 0.0078 | 0.969
£ | 50_CBAM block : : : : : : : :
= | Resnet-
2|50 CNAM stage 0.970 | 0.023 | 0.981 | 0.979 | 0.979 | 0.976 | 0.0077 | 0.971
& | Resnet- 0.974 | 0.021 | 0.985 | 0.982 | 0.983 | 0.980 | 0.0065 | 0.976
@ | 50 ECA block : : : : : : : :
Resnet-
50 ECA stage 0.973 | 0.021 | 0.985 | 0.981 | 0.982 | 0.979 | 0.0069 | 0.972
Resnet-50 ours_stage | 0.968 | 0.023 | 0.981 | 0.977 | 0.978 | 0.975 | 0.0079 | 0.968
Resnet-50 ours block | 0.976 | 0.019 | 0.988 | 0.985 | 0.986 | 0.983 | 0.0054 | 0.979
Swin transformer | 0.961 | 0.022 | 0.982 | 0.982 | 0.979 | 0.974 | 0.0117 | 0.954

Accuracy (Acc), Loss, Precision (Pre), Recall, F1-score(F1s), Hamming Score (HS), Hamming Loss (HL), and mAPs were all
collected under the same experiment environment.
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cult to be deployed in mobile devices, a lightweight attention based
multi-label model for plant leaf disease identification is expected.

It is important to note that, the proposed RAMDI model cur-
rently does not consider the distinct severity of different diseases
as it is difficult to obtain disease severity data set. So even in the
same setting, the false-positive predictions cannot vary substantial-
ly between the different severity of leaf diseases. The problem is
partially due to the limited training data for severity analysis,
although it is important to develop multi-label learning based plant
leaf disease severity prediction models in real-world. This issue
may be alleviated with the development of few-shot learning and
digital twin technologies.

Input images |

ResNet_50
with no
attention

ReNet 50
with SENet

ResNet_50
with CBAM

RAMDI

nagcpress

Conclusions

This work presented RAMDI, a residual attention based multi-
label architecture for apple leaf disease identification. It is an
encouraging finding that the combination of two attention mecha-
nisms significantly improved the feature representation ability of
apple leaf diseases. In addition, the residual concatenation between
the input features and the full connection layer tensors improved
the prediction performance to process multi-label classification
tasks. Despite the existing models have achieved the state-of-the-
art performances in single disease identification, there is still a
large margin across the board between the laboratory results and
practice value, the proposed RAMDI bridges the performance gap
by giving a more dependable and interpretable approach for detect-
ing multiple diseases, which provides a new insight for identifying
multiple diseases simultaneously. At present, the comprehensive

Figure 8.The visualization of different models.
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information of plant diseases has not been fully exploited, espe-
cially the disease severity analysis, mobile terminal-based plant
disease identification, and the correlation analysis of multiple dis-
eases, and so on. It is expected to develop more robust plant dis-
ease identification methods to better serve the digital agriculture in
future.
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