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Abstract 

Infructescence detection during the early fruiting stage is a necessary preliminary work to estimate 

the yield of Zanthoxylum. The purpose of this research is to detect and quantify the infructescences 

on the images of early fruit-bearing branches of Zanthoxylum which are collected in the natural 

environment. Thus, a machine vision-based algorithm for detecting Zanthoxylum infructescences is 

proposed, which contains of two phases. The first is to segment fruit-like and non-fruit region from 

Zanthoxylum branch image by extracting the Histogram of Oriented Gradient (HOG) feature map 

and Excess Green minus Excess Red (ExGR) index to obtain the fruits of Zanthoxylum 

infructescences. The second is to identify fruits adaptively and roughly in accordance with the density 

of their position distribution, then an optimization model is established to merge rough clusters and 

the optimal clustering result is obtained. Experiments with normal samples demonstrate that the 

proposed approach receives a Precision of 96.67%, a Recall of 91.07%, and an F1-score of 0.93. 

Compared with ADPC-kNN, DBSCAN and OPTICS, the results reveal that the proposed algorithm 

has an improved robustness and achieves higher Recall and F1-score. Meanwhile, its competitiveness 

is displayed in the experiments with deep learning-based methods. It can adaptively detect the 

infructescences of Zanthoxylum branch images, and the experiments prove that it is effective. 

 

Introduction 

Estimating the yield of Zanthoxylum during the early fruiting stage is indispensable for growers. 

It can provide growers with the necessary information to support logistics, crop storage and marketing 

in advance (Zhang et al., 2022). In Chongqing, Zanthoxylum Schinifolium, one of the Zanthoxylum 

species, is widely grown. Its planting area is expanding and output is increasing year by year. In 2019, 

the planting area and yield of Zanthoxylum in Chongqing increased over the previous year by 4.3% 

and 17.8%, respectively, reached 73,000 hectares and 435,000 tons, respectively (Kuang et al., 2020). 

The infructescence number of immature Zanthoxylum can to a certain extent predict the future yield. 

Manual sampling is labor-intensive and inefficient. Therefore, it is crucial to provide a machine 

vision-based method for identifying Zanthoxylum infructescences. 

When extracting the infructescence regions of Zanthoxylum, each infructescence is regarded as 

a cluster composed of a series of fruits. In recent years, various techniques have been developed for 

automatic fruit detection, which can help improves the efficiency, functionality, intelligence and 



 

remote interactivity of harvesting robots in complex agricultural environments (Tang et al., 2020; Li 

et al., 2022). And the follows are commonly adopted to achieve the goal, such as deep learning, 

Hough Circle Transform (CHT), Local Binary Pattern (LBP), and stereo vision. 

There is no doubt that deep learning has gained wide application in intelligent agriculture recently. 

A video processing method was developed by Gao et al. (2022) to improve the detection accuracy of 

apple fruits in orchard environment with modern vertical fruiting-wall architecture by introducing 

YOLOv4-tiny network. Lv et al. (2022) drew a visual recognition way of apple growth morphology. 

They designed a model named YOLOv5-B, which embedded BiFPN-5 and ACON-C in YOLOv5 to 

improve the performance. It achieved a high accuracy in real time. Zhou et al. (2022) and Tang et al. 

(2023) presented methods to recognize and locate Camellia oleifera fruits based on YOLOv7 and 

YOLOv4 respectively. Both these two algorithms display their excellent performance in locating 

oleifera fruits. In addition to its application in fruit recognition, deep learning-based methods have 

also been applied to some other fields. Researchers (Ji et al., 2023) designed a target detection method 

based on multi-scale pyramid fusion image enhancement and the MobileCenterNet model to achieve 

rapid and accurate detection of pond cultured river crab. Xu et al. (2023) improved YOLOv5 to 

address the problems of low grading accuracy and slow grading speed in the apple grading process. 

However, there are some limitations to deep learning-based approaches, training is expensive in 

certain circumstances due to their reliance on high-performance hardware, high time cost, a large 

number of labeled samples, and a multitude of parameters. This gives traditional machine learning 

algorithms an edge over deep learning under constrained conditions. Lin et al. (2020) proposed a 

novel technique for fruit detection in natural environments which is applicable. A novel probabilistic 

CHT is developed to obtain fruit candidates. It is competitive for detecting most type of fruits in 

natural environments. For the purpose of extracting possible fruit regions, an algorithm (Lu et al., 

2018) combining LBP and edge hierarchy was designed. It can obtain 82.3% accuracy only relying 

on texture and intensity distribution features. Researchers in China Agricultural University (Zhang et 

al., 2021) adopted 3D point cloud images obtained by an RGB-D camera to recognize pomegranate 

fruits. The algorithm finally obtained a Recall of 87.74%. In recent years, Histogram Oriented 

Gradients (HOG) features (Dalal and Triggs, 2005), which are often used in human detection, have 

recently been introduced for fruit detecting. Scholars (Tan et al., 2018) developed an approach to 

recognize blueberry fruit of different maturity in outdoor scenes. HOG feature vectors are calculated 



 

from 1374 patches which were cropped from the original color images, and a linear Support Vector 

Machine (SVM) classifier is trained to detect fruit-like regions rapidly. 

Most of the above methods are presented for detecting individual fruits, while the infructescence 

of Zanthoxylum is a string of fruits. Thus, it is necessary to implement clustering based on distribution 

information for detecting infructescences after obtaining the fruit-like regions. To fit crop rows by 

location clustering, Zhang et al. (2018) developed a method based on the extracted feature regions. It 

obtains the feature points of final cluster by combining location clustering and the shortest path. The 

crop rows are fitted with a linear regression algorithm. Ma et al. (2021) raised a robust crop root row 

detection algorithm based on line clustering and supervised learning, which obtains the crop rows 

through the linear clustering algorithm and performs anomaly detection. An approach (Biglia et al., 

2022) was established to detect vine rows automatically within 3D point clouds of vineyards based 

on the detection of key points and a density-based approach. The results showed that the detection 

was found to be 100% in accordance with the manual one. 

Zanthoxylum infructescence has cluster-like construction in natural environment. Mature 

Zanthoxylum are generally red and different from the background. There are few studies focus on 

Zanthoxylum detection. Xu et al. (2022) presented a Zanthoxylum-picking-robot target detection 

method based on improved YOLOv5s. Firstly, CBF module based on the CBH module is improved 

in the backbone to promote the detection accuracy. Then, a Specter module based on CBF is presented 

to replace the bottleneck CSP module, which improves the speed of detection with a lightweight 

structure. Finally, the algorithm is checked by the improved YOLOv5 framework, and the differences 

in detection between YOLOv3, YOLOv4 and YOLOv5 are analyzed and evaluated. 

Nevertheless, the fruits of Zanthoxylum Schinifolium are green and the images of the 

Zanthoxylum Schinifolium’s infructescence collected in natural environment are complex because 

there are weeds in the background while the fruits are small. Thus, they are difficult to identify. 

Meanwhile, the available sample set is small. These cause that the existing methods cannot be applied 

directly to detect the infructescences of Zanthoxylum. For detecting Zanthoxylum infructescence, a 

framework based on adaptive density clustering is proposed to support the further studies. More 

precisely, the main work in this paper is summarized below: 

(1) A feasible framework is developed to detect the infructescences of Zanthoxylum 

automatically in complex environment, which transform the infructescence detection into density 



 

clustering for fruit regions. 

(2) A method for extracting fruit-like region is designed in the framework, which integrates color 

and morphological features. 

(3) A novel density-based method, using a new density metric and an improved clustering 

validity index, is designed to solve the problem of the existing density clustering relying on 

hyperparameters. 

To the author’s best knowledge, such efforts have never been seen in any prior work. 

The details of collecting samples and proposed method are described in Section 2. Experiments 

on the proposed algorithm are carried out, and the effectiveness of the algorithm are demonstrated in 

Section 3. In the last section, the conclusion is given. 

 

Materials and Methods 

Data acquisition 

Image acquisition 

According to the growth stages of Zanthoxylum, the samples were collected between late March 

and early April 2021, after the blooming stage. These images were taken in Bishan District, 

Chongqing, China (near the 29°36′1.95″N, 106°11′14.48″E), and 307 images in total were captured 

manually using a portable device with fixed camera parameters over several days. Samples were 

saved as 24-bit color JPG images with a resolution of 6016px × 4512px and a focal length of 7mm. 

The distance between the infructescences and lens is 150 - 250 mm. 

 

Dataset partitioning 

Seventy-five typical samples were randomly selected to verify the performance of the proposed 

algorithm. They were resized to 1200px × 900px by bilinear interpolation. And two sample sets with 

different conditions were created as follows. The detailed distribution of the samples is shown in 

Table 1. And some typical images with different conditions are displayed in Figure 1. 

a. Normal sample set: Images were collected under normal natural conditions without complex 

situations listed below; 

b. Robust sample set: Images were collected with one or more of following conditions. 

Four complex situations:  



 

1) The leaves cover part of the infructescence area;  

2) The infructescence overlap each other;  

3) Complex elements in background with wildflowers or large areas of weeds; 

4) The environment was either too bright or too dark. 

 

Description of infructescence detection framework 

This research proposes a feasible method for detecting infructescences, the framework is shown 

as Figure 2. It can be divided into two parts. The first part is fruits region extraction and the second 

part is density-based clustering on the distribution of fruit regions. 

As the first part shown in Figure 2, HOG operator and vegetation index are introduced for 

extracting morphologic feature and segmenting the fruit areas from the image. First, the feature map 

of the HOG is obtained, thresholding is performed on the feature map later, and the Joint-Direction-

Intensity feature is constructed. Then the excess green minus excess red (ExGR) index (Meyer et al., 

2004) of the original image is calculated, and the plant area and non-plant area is segmented on the 

basis. The results of the above steps are then combined to obtain fruit regions. 

The second part in the framework, density-based clustering, consists of three main steps: Firstly, 

the fruit regions are roughly clustered based on the density information of the fruit regions. Then, the 

clustering validity index (CVI) is adopted to further merge the results of the rough clustering, and the 

optimal clustering result is obtained. Finally, based on the clustering results, the minimum bounding 

rectangle of each cluster are found to realize the detection and counting of the infructescences. 

 

Fruits extraction  

Joint-direction-intensity feature 

An infructescence of Zanthoxylum consists multiple spherical fruits, as shown in Figure 2(a), 

and descriptions in this section are all based on this figure. To strengthen the distinction between 

infructescences and background, HOG is imported to extract morphological features of fruits, which 

is shown as Figure 2(b). Since the diameter of each fruit is about 10-18px, the size of each cell is set 

to 14, named cell_size. 

HOG features indicate that if a cell contains infructescence, then its gradients on each direction 

are similar and large. The HOG feature map is binarized with a threshold of 127, simple but effective, 



 

as shown in Figure 2(c). Using the thresholding approach, the Joint-Direction-Intensity feature map 

is obtained for further fruit extraction. The binarized HOG feature map undergoes further processing 

to determine the number of directions for each cell, which is typically proportionate to the number of 

white pixels within it. The pixels in a cell with more than 5 directions are marked as 1 and the rest is 

0. Joint-Direction-Intensity feature map is named as I. 

 

Segmentation of plant and non-plant 

Various background clutters in images collected in wild environment. To reduce the influence of 

background and improve the accuracy of the algorithm, a grayscale image is created to mark a pixel 

is in green plant (infructescence regions, leaves, and weeds) or non-plant (soil, branches, and shadows, 

etc.) by calculating ExGR, which is defined as Eq. 1: 

                                         (1) 

where r, g and b are the normalized chrominance channel values. An example is shown as Figure 2(d). 

The histograms of ExGR images exhibit bimodal characteristics, the valley between its two 

peaks can be regarded as the threshold to segmentate of plant and non-plant area. The outcome of 

threshold segmentation is a binary image, denoted as PM, in which plant area is 1 and 0 means non-

plant area, as shown in Figure 2(e). 

 

Fruit region extraction 

The Joint-Direction-Intensity feature map I is built to identify circulars in an image. ExGR is 

introduced to segment plant and non-plant area, then produce a binary map named PM. Since fruits 

of Zanthoxylum are usually small green circulars, it’s difficult to locate fruits using only Joint-

Direction-Intensity feature or ExGR segmentation. Therefore, these two features are considered 

together, and one region is a fruit-like region only when both features are positive. In another words, 

a region is identified as a fruit when it is both circular-like and green. The Hadamard product of I and 

PM can help find the fruit-like regions, which is shown as Eq. 2. 

                                                              (2) 

where I and PM are defined in 2.3.1 and 2.3.2, represents the Hadamard product.  

Then, F is divided into m*n cells with cell_size, where m=width/cell_size, n=height/cell_size, 
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width and height are the size of origin image. Finally, cells with more than 1/3 non-zero elements are 

defined as fruit regions, each of which is equated to a pixel of F', and then marked as 1; the others 

are non-fruit regions and marked as 0. F' is the result of fruit region extraction and its size is m*n, 

which is shown as Figure 2(f). 

 

Density-based rough clustering 

Zanthoxylum infructescences can be regarded as a series of non-spherical clusters. To identify 

infructescences, a density-based clustering approach is implemented. However, existing density 

clustering algorithms, such as DBSCAN (Ester et al., 1996), OPTICS (Ankerst et al., 1999) and DPC 

(Rodriguez and Laio, 2014), are difficult to apply to this study due to the inconsistent amount of 

infructescences, the large density differences among clusters, and the vast number of required 

hyperparameters. Hence, an adaptive rough clustering method based on density is proposed in this 

study. 

 

Local density map 

Since the cluster centers are generally the points of maximum density value in their neighbors, 

the maximum points of local density are chosen to be the candidate cluster centers. The clusters are 

then expanded from them. An excellent density metric can help find the true center of clusters more 

accurately. Therefore, a novel density metric is designed for measuring the density of each point.  

Due to the coordinates of the candidate regions extracted in the previous step are all integers, F' 

can be seen as a grid graph, each grid is a point in F'. Focusing on the 8-direction, = {0, π/4, π/2, 

3π/4, π, 5π/4, 3π/2, 7π/4}, the density ρ at F' (x, y) can be defined as Eq. 3: 

                                                    (3) 

where den (x, y, θ) is the density of the F' (x, y) on the direction θ. The local density map obtained by 

Eq. 3 is named as DM. 

The calculation of the density on the direction θ is an iterative process which executes when the 

grid’s value is 1. During the iteration, the grids on the direction θ are traversed, and the feature values 

on the path are weighted and accumulated. The iteration stops until reaching the boundary or feature 

value is 0. An example is showed as Figure 3. 

The density of qth iteration is denoted as den (x, y, θ) (q), and the calculation formula is shown as 

Q
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Eq. 4: 

                    (4) 

in which, g(·) is a Gaussian function. It implies that the contribution of its feature values decreases as 

distance increases. ftravel represents the feature value of the point being iterated, which is defined as 

Eq. 5. 

                        (5) 

where Δx and Δy are the offsets to F'(x, y), sign(·) is a sign function, they are defined as Eq. 6.  

     (6) 

 

Feature weight map and feature density map 

In Joint-Direction-Intensity feature map I, the number of directions is proportional to the ratio 

of white pixels to the entire cell, it also indicates the possibility that a cell is a fruit-like region. Hence, 

the proportion of white pixels in a cell can be used as a weight to measure the likelihood of a cell is 

a fruit-like region. And each of the cell will be mapped to a pixel of feature weight map FW with a 

size as F'. The feature value of celli can calculate as Eq. 7: 

                                (7) 

where =1 if x = 255 and = 0 otherwise. A point is more likely to be the center of a cluster 

if it is more possible to be a fruit-like region and has a larger local density. Hence, Hadamard product 

of DM and FW is calculated, which is named as feature density map FDM. 

 

Maximum density points 

Maximum density points are found to start clustering after getting the FDW. Let FDW be a 

bivariate function, which has first and second derivatives. The second derivatives fxx, fyy and fxy of the 

point (x, y) in FDW compose its Hessian matrix, denoted as H (x, y). It is a maximum density point if 

the corresponding Hessian matrix H (x, y) is positive definite. An example is shown as Figure 2(g), 

in which the red plus signs are the maximum density points. 
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Density-based rough clustering 

The following demonstrates the fundamental idea of the proposed density-based rough 

clustering: Initially, the maximum density points of FDM are seen as initial centers, and each is 

labeled uniquely. The neighbors of centers are then connected to the corresponding center. Framework 

of the density-based rough clustering algorithm is shown as Algorithm 1. 

Algorithm 1: Framework of the density-based rough clustering 

Input: Fruit regions. 

Output: Result of density-based rough clustering. 

1. 

 

2. 

3. 

 

 

4. 

5. 

 

6. 

 

7. 

 

8. 

Calculate the density of each point according to Eq. 3, and get the density map DM.  

Obtain feature weight map FW according to Eq. 7.  

Calculate the Hadamard product of DM and FW to get the feature density map FDM. 

The non-zero elements in FDM are extracted in the order of row-first to form X = {x1, 

x2, …, xN}. 

Find the maximum density points of FDM as the initial cluster centers. 

Assign labels to centers and form a series of cluster sets called cluster_list which only 

contains corresponding centers. 

Allocate unmarked points to the possible cluster sets according to Algorithm 2. 

Merge clusters with duplicate elements into one cluster to update cluster_list by 

Algorithm 3. 

Return cluster_list. 

 

Step 6 of Algorithm 1 is described in detail below: Firstly, a flag is_changed is initialized as 0, 

which indicates whether the cluster_list has been modified. Then, the algorithm traverses points and 

appends the unallocated points to the cluster sets that contain any of their 4-neighbors. If there is any 

append operation during current loop, is_changed will be changed to 1. The loop will terminate when 

is_changed is 0 after a certain loop. In particular, is_changed will be set to 0 in every start of a loop. 

During the point allocation, a point may belong to multiple cluster sets in Step 6 of Algorithm 1. For 

further data process, the repeatedly assigned points are temporarily stored into the cluster sets. The 

pseudocode of points allocation is shown as Algorithm 2. 

 



 

Algorithm 2: Points allocation (Step 6 of Algorithm 1) 

Input: Points X = {x1, x2, …, xN}, cluster sets cluster_list. 

Output: The updated cluster set cluster_list. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

Initializing: is_changed=0 

while True do 

|  is_changed=0 

|  for i from 1 to len(X) do 

|  | if xi not in any cluster_list then 

|  | | for each xj in 4-neighbors of xi do 

|  | | | if xj in cluster_list then 

|  | | | | cluster_list[index of cluster set xj belongs].append(xi) 

|  | | | | is_changed = 1 

|  | | | end if 

|  | | end for 

|  | end if 

|  end for 

| if is_changed == 0 then 

|  | break 

|  end if 

end while 

 

The remaining unallocated points are considered as outliers and will be ignored in the further 

process. Algorithm 2 captures a series of clusters are separated from each other. However, the same 

points may be assigned to more than one set of clusters due to flaws in Algorithm 2. That is, there are 

the same points exist in different sets of clusters. Hence, it is necessary to merge these clusters. 

The main idea: An intersection between two cluster sets is found within a loop. If the intersection 

is not empty, the elements in the cluster set with larger index will be copied to another set and elements 

in the cluster with larger index will be deleted, that is, it will be marked as empty. This process is 

repeated until the intersection of any two sets is empty in cluster_list. The process is shown as 

Algorithm 3. 

 



 

Algorithm 3: Cluster sets merging (Step 7 of Algorithm 1) 

Input: Cluster set cluster_list. 

Output: Density-based rough clustering results. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

for i from 1 to len(cluster_list)-1 do 

|  for j from (i+1) to len(cluster_list) do 

|  |  if cluster_list [i]∩cluster_list [j] is not empty then 

|  | |  cluster_list [i] = cluster_list [i] cluster_list [j] 

|  | |  cluster_list [j] = empty 

|  | end if 

|  end for 

end for 

The new cluster sets, reconstructed by the nonempty cluster sets in cluster_list, are obtained after 

merging the clusters with duplicate elements. Labels are re-assigned to points in the new cluster sets 

and fruit regions are divided. The result of density-based rough clustering is shown as Figure 2(h). 

 

Merge clusters based on Local Calinski-Harabasz index 

Results of the density-based rough clustering algorithm, shown as Figure 2(h), demonstrated that 

multiple cluster groups could belong to a single cluster, such as cluster 2 & 4 and cluster 15 & 16. 

The number of clusters can generally be determined by clustering validity index (CVI) because it is 

proved that the optimal CVI corresponds to the optimal number of clusters and the optimal clusters 

by Zhu and Ma (2018). Therefore, CVIs are introduced to obtain the optimal cluster by iteratively 

merging the rough clustering results. 

 

Original Calinski-Harabasz index 

The original CH index (Caliński and Harabasz, 1974) is the ratio of the inter-cluster dispersion 

degree and the intra-cluster dispersion degree. That is, the CH index increases when intra-cluster 

dispersion degree decreases and inter-cluster dispersion degree increases, which is defined as Eq. 8: 

                                                  (8) 

where N is the number of points, Bk and Wk are the inter-cluster scatter matrix and intra-cluster scatter 

matrix, respectively. Tr(·) represents the trace of a matrix, which indicates the dispersion degree. The 
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definitions of Bk and Wk are shown in Eq. 9 and Eq. 10. 

                                           (9) 

                                         (10) 

where vi is the center of the cluster Ci, v is the global center, k is the number of clusters and  

represents the number of points contained in cluster Ci, vi and v are defined as follows. 

                                                        (11) 

                                                      (12) 

 

Local Calinski-Harabasz index 

The original CH index is a global evaluation index to evaluate the quality of clustering. Its inter-

cluster dispersion is transformed from a global metric to a local one, which allows it to be utilized to 

evaluate the scatter between any two adjacent clusters. The new indicator is denoted as Local 

Calinski-Harabasz index, referred to as LCH, which is defined as Eq. 13.  

                                   (13) 

where p and q are the labels of the clusters that are being merged.  is the cluster that is formed by 

merging cluster p and cluster q, that is .  is the local scatter matrix, representing the 

intra-cluster dispersion degree of the cluster .  is defined as Eq. 14: 

                                      (14) 

where  is the center of cluster . 

 

Local Calinski-Harabasz-based cluster mergence 

The LCH is introduced to evaluate the suitability of merging two adjacent clusters. The higher 

the LCH value, the more appropriate it is to combine the two clusters. Multiple merge operation based 
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on LCH are performed to get the optimal clustering result. During each mergence, the maximum value 

of LCH between all clusters and their nearest neighbors are found out and corresponding p and q are 

the cluster labels which are taken as the optimal choice for this mergence. They are found by Eq. 15. 

                                                (15) 

The next mergence will be performed based on the previous mergence. SC, as known as silhouette 

coefficient (Maulik and Bandyopadhyay, 2002), serves as the global assessment indicator to 

determine a termination condition of the merging progress. The silhouette coefficient of tth mergence 

is regarded as SC(t) whose range is [-1, 1]. Increases in the coefficient indicate more effective 

clustering. Thus, the termination condition is as follows: 

                                                        (16) 

The pseudocode of the LCH-based cluster merging algorithm is shown in Algorithm 4. 

Algorithm 4: LCH-based cluster mergence 

Input: Result of density-based rough clustering. 

Output: The optimal clusters. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

 

8. 

9. 

10. 

11. 

12. 

while True do 

|  for vj in centers do 

|  |  

|  | Calculate the LCH between vi and vj by Eq. 13 

|  end for 

|  Find the optimal merging with Eq. 15 and record the p and q 

|  Calculate the silhouette coefficient of the current merging, and remember it 

|  if number of clusters==2 then 

|  | break 

|  end if 

end while 

Find the optimal merge result by Eq. 16 and return the corresponding mergence. 

 

Adaptive density-based clustering algorithm 

After the clusters are merged, which is displayed in Figure 2(i), the number of clusters obtained 

is the number of Zanthoxylum infructescence. The infructescence detection result is shown in Figure 

( )
,
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p q

LCH p q k

( )argmax t

t
SC
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2(j). The minimum bounding rectangle of each cluster is found in units of clusters and mapped to the 

corresponding coordinates in the original image. The detailed framework of the proposed algorithm 

is shown as Algorithm 5. 

 

Algorithm 5: Framework of adaptive-density-clustering-based Zanthoxylum 

infructescence detection 

Input: The Zanthoxylum infructescence image img. 

Output: The number of infructescence and the location of infructescence. 

1. 

2. 

3. 

4. 

 

5. 

6. 

7. 

 

8. 

Extract the HOG feature map IHOG from original image img. 

Obtain the thresholded HOG feature map IHOG'. 

Extract the Joint-Direction-Intensity feature map I. 

Calculate the ExGR index, and segment the plant and non-plant area to 

get PM. 

Fuse I and PM to obtain the fruit regions F'. 

Perform density-based rough clustering (Algorithm 1). 

Iteratively merge the rough clustering results of Step6, obtain the optimal 

clustering by Algorithm 4. 

Mark the infructescence positions in the original image img and calculate 

the number of infructescence of infructescence based on the clustering 

results. 

 

Results 

The experiments are designed as two parts to verify the effectiveness of the proposed algorithm. 

The first is the comparative experiment with traditional methods, it compares the proposed algorithm 

with ADPC-kNN (Yaohui et al., 2017), which is an extension of DPC (Rodriguez and Laio, 2014), 

DBSCAN (Ester et al., 1996) and OPTICS (Ankerst et al., 1999) to test the performance of clustering. 

In the second part of experiment, several classical deep learning models are introduced for 

comparison in this paper, including the multi-stage Faster RCNN (Ren et al., 2015) and the single-

stage YOLOv5 (Jocher et al., 2022) and YOLOv7 (Wang et al., 2022), to demonstrate the 

competitiveness of the proposed algorithms under small data sets. Each part of the experiments will 

be conducted on normal sample set and robust sample set mentioned in sub-section 2.1.2 to prove the 

effectiveness of the proposed algorithm. 



 

The process of Zanthoxylum infructescence detection described in this work was all 

implemented on a device with a CPU of AMD Ryzen 7 5800H @ 3.20GHz, a RAM of 24.0GB, and 

a graphics card of NVIDIA GeForce RTX3060 Laptop with video memory of 6GB. The process of 

image is implemented in Python 3.6.8 and opencv-python 4.4.4 environments. The deep learning 

models were also trained on this device. 

 

Evaluation metrics 

To assess and quantify the performance of the proposed adaptive density-based Zanthoxylum 

infructescence detection method, three commonly used indices are introduced: Precision, Recall and 

F1-score. Their formulas are shown as Eq. 17-19: 

                                                   (17) 

                                                    (18) 

                                            (19) 

where TP is the number of infructescences that are correctly identified by the proposed algorithm; 

FN represents the number of non-Zanthoxylum infructescence regions that are misclassified to 

infructescence regions; FP refers to the number of Zanthoxylum infructescences that are 

misidentified by the algorithm. Since the algorithm proposed in this paper is only adopted for 

detecting the infructescences, it is defined that Zanthoxylum infructescence is correctly identified 

when the center of the detection box falls in the ground truth and will be marked as TP. At the same 

time, a box of ground truth can only be correctly recognized by one detection box. If multiple 

detection boxes identify a same infructescence, the remaining detection boxes will be seen as failed 

detections, and they will be marked as FN. 

 

Performance comparison with traditional methods 

Although there are some reports of fruits counting and detection with good results (Lu et al., 

2018; Tan et al., 2018; C. Zhang et al., 2021), it is difficult to compare our research with them because 

the data processed by each research are all captured from different species, and even the features vary 

TPPrecision
TP FP

=
+

TPRecall
TP FN

=
+

21 * Precision* RecallF
Precision Recall

=
+



 

greatly. Therefore, many classical clustering algorithms (Ankerst et al., 1999; Ester et al., 1996; 

Yaohui et al., 2017) are chosen to prove the effectiveness of the proposed clustering algorithm. Part 

of the experimental results are shown as Figure 4. 

Figure 4(a-d) show the results of DBSCAN, OPTICS, ADPC-kNN and ours. The results of 

infructescence detection are displayed with the red boxes, and ground truth is shown with blue borders. 

The experimental results on different sample sets in terms of Precision, Recall and F1-score are 

compared, and are shown in Table 2. In all following tables, the best results are bolded, and the second 

best are underlined. 

The comparison algorithm and the clustering proposed algorithm was analyzed and their 

required parameters and corresponding numbers are shown in Table 3. 

It is found that our algorithm obtains better accuracy than ADPC-kNN and OPTICS while using 

fewer parameters, and the overall accuracy is slightly better than DBSCAN. Since OPTICS only 

considers density information, the necessary cluster merging operation is missing. And as the result, 

many small clusters are detected, which leads that OPTICS has high Precision, but low Recall and 

F1-score, as shown in Figure 5(b). The ADPC-kNN needs to manually specify the number of clusters, 

which is not suitable for this work. At the same time, when a larger number of clusters is specified, 

some outliers may be mistakenly selected as the cluster center due to their large distance between 

each other, as shown in Figure 5(c). Although the accuracy of the proposed algorithm is only slightly 

better than that of DBSCAN, it requires fewer parameters and is more adaptive. Therefore, the 

proposed algorithm has higher accuracy and better adaptability than the comparison algorithms. 

Though the scores are decreased slightly on robust sample set, our results, and the standard deviation 

of ours on average Recall and average F1-score is better than that of the comparison algorithms. That 

is, the proposed algorithm also shows better performance and better stability than other algorithms. 

It proves the application value of the proposed algorithm in complex environment. 

In addition to Precision, Recall, and F1-score of infructescence detection, several other external 

evaluation indicators of clustering algorithms such as Rand index (RI), adjusted Rand index (ARI), 

normalized mutual information (NMI) and Fowlkes-Mallows scores (FMI) are introduced to measure 

how well the clusters obtained by each algorithm match the ground truth to evaluate the performance 

of different clustering algorithms. The detailed data of which is shown in Table 4. It can be found that 

the proposed method obtains the best clustering results for each index. 



 

 

Performance comparison with deep learning-based methods 

There is no doubt that deep learning-based methods are competitive in the field of fruit detection. 

And there are several neural network models like Faster RCNN, YOLOv5, and YOLOv7, which are 

representative models for multi-stage and single-stage target detection. The key parameters of training 

these models are shown in Table 5. And the learning rate will decay with the increases of training 

epochs. 

In this section, the optimal result of each model is chosen to compare with our algorithm. The 

optimal detection results of each algorithm are shown in Table 6, and several detection results of these 

models and ours are randomly displayed in Figure 6. 

During the experiment, it can be found that most of the Zanthoxylum infructescences can be 

detected at low confidence, but the misclassification rate and repeat detection rate are higher at this 

time, and these lead to a lower Recall and F1-score in a comprehensive view. With the appropriate 

confidence, its misclassification rate and misdetection rate are reduced, but it also sacrifices its 

accuracy in complex situations, and its Recall rate and F1-score of normal samples are improved 

somewhat. In the high-confidence case, more infructescences are ignored and the misdetection rate 

is further increased, resulting in a decrease in all indicators at this time. 

Overall, the results of the deep learning model for detecting Zanthoxylum infructescences vary 

considerably with the confidence settings. However, even when the detection results are optimal, the 

detection accuracy of YOLOv5 and Faster RCNN is still worse than the ones of the proposed 

algorithm. Meanwhile, the results obtained by the algorithm proposed in this paper are also 

competitive compared to the latest YOLOv7 though the pre-trained weight is introduced. It proves 

that the algorithm in this paper is valuable in current application scenarios and small sample cases. 

 

Discussion 

The proposed method exhibits excellent infructescences detection performance under natural 

conditions. The average precision is 94.17% in total (in normal sample set, its precision is 96.67%, 

and the precision is 94.09% for robust samples), although there are still some misclassifications 

caused by defects in feature extraction and under-merging. Due to the complexity of the situation, 

some fruit regions may be misclassified during the feature extraction, which is shown as Figure 7(a). 



 

In some cases, the extracted fruit areas are separated when the infructescence is large and the internal 

fruits are sparser, which further leads to under-merging, as shown in Figure 7(b). While in other 

conditions, several infructescences may overlap together and the clustering algorithm may fail to 

work, which is shown as Figure 7(c). However, the task does not require to detect the precise position 

of infructescence, and most of the infructescences can be successfully identified, so the algorithm is 

able to preliminarily complete the task of infructescence counting and estimating yield. Since HOG 

and ExGR are both normalized in the calculation and they are insensitive to illumination conditions, 

the algorithm can effectively identify the infructescences under different illumination conditions. 

 

Conclusions 

In this paper, a study on the density-based infructescence detection method for Zanthoxylum 

Schinifolium is conducted, which is focused on the images of Zanthoxylum branches collected under 

natural environment. A feasible automatic recognition approach for Zanthoxylum infructescences is 

provided in view of its complex background, difficulty in recognition of Zanthoxylum and small 

sample size, which could provide data support for estimating its yield in the future. The major findings 

of this study can be summarized as following:  

(1) Combine Joint-Direction-Intensity feature, which is an extension of HOG, and ExGR index 

to extract fruit-like regions as accurately as possible from images with complex background. 

(2) Build an optimization model to optimize clustering results, and proposed a novel adaptive 

density-based clustering algorithm for detecting the infructescences according to distribution of fruit-

like regions. 

(3) Experiments show that the proposed algorithm exhibits excellent infructescences detection 

performance with an average Precision of 94.17%. 

(4) Compared with OPTICS, ADPC-kNN and DBSCAN, the proposed adaptive density 

clustering has a higher accuracy in locating infructescences under normal condition while it requires 

fewer parameters. Meanwhile, it also has higher applicability for robust samples. 

(5) Compared with deep learning-based object detection algorithms, the algorithm proposed in 

this paper is proved to be valuable in the case of small samples. All indicators are significantly higher 

than Faster RCNN and YOLOv5, and is also competitive to the latest YOLOv7. 

To realize the automatic yield estimation of Zanthoxylum, further research on the growth density 



 

and area size of Zanthoxylum is also needed to build the relationship between them and the yield. In 

the future, experiments can be conducted on more scenes in the natural environment, such as more 

complex lighting conditions, and Zanthoxylum at different growth stages. Meanwhile, more samples 

should be collected so that the advanced technologies, such as deep learning, can be introduced to 

conduct further research. Moreover, the precented algorithm can be transferred to other related studies 

of varieties with similar characteristics, such as the identification of immature grape. 
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Figures 

   
(a)  (b)  (c)  

   
(d)  (e)  (f) 

Figure 1. Images of Zanthoxylum under different conditions: (a) Normal sample; (b) 

Infructescences covered by leaves; (c) Overlapping infructescences; (d) Samples with complex 

background; (e) Samples with bright light and (f) Samples with several conditions. 

  



 

 

Figure 2. Overview of the proposed framework: (a) The original image; (b) The HOG feature 

map; (c) The binarized HOG feature map; (d) The ExGR image; (e) The segmenting result of 

plant & non-plant area which is named PM; (f) The coordinates of extracted fruits in F'; (g) 

FDW and density maximum points; (h) Result of density-based rough clustering; (i)The result 

of adaptive density clustering algorithm for fruit area distribution; (j) Result of the proposed 

method, and the infructescence positions are marks with boxes in red borders. 

 

 

 

Figure 3. The 8-directions of the grid with red borders: Local density of the red border grid is 

calculated with the grids with blue borders, in which, grids in grey are out of the map. 
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(a)  

   

(b)  

   

(c)  

   

(d)  

   

Figure 4. The results of comparison experiments with traditional methods: (a) Results of 

DBSCAN; (b) Results of OPTICS; (c) Results of ADPC-kNN and (d) Results of the proposed 

method. In the comparison experiments, the eps and minPts setting of DBSCAN and OPTICS 

are 3.5 and 5, respectively. ADPC-kNN introduces kNN to improve the calculation of density, 

where k=25. And the boxes with blue borders are the target boxes, and the red boxes are the 

results gotten by the corresponding method. 



 

 
(a)                                     (b)                       (c)                        (d)  

Figure 5. An example of the comparison algorithms: (a) Original image and the interest area; 

(b) Result of OPTICS; (c) Result of ADPC-kNN and (d) Result of Ours. The box with yellow 

borders shown in (a) is the area where mistakes happened. The cluster results without outliers 

and detection results of three algorithms are shown in (b-d). The boxes with blue borders are 

the ground truth, and the red boxes are the detection results of corresponding algorithm. 

  



 

(a)  

   

(b)  

   

(c)  

   

(d)  

   

Figure 6. The results of comparison experiments with deep learning-based methods: (a) Results 

of Faster RCNN; (b) Results of YOLOv5; (c) Results of YOLOv7 and (d) Results of the 

proposed method. 

  



 

 
(a)  

 
(b)  

 
(c)  

Figure 7. Some examples of failed detection: (a) An example of failed feature extraction; (b) An 

example of under-merging and (c) An example of overlapping clusters. In Figure 7, the 

extracted feature maps and detection results are enlarged in the right panel of each example 

which are corresponding to the location of yellow boxes marked in the left. The boxes with blue 

borders are the ground truth, and the red boxes are the results gotten by the proposed method. 

  



 

Tables 

Table 1. Distribution of the created sample set. 

Conditions Normal 

Robust 
Leaves 
cover the 
targets 

Overlapping 
infructescences 

Complex 
background 

Bright 
light / Dark 
light 

Number of samples 25 37 24 8 12 
Number of 
infructescences 134 215 144 47 72 

*Note: Since a sample in robust sample set may have multiple complex conditions at the same time, 

the number of robust samples is greater than 50. 

 

 

Table 2. Detailed data of precision comparison experiments. 

Algorithm Sample set Average Precision 
[%] Average Recall [%] Average F1-score 

OPTICS 
Normal 98.33±4.08 57.43±18.35 0.71±0.14 
Robust 100.00±0.00 62.14±18.19 0.75±0.13 

ADPC-kNN 
Normal 79.76±17.29 79.76±17.29 0.80±0.17 
Robust 82.34±14.34 82.34±14.34 0.82±0.14 

DBSCAN 
Normal 90.95±16.20 86.81±16.33 0.87±0.12 
Robust 93.93±8.47 81.50±15.29 0.87±0.11 

Ours 
Normal 96.67±8.16 91.07±13.88 0.93±0.08 
Robust 94.09±13.56 84.64±14.27 0.88±0.10 

 

 

 

Table 3. Parameters required for these clustering algorithms. 

Algorithm Parameters Meaning Number of 
Parameters 

DBSCAN 
eps Radius of neighborhood 

2 
minPts Threshold of density to distinguish type of points 

OPTICS 
eps Radius of neighborhood 

2 
minPts Threshold of density to distinguish type of points 

ADPC-
kNN 

k The number of nearest neighbors which is introduced 
to calculate the density 2 

c Number of clusters 
Ours - - 0 



 

Table 4. Comparison of four indicators for 4 clustering algorithms. 
Indicators OPTICS ADPC-kNN DBSCAN Ours 
RI 0.75 0.87 0.91 0.95 
ARI 0.32 0.60 0.70 0.75 
NMI 0.59 0.71 0.80 0.88 
FMI 0.49 0.69 0.76 0.89 

 

 

 

Table 5. Key parameters of training neural network models. 
Parameters Faster RCNN YOLOv5 YOLOv7 
batch size 2 16 16 
epoch 100 350 350 
initial learning rate 0.005 0.01 0.01 
optimizer SGD Adam SGD 
pre-trained weights Yes Yes Yes 

 

 

 

Table 6. Comparison of ours with deep learning-based methods. 
Sample 
Set Indicators Faster 

RCNN YOLOv5 YOLOv7 Ours 

Normal 

Precision 
[%] 72.62±21.00 100.00±0.00 76.25±18.81 96.67±8.16 

Recall [%] 82.38±27.73 85.71±24.74 98.33±4.08 91.07±13.88 
F1-score 0.76±0.21 0.91±0.16 0.85±0.10 0.93±0.08 

Robust 

Precision 
[%] 73.21±15.96 79.21±18.27 79.90±18.60 94.09±13.56 

Recall [%] 80.14±23.37 83.89±18.37 91.57±18.17 84.64±14.27 
F1-score 0.72±0.15 0.79±0.11 0.84±0.15 0.88±0.10 

Average 

Precision 
[%] 72.63±17.24 83.11±18.36 80.36±17.90 94.17±14.26 

Recall [%] 80.92±24.14 84.23±18.77 92.54±14.96 87.64±12.39 
F1-score 0.73±0.17 0.81±0.12 0.85±0.13 0.90±0.10 

 


