
Abstract
To determine the Zanthoxylum yield, infructescence detection

during the early fruiting stage is a prerequisite. The purpose of this
research is to determine and quantify the infructescences on pho-
tos of Zanthoxylum’s early fruit-bearing branches that are gathered
in their natural habitat. Consequently, a two-phase machine
vision-based algorithm for identifying Zanthoxylum infructes-
cences is proposed. First, the fruits of Zanthoxylum infructes-
cences are extracted by extracting the histogram of oriented gradi-
ent (HOG) feature map and excess green minus excess red
(ExGR) index from the branch image of the plant. The second
involves roughly and adaptively classifying fruits based on the
density of their position distribution. Rough clusters are then com-
bined using an optimization model to produce the best possible
clustering outcome. Experiments with normal samples demon-

strate that the proposed approach receives a Precision of 96.67%,
a Recall of 91.07%, and an F1-score of 0.93. Compared to ADPC-
kNN, DBSCAN, and OPTICS algorithms, the suggested algo-
rithm performs better in robustness and attains a higher F1-score
and recall. In the meantime, its competitiveness is demonstrated in
the deep learning-based method experiments. The tests demon-
strate its efficacy in adaptively detecting the infructescences of
branch images of Zanthoxylum.

Introduction
Estimating the yield of Zanthoxylum during the early fruiting

stage is indispensable for growers. It can provide growers with the
necessary information to support logistics, crop storage, and mar-
keting in advance (Zhang et al., 2022). In Chongqing,
Zanthoxylum Schinifolium, one of the Zanthoxylum species, is
widely grown. Its planting area is expanding and output is increas-
ing year by year. In 2019, the planting area and yield of
Zanthoxylum in Chongqing increased over the previous year by
4.3% and 17.8%, respectively, reaching 73,000 hectares and
435,000 tons, respectively (Kuang et al., 2020). The infructes-
cence number of immature Zanthoxylum can to a certain extent
predict the future yield. Manual sampling is labor-intensive and
inefficient. Therefore, it is crucial to provide a machine vision-
based method for identifying Zanthoxylum infructescences.

When extracting the infructescence regions of Zanthoxylum,
each infructescence is regarded as a cluster composed of a series
of fruits. In recent years, various techniques have been developed
for automatic fruit detection, which can help improve the efficien-
cy, functionality, intelligence, and remote interactivity of harvest-
ing robots in complex agricultural environments (Tang et al.,
2020; Li et al., 2022). The following are commonly adopted to
achieve the goal, such as deep learning, circle hough transform
(CHT), local binary pattern (LBP), and stereo vision.

There is no doubt that deep learning has gained wide applica-
tion in intelligent agriculture recently. A video processing method
was developed by Gao et al. (2022) to improve the detection accu-
racy of apple fruits in orchard environment with modern vertical
fruiting-wall architecture by introducing a YOLOv4-tiny network.
Lv et al. (2022) drew a visual recognition way of apple growth
morphology. They designed a model named YOLOv5-B, which
embedded BiFPN-5 and ACON-C in YOLOv5 to improve the per-
formance. It achieved high accuracy in real time. Zhou et al.
(2022) and Tang et al. (2023) presented methods to recognize and
locate Camellia oleifera fruits based on YOLOv7 and YOLOv4,
respectively. Both these two algorithms display their excellent
performance in locating oleifera fruits. In addition to its applica-
tion in fruit recognition, deep learning-based methods have also
been applied to some other fields. Researchers (Ji et al., 2023)
designed a target detection method based on multi-scale pyramid
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fusion image enhancement and the MobileCenterNet model to
achieve rapid and accurate detection of pond-cultured river crabs.
Xu et al. (2023) improved YOLOv5 to address the problems of low
grading accuracy and slow grading speed in the apple grading
process. However, there are some limitations to deep learning-
based approaches, training is expensive in certain circumstances
due to their reliance on high-performance hardware, high time
cost, a large number of labeled samples, and a multitude of param-
eters. This gives traditional machine learning algorithms an edge
over deep learning under constrained conditions. Lin et al. (2020)
proposed a novel technique for fruit detection in natural environ-
ments which is applicable. A novel probabilistic CHT is developed
to obtain fruit candidates. It is competitive for detecting most types
of fruits in natural environments. For the purpose of extracting
possible fruit regions, an algorithm (Lu et al., 2018) combining
LBP and edge hierarchy was designed. It can obtain 82.3% accu-
racy only relying on texture and intensity distribution features.
Researchers of the China Agricultural University (Zhang et al.,
2021) adopted 3D point cloud images obtained by an RGB-D cam-
era to recognize pomegranate fruits. The algorithm finally obtained
a recall of 87.74%. In recent years, histogram-oriented gradients
(HOG) features (Dalal and Triggs, 2005), which are often used in
human detection, have recently been introduced for fruit detection.
Scholars (Tan et al., 2018) developed an approach to recognize
blueberry fruit of different maturity in outdoor scenes. HOG fea-
ture vectors are calculated from 1374 patches which were cropped
from the original color images, and a linear support vector machine
classifier is trained to detect fruit-like regions rapidly. Most of the
above methods are presented for detecting individual fruits, while
the infructescence of Zanthoxylum is a string of fruits. Thus, it is
necessary to implement clustering based on distribution informa-
tion for detecting infructescences after obtaining the fruit-like
regions. To fit crop rows by location clustering, Zhang et al. (2018)
developed a method based on the extracted feature regions. It
obtains the feature points of final clusters by combining location
clustering and the shortest path. The crop rows are fitted with a lin-
ear regression algorithm. Ma et al. (2021) raised a robust crop root
row detection algorithm based on line clustering and supervised
learning, which obtains the crop rows through the linear clustering
algorithm and performs anomaly detection. An approach (Biglia et
al., 2022) was established to detect vine rows automatically within
3D point clouds of vineyards based on the detection of key points
and a density-based approach. The results showed that the detec-
tion was found to be 100% in accordance with the manual one.

Zanthoxylum infructescence has cluster-like construction in
natural environment. Mature Zanthoxylum are generally red and
different from the background. There are few studies focused on
Zanthoxylum detection. Xu et al. (2022) presented a Zanthoxylum-
picking-robot target detection method based on improved
YOLOv5s. Firstly, the CBF module based on the CBH module is
improved in the backbone to promote detection accuracy. Then, a
specter module based on CBF is presented to replace the bottle-
neck CSP module, which improves the speed of detection with a

lightweight structure. Finally, the algorithm is checked by the
improved YOLOv5 framework, and the differences in detection
between YOLOv3, YOLOv4, and YOLOv5 are analyzed and eval-
uated. Nevertheless, the fruits of Zanthoxylum Schinifolium are
green and the images of the Zanthoxylum Schinifolium’s infructes-
cence collected in natural environment are complex because there
are weeds in the background while the fruits are small. Thus, they
are difficult to identify. Meanwhile, the available sample set is
small. These cause that the existing methods cannot be applied
directly to detect the infructescences of Zanthoxylum. For detect-
ing Zanthoxylum infructescence, a framework based on adaptive
density clustering is proposed to support further studies. More pre-
cisely, the main work in this paper is summarized below:
1. A feasible framework is developed to detect the infructes-

cences of Zanthoxylum automatically in a complex environ-
ment, which transforms the infructescence detection into den-
sity clustering for fruit regions.

2. A method for extracting fruit-like regions is designed in the
framework, which integrates color and morphological features.

3. A novel density-based method, using a new density metric and
an improved clustering validity index, is designed to solve the
problem of the existing density clustering relying on hyperpa-
rameters.
To the author’s best knowledge, such efforts have never been

seen in any prior work.
The details of collecting samples and the proposed method are

described in the following section. Experiments on the proposed
algorithm are carried out, and the effectiveness of the algorithm is
demonstrated in the Results section. In the last section, the conclu-
sion is given.

Materials and Methods
Data acquisition
Image acquisition

According to the growth stages of Zanthoxylum, the samples
were collected between late March and early April 2021, after the
blooming stage. These images were taken in Bishan District,
Chongqing, China (near the 29°36′1.95″N, 106°11′14.48″E), and
307 images in total were captured manually using a portable
device with fixed camera parameters over several days. Samples
were saved as 24-bit color JPG images with a resolution of
6016×4512px and a focal length of 7 mm. The distance between
the infructescences and lens is 150-250 mm.

Dataset partitioning
Seventy-five typical samples were randomly selected to verify

the performance of the proposed algorithm. They were resized to
1200×900px by bilinear interpolation. Two sample sets with differ-
ent conditions were created as follows. The detailed distribution of
the samples is shown in Table 1. Some typical images with differ-
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Table 1. Distribution of the created sample set.

Conditions                                Normal                                                             Robust
                                                                                                   Leaves cover                Overlapping              Complex              Bright 
                                                                                                     the targets                infructescences        background    light/dark light

Number of samples                                25                                                        37                                        24                                  8                            12
Number of infructescences                   134                                                      215                                      144                                47                           72
Note: since a sample in the robust sample set may have multiple complex conditions at the same time, the number of robust samples is greater than 50.
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ent conditions are displayed in Figure 1. In a normal sample set,
images were collected under normal natural conditions without the
complex situations listed below; in a robust sample set, images
were collected with one or more of the following complex situa-
tions: i) the leaves cover part of the infructescence area; ii) the
infructescence overlaps each other; iii) complex elements in the
background with wildflowers or large areas of weeds; iv) the envi-
ronment was either too bright or too dark.

Description of infructescence detection framework
This research proposes a feasible method for detecting

infructescences, the framework is shown in Figure 2. It can be
divided into two parts. The first part is fruit region extraction and
the second part is density-based clustering on the distribution of
fruit regions.

As the first part shown in Figure 2, HOG operator and vegeta-
tion index are introduced for extracting morphologic features and
segmenting the fruit areas from the image. First, the feature map of
the HOG is obtained, thresholding is performed on the feature map
later, and the joint-direction-intensity feature is constructed. Then
the excess green minus excess red (ExGR) index (Meyer et al.,
2004) of the original image is calculated, and the plant area and
non-plant area are segmented on the basis. The results of the above
steps are then combined to obtain fruit regions.

The second part of the framework, density-based clustering,
consists of three main steps: first, the fruit regions are roughly
clustered based on the density information of the fruit regions.
Then, the clustering validity index (CVI) is adopted to further
merge the results of the rough clustering, and the optimal cluster-
ing result is obtained. Finally, based on the clustering results, the
minimum bounding rectangle of each cluster is found to realize the
detection and counting of the infructescences.

Fruits extraction 
Joint-direction-intensity feature

An infructescence of Zanthoxylum consists of multiple spher-
ical fruits, as shown in Figure 2a, and descriptions in this section
are all based on this figure. To strengthen the distinction between
infructescences and background, HOG is imported to extract mor-
phological features of fruits, which is shown in Figure 2b. Since
the diameter of each fruit is about 10-18px, the size of each cell is
set to 14, named cell_size.

HOG features indicate that if a cell contains infructescence,
then its gradients in each direction are similar and large. The HOG
feature map is binarized with a threshold of 127, simple but effec-
tive, as shown in Figure 2c. Using the thresholding approach, the
joint-direction-intensity feature map is obtained for further fruit
extraction. The binarized HOG feature map undergoes further pro-
cessing to determine the number of directions for each cell, which
is typically proportionate to the number of white pixels within it.
The pixels in a cell with more than 5 directions are marked as 1 and
the rest is 0. Joint-direction-intensity feature map is named as I.

Segmentation of plant and non-plant
Various background clutters in images collected in a wild envi-

ronment. To reduce the influence of background and improve the
accuracy of the algorithm, a grayscale image is created to mark a
pixel is in green plant (infructescence regions, leaves, and weeds)
or non-plant (soil, branches, and shadows, etc.) by calculating
ExGR, which is defined as Eq. 1:

(1)
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Figure 1. Images of Zanthoxylum under different conditions: a) normal sample; b) infructescences covered by leaves; c) overlapping
infructescences; d) samples with complex background; e) samples with bright light; f) samples with several conditions.
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where r, g, and b are the normalized chrominance channel values.
An example is shown in Figure 2d.

The histograms of ExGR images exhibit bimodal characteris-
tics, the valley between its two peaks can be regarded as the thresh-
old to segmentate of plant and non-plant area. The outcome of
threshold segmentation is a binary image, denoted as PM, in which
plant area is 1 and 0 means non-plant area (Figure 2e).

Fruit region extraction
The joint-direction-intensity feature map I is built to identify

circulars in an image. ExGR is introduced to segment plant and
non-plant areas, and then produce a binary map named PM. Since
fruits of Zanthoxylum are usually small green circulars, it’s diffi-
cult to locate fruits using only the joint-direction-intensity feature
or ExGR segmentation. Therefore, these two features are consid-
ered together, and one region is a fruit-like region only when both
features are positive. In other words, a region is identified as a fruit
when it is both circular-like and green. The Hadamard product of I
and PM can help find the fruit-like regions, which is shown in Eq. 2.

F = I ⊙ PM                                     (2)

where I and PM are defined previously, ⊙ represents the
Hadamard product.

Then, F is divided into m*n cells with cell_size, where
m=width/cell_size, n=height/cell_size, width and height are the

size of the origin image. Finally, cells with more than 1/3 non-zero
elements are defined as fruit regions, each of which is equated to a
pixel of F’, and then marked as 1; the others are non-fruit regions
and marked as 0. F’ is the result of fruit region extraction and its
size is m*n, which is shown in Figure 2f.

Density-based rough clustering
Zanthoxylum infructescences can be regarded as a series of

non-spherical clusters. To identify infructescences, a density-based
clustering approach is implemented. However, existing density
clustering algorithms, such as density-based spatial clustering of
applications with noise (DBSCAN) (Ester et al., 1996), ordering
points to identify the clustering structure (OPTICS) (Ankerst et al.,
1999), and DPC (Rodriguez and Laio, 2014), are difficult to apply
to this study due to the inconsistent amount of infructescences, the
large density differences among clusters, and the vast number of
required hyperparameters. Hence, an adaptive rough clustering
method based on density is proposed in this study.

Local density map
Since the cluster centers are generally the points of maximum

density value in their neighbors, the maximum points of local den-
sity are chosen to be the candidate cluster centers. The clusters are
then expanded from them. An excellent density metric can help
find the true center of clusters more accurately. Therefore, a novel
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Figure 2. Overview of the proposed framework: a) original image; b) histogram of oriented gradient feature map; c) binarized histogram
of oriented feature map; d) excess green minus excess red image; e) segmenting result of plant & non-plant area, named PM; f) coordinates
of extracted fruits in F'; g) feature density weight and density maximum points; h) result of density-based rough clustering; i) result of
adaptive density clustering algorithm for fruit area distribution; j) result of the proposed method, and the infructescence positions are
marks with boxes in red borders.
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density metric is designed for measuring the density of each point. 
Due to the coordinates of the candidate regions extracted in the

previous step being all integers, F’ can be seen as a grid graph,
each grid is a point in F’. Focusing on the 8-direction, = {0, π/4,
π/2, 3π/4, π, 5π/4, 3π/2, 7π/4}, the density ρ at F’ (x, y) can be
defined as Eq. 3:

                                                  
(3)

where den (x, y, θ) is the density of the F’ (x, y) in the direction θ.
The local density map obtained by Eq. 3 is named DM.

The calculation of the density of the direction θ is an iterative
process that executes when the grid’s value is 1. During the itera-
tion, the grids on the direction θ are traversed, and the feature val-
ues on the path are weighted and accumulated. The iteration stops
until reaching the boundary or feature value is 0. An example is
shown in Figure 3.

The density of qth iteration is denoted as den (x, y, θ)(q), and the
calculation formula is shown in Eq. 4:

(4)

in which, g(·) is a Gaussian function. It implies that the contribu-
tion of its feature values decreases as distance increases. ftravel rep-
resents the feature value of the point being iterated, which is
defined in Eq. 5.

(5)

where Δx and Δy are the offsets to F’(x, y), sign(·) is a sign func-

tion, they are defined as Eq. 6. 

(6)

Feature weight map and feature density map
In joint-direction-intensity feature map I, the number of direc-

tions is proportional to the ratio of white pixels to the entire cell, it
also indicates the possibility that a cell is a fruit-like region. Hence,
the proportion of white pixels in a cell can be used as a weight to
measure the likelihood of a cell is a fruit-like region. Each of the
cells will be mapped to a pixel of feature weight map FW with a
size as F’. The feature value of celli can be calculated as in Eq. 7:

(7)

where c(x) =1 if x =255 and c(x) =0 otherwise. A point is more
likely to be the center of a cluster if it is more likely to be a fruit-
like region and has a larger local density. Hence, the Hadamard
product of DM and FW is calculated, which is named as feature
density map FDM.

Maximum density points
Maximum density points are found to start clustering after get-

ting the FDW. Let FDW be a bivariate function, which has first and
second derivatives. The second derivatives fxx, fyy, and fxy of the
point (x, y) in FDW compose its Hessian matrix, denoted as H (x,
y). It is a maximum density point if the corresponding Hessian
matrix H (x, y) is positive definite. An example is shown in Figure
2g, in which the red plus signs are the maximum density points.

Density-based rough clustering
The following demonstrates the fundamental idea of the pro-
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Figure 3 . The eight directions of the grid with red borders: local density of the red border grid is calculated with the grids with blue bor-
ders, in which, grids in grey are out of the map.
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posed density-based rough clustering: Initially, the maximum den-
sity points of FDM are seen as initial centers, and each is labeled
uniquely. The neighbors of centers are then connected to the corre-
sponding center. The framework of the density-based rough clus-
tering algorithm is shown in Supplementary Table 1.

Step 6 of Supplementary Table 1 is described in detail below:
first, a flag is_changed is initialized as 0, which indicates whether
the cluster_list has been modified. Then, the algorithm traverses
points and appends the unallocated points to the cluster sets that
contain any of their 4-neighbors. If there is any append operation
during the current loop, is_changed will be changed to 1. The loop
will terminate when is_changed is 0 after a certain loop. In partic-
ular, is_changed will be set to 0 at every start of a loop. During the
point allocation, a point may belong to multiple cluster sets in Step
6 of Supplementary Table 1. For further data process, the repeated-
ly assigned points are temporarily stored in the cluster sets. The
pseudocode of points allocation is shown in Supplementary Table
2. The remaining unallocated points are considered outliers and
will be ignored in the further process. Supplementary Table 2 cap-
tures a series of clusters that are separated from each other.
However, the same points may be assigned to more than one set of
clusters due to flaws in Supplementary Table 2. That is, the same
points exist in different sets of clusters. Hence, it is necessary to
merge these clusters.

The main idea: an intersection between two cluster sets is
found within a loop. If the intersection is not empty, the elements
in the cluster set with a larger index will be copied to another set
and elements in the cluster with a larger index will be deleted, that
is, it will be marked as empty. This process is repeated until the
intersection of any two sets is empty in cluster_list. The process is
shown in Supplementary Table 3.

The new cluster sets, reconstructed by the nonempty cluster
sets in cluster_list, are obtained after merging the clusters with
duplicate elements. Labels are re-assigned to points in the new
cluster sets and fruit regions are divided. The result of density-
based rough clustering is shown in Figure 2h.

Merge clusters based on local Calinski-Harabasz
index

Results of the density-based rough clustering algorithm, shown
in Figure 2h, demonstrated that multiple cluster groups could
belong to a single cluster, such as clusters 2 and 4 and clusters 15
and 16. The number of clusters can generally be determined by
CVI because it is proved that the optimal CVI corresponds to the
optimal number of clusters and the optimal clusters by Zhu and Ma
(2018). Therefore, CVIs are introduced to obtain the optimal clus-
ter by iteratively merging the rough clustering results.

Original Calinski-Harabasz index
The original Calinski-Harabasz (CH) index (Caliński and
Harabasz, 1974) is the ratio of the inter-cluster dispersion degree
and the intra-cluster dispersion degree. That is, the CH index
increases when the intra-cluster dispersion degree decreases and
inter-cluster dispersion degree increases, which is defined in Eq. 8:

(8)

where N is the number of points, Bk and Wk are the inter-cluster
scatter matrix and intra-cluster scatter matrix, respectively. Tr(·)
represents the trace of a matrix, which indicates the dispersion
degree. The definitions of Bk and Wk are shown in Eqs. 9 and 10.

(9)

(10)

where vi is the center of cluster Ci, v is the global center, k is the
number of clusters, and represents the number of points contained
in cluster Ci, vi, and v are defined as follows.

(11)

(12)

Local Calinski-Harabasz index
The original CH index is a global evaluation index to evaluate

the quality of clustering. Its inter-cluster dispersion is transformed
from a global metric to a local one, which allows it to be utilized
to evaluate the scatter between any two adjacent clusters. The new
indicator is denoted as local CH index, referred to as LCH, which
is defined in Eq. 13. 

(13)

where p and q are the labels of the clusters that are being merged.
C’ is the cluster that is formed by merging cluster p and cluster q,
that is C’ = Cp ⋃ Cq. Wk’ is the local scatter matrix, representing
the intra-cluster dispersion degree of the cluster C’. Wk’ is defined
in Eq. 14:

(14)

where v’ is the center of cluster C’.

Local Calinski-Harabasz-based cluster merger
The LCH is introduced to evaluate the suitability of merging

two adjacent clusters. The higher the LCH value, the more appro-
priate it is to combine the two clusters. Multiple merge operations
based on LCH are performed to get the optimal clustering result.
During each merger, the maximum value of LCH between all clus-
ters and their nearest neighbors is found and corresponding p and
q are the cluster labels which are taken as the optimal choice for
this merger. They are found in Eq. 15.

                                                
(15)

The next merger will be performed based on the previous
merger. SC, known as silhouette coefficient (Maulik and
Bandyopadhyay, 2002), serves as the global assessment indicator
to determine a termination condition of the merging progress. The
silhouette coefficient of tth merger is regarded as SC(t) whose range
is [-1, 1]. Increases in the coefficient indicate more effective clus-
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tering. Thus, the termination condition is as follows:

                                                
(16)

The pseudocode of the LCH-based cluster merging algorithm
is shown in Supplementary Table 4.

Adaptive density-based clustering algorithm
After the clusters are merged, which is displayed in Figure 2i,

the number of clusters obtained is the number of Zanthoxylum
infructescence. The infructescence detection result is shown in
Figure 2j. The minimum bounding rectangle of each cluster is
found in units of clusters and mapped to the corresponding coordi-
nates in the original image. The detailed framework of the pro-
posed algorithm is shown in Supplementary Table 5.

Results
The experiments are designed as two parts to verify the effec-

tiveness of the proposed algorithm. The first is the comparative
experiment with traditional methods, it compares the proposed
algorithm with adaptive density peak clustering based on K-near-
est neighbors (ADPC-kNN) (Yaohui et al., 2017), which is an
extension of DPC (Rodriguez and Laio, 2014), DBSCAN (Ester et
al., 1996) and OPTICS (Ankerst et al., 1999) to test the perform-
ance of clustering. In the second part of the experiment, several
classical deep learning models are introduced for comparison in
this paper, including the multi-stage Faster region-based convolu-
tional neural network (RCNN) (Ren et al., 2015) and the single-
stage YOLOv5 (Jocher et al., 2022) and YOLOv7 (Wang et al.,
2022), to demonstrate the competitiveness of the proposed algo-
rithms under small data sets. Each part of the experiments will be
conducted on a normal sample set and the robust sample set previ-
ously mentioned to prove the effectiveness of the proposed algo-
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Figure 4. The results of comparison experiments with traditional methods: a) results of DBSCAN; b) results of OPTICS; c) results of
ADPC-kNN; d) results of the proposed method. In the comparison experiments, the eps and minPts settings of DBSCAN and OPTICS
are 3.5 and 5, respectively. ADPC-kNN introduces kNN to improve the calculation of density, where k=25. The boxes with blue borders
are the target boxes, and the red boxes are the results obtained with the corresponding method.
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rithm. The process of Zanthoxylum infructescence detection
described in this work was all implemented on a device with a
CPU of AMD Ryzen 7 5800H @ 3.20GHz, a RAM of 24.0GB, and
a graphics card of NVIDIA GeForce RTX3060 Laptop with video
memory of 6GB. The process of image is implemented in Python
3.6.8 and opencv-python 4.4.4 environments. The deep learning
models were also trained on this device.

Evaluation metrics
To assess and quantify the performance of the proposed adap-

tive density-based Zanthoxylum infructescence detection method,
three commonly used indices are introduced: precision, recall, and
F1-score. Their formulas are shown as Eqs. 17-19:

(17)

(18)

(19)

where TP is the number of infructescences that are correctly iden-
tified by the proposed algorithm; FN represents the number of non-
Zanthoxylum infructescence regions that are misclassified to
infructescence regions; FP refers to the number of Zanthoxylum
infructescences that are misidentified by the algorithm. Since the
algorithm proposed in this paper is only adopted for detecting the
infructescences, it is defined that Zanthoxylum infructescence is
correctly identified when the center of the detection box falls in the
ground truth and will be marked as TP. At the same time, a box of
ground truth can only be correctly recognized by one detection
box. If multiple detection boxes identify the same infructescence,
the remaining detection boxes will be seen as failed detections, and
they will be marked as FN.

Performance comparison with traditional methods
Although there are some reports of fruits counting and detec-

tion with good results (Lu et al., 2018; Tan et al., 2018; Zhang et
al., 2021), it is difficult to compare our research with them because
the data processed by each research are all captured from different
species, and even the features vary greatly. Therefore, many clas-
sical clustering algorithms (Ankerst et al., 1999; Ester et al., 1996;
Yaohui et al., 2017) are chosen to prove the effectiveness of the
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Table 2. Detailed data of precision comparison experiments.

Algorithm                  Sample set                  Average precision (%)                     Average recall (%)                     Average F1-score

OPTICS                               Normal                                      98.33±4.08                                            57.43±18.35                                         0.71±0.14
                                              Robust                                     100.00±0.00                                           62.14±18.19                                         0.75±0.13
ADPC-kNN                         Normal                                     79.76±17.29                                           79.76±17.29                                         0.80±0.17
                                              Robust                                     82.34±14.34                                           82.34±14.34                                         0.82±0.14
DBSCAN                             Normal                                     90.95±16.20                                           86.81±16.33                                         0.87±0.12
                                              Robust                                      93.93±8.47                                            81.50±15.29                                         0.87±0.11
Ours                                      Normal                                      96.67±8.16                                            91.07±13.88                                         0.93±0.08
                                              Robust                                     94.09±13.56                                           84.64±14.27                                         0.88±0.10
OPTICS, ordering points to identify the clustering structure; ADPC-kNN, adaptive density peak clustering based on K-nearest neighbors; DBSCAN, density-based spatial clustering of
applications with noise. 

Table 3. Parameters required for these clustering algorithms.

Algorithm             Parameters                                                                 Meaning                                                         Number of parameters

DBSCAN                           eps                                                                       Radius of neighborhood                                                                          2
                                         minPts                                                Threshold of density to distinguish type of points                                                       
OPTICS                              eps                                                                       Radius of neighborhood                                                                          2
                                         minPts                                                Threshold of density to distinguish type of points                                                       
ADPC-kNN                         k                              The number of nearest neighbors which is introduced to calculate the density                               2
                                             c                                                                             Number of clusters                                                                                
Ours                                      -                                                                                            -                                                                                              0
OPTICS, ordering points to identify the clustering structure; ADPC-kNN, adaptive density peak clustering based on K-nearest neighbors; DBSCAN, density-based spatial clustering of appli-
cations with noise.

Table 4. Comparison of four indicators for 4 clustering algorithms.

Indicators                                     OPTICS                                          ADPC-kNN                          DBSCAN                           Ours

RI                                                                0.75                                                            0.87                                           0.91                                      0.95
ARI                                                             0.32                                                            0.60                                           0.70                                      0.75
NMI                                                            0.59                                                            0.71                                           0.80                                      0.88
FMI                                                             0.49                                                            0.69                                           0.76                                      0.89
OPTICS, ordering points to identify the clustering structure; ADPC-kNN, adaptive density peak clustering based on K-nearest neighbors; DBSCAN, density-based spatial clustering of appli-
cations with noise; RI, Rand index; ARI, adjusted Rand index; NMI, normalized mutual information; FMI, Fowlkes-Mallows scores. 
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proposed clustering algorithm. Part of the experimental results are
shown in Figure 4.

Figure 4a-d shows the results of DBSCAN, OPTICS, ADPC-
kNN and ours. The results of infructescence detection are dis-
played with red boxes, and ground truth is shown with blue bor-
ders. The experimental results on different sample sets in terms of
precision, recall, and F1-score are compared, and are shown in
Table 2.

The comparison algorithm and the clustering proposed algo-
rithm were analyzed and their required parameters and correspon-
ding numbers are shown in Table 3. It is found that our algorithm
obtains better accuracy than ADPC-kNN and OPTICS while using
fewer parameters, and the overall accuracy is slightly better than
DBSCAN. Since OPTICS only considers density information, the
necessary cluster merging operation is missing. As a result, many
small clusters are detected, which leads to OPTICS having high
precision, but low recall and F1-score, as shown in Figure 5b. The
ADPC-kNN needs to manually specify the number of clusters,
which is not suitable for this work. At the same time, when a larger
number of clusters is specified, some outliers may be mistakenly
selected as the cluster center due to their large distance from each
other (Figure 5c). Although the accuracy of the proposed algorithm
is only slightly better than that of DBSCAN, it requires fewer
parameters and is more adaptive. Therefore, the proposed algo-
rithm has higher accuracy and better adaptability than the compar-
ison algorithms. Even though the scores decreased slightly on the
robust sample set, our results and the standard deviation of our on-
average recall and average F1-score are better than that of the com-

parison algorithms. That is, the proposed algorithm also shows bet-
ter performance and better stability than other algorithms. It proves
the application value of the proposed algorithm in a complex envi-
ronment.

In addition to precision, recall, and F1-score of infructescence
detection, several other external evaluation indicators of clustering
algorithms such as Rand index, adjusted Rand index, normalized
mutual information, and Fowlkes-Mallows scores are introduced
to measure how well the clusters obtained by each algorithm match
the ground truth to evaluate the performance of different clustering
algorithms. The detailed data of which is shown in Table 4. It can
be found that the proposed method obtains the best clustering
results for each index.

Performance comparison with deep learning-
based methods

There is no doubt that deep learning-based methods are com-
petitive in the field of fruit detection. There are several neural net-
work models like Faster RCNN, YOLOv5, and YOLOv7, which
are representative models for multi-stage and single-stage target
detection. The key parameters of training these models are shown
in Table 5. The learning rate will decay with the increase of train-
ing epochs.

In this section, the optimal result of each model is chosen to
compare with our algorithm. The optimal detection results of each
algorithm are shown in Table 6, and several detection results of
these models and ours are randomly displayed in Figure 6.
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Figure 5. An example of the comparison algorithms: a) original image and the interest area; b) result of OPTICS; c) result of ADPC-kNN;
d) our results. The box with yellow borders shown in (a) is the area where mistakes happened. The cluster results without outliers and
detection results of three algorithms are shown in b-d. The boxes with blue borders are the ground truth, and the red boxes are the detection
results of the corresponding algorithm.

Table 5. Key parameters of training neural network models.

Parameters                                        Faster RCNN                                          YOLOv5                                                       YOLOv7

Batch size                                                                2                                                                   16                                                                            16
Epoch                                                                     100                                                               350                                                                          350
Initial learning rate                                              0.005                                                             0.01                                                                         0.01
Optimizer                                                              SGD                                                            Adam                                                                       SGD
Pre-trained weights                                               Yes                                                                Yes                                                                          Yes
RCNN, region-based convolutional neural network; SGD, stochastic gradient descent.
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During the experiment, it can be found that most of the
Zanthoxylum infructescences can be detected at low confidence,
but the misclassification rate and repeat detection rate are higher at
this time, and these lead to a lower recall and F1-score in a com-
prehensive view. With the appropriate confidence, its misclassifi-

cation rate and misdetection rate are reduced, but it also sacrifices
its accuracy in complex situations, and its recall rate and F1-score
of normal samples are improved somewhat. In the high-confidence
case, more infructescences are ignored and the misdetection rate is
further increased, resulting in a decrease in all indicators at this
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Figure 6. The results of comparison experiments with deep learning-based methods: a) results of faster RCNN; b) results of YOLOv5; 
c) results of YOLOv7; d) results of the proposed method.

Table 6. Comparison of ours with deep learning-based methods.

Sample set                Indicators                      Faster RCNN                      YOLOv5                           YOLOv7                            Ours

Normal                           Precision (%)                           72.62±21.00                           100.00±0.00                            76.25±18.81                          96.67±8.16
                                         Recall (%)                             82.38±27.73                           85.71±24.74                             98.33±4.08                          91.07±13.88
                                           F1-score                                 0.76±0.21                               0.91±0.16                                0.85±0.10                             0.93±0.08
Robust                            Precision (%)                           73.21±15.96                           79.21±18.27                            79.90±18.60                         94.09±13.56
                                         Recall (%)                             80.14±23.37                           83.89±18.37                            91.57±18.17                         84.64±14.27
                                           F1-score                                 0.72±0.15                               0.79±0.11                                0.84±0.15                             0.88±0.10
Average                          Precision (%)                           72.63±17.24                           83.11±18.36                            80.36±17.90                         94.17±14.26
                                         Recall (%)                             80.92±24.14                           84.23±18.77                            92.54±14.96                         87.64±12.39
                                           F1-score                                 0.73±0.17                               0.81±0.12                                0.85±0.13                             0.90±0.10
RCNN, region-based convolutional neural network. 
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time. Overall, the results of the deep learning model for detecting
Zanthoxylum infructescences vary considerably with the confi-
dence settings. However, even when the detection results are opti-
mal, the detection accuracy of YOLOv5 and faster RCNN are still
worse than the ones of the proposed algorithm. Meanwhile, the
results obtained by the algorithm proposed in this paper are also
competitive compared to the latest YOLOv7 though the pre-trained
weight is introduced. It proves that the algorithm in this paper is
valuable in current application scenarios and small sample cases.

Discussion
The proposed method exhibits excellent infructescences detec-

tion performance under natural conditions. The average precision is
94.17% in total (in a normal sample set, its precision is 96.67%, and

the precision is 94.09% for robust samples), although there are still
some misclassifications caused by defects in feature extraction and
under-merging. Due to the complexity of the situation, some fruit
regions may be misclassified during the feature extraction, which is
shown in Figure 7a. In some cases, the extracted fruit areas are sep-
arated when the infructescence is large and the internal fruits are
sparser, which further leads to under-merging, as shown in Figure
7b. In other conditions, several infructescences may overlap togeth-
er and the clustering algorithm may fail to work, as shown in Figure
7c. However, the task does not require to detect the precise position
of infructescence, and most of the infructescences can be success-
fully identified, so the algorithm is able to preliminarily complete
the task of infructescence counting and estimating yield. Since
HOG and ExGR are both normalized in the calculation and they are
insensitive to illumination conditions, the algorithm can effectively
identify the infructescences under different illumination conditions.
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Figure 7. Some examples of failed detection: a) example of failed feature extraction; b) example of under-merging; c) example of over-
lapping clusters. The extracted feature maps and detection results are enlarged in the right panel of each example which corresponds to
the location of yellow boxes marked in the left. The boxes with blue borders are the ground truth, and the red boxes are the results obtained
with the proposed method.
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Conclusions
In this paper, a study on the density-based infructescence

detection method for Zanthoxylum Schinifolium is conducted,
which is focused on the images of Zanthoxylum branches collected
in a natural environment. A feasible automatic recognition
approach for Zanthoxylum infructescences is provided in view of
its complex background, difficulty in recognition of Zanthoxylum
and small sample size, which could provide data support for esti-
mating its yield in the future. The major findings of this study can
be summarized as follows: 
1. Combine the joint-direction-intensity feature, which is an

extension of HOG, and ExGR index to extract fruit-like
regions as accurately as possible from images with a complex
background.

2. Build an optimization model to optimize clustering results, and
propose a novel adaptive density-based clustering algorithm
for detecting the infructescences according to the distribution
of fruit-like regions.

3. Experiments show that the proposed algorithm exhibits excel-
lent infructescences detection performance with an average
precision of 94.17%.

4. Compared with OPTICS, ADPC-kNN, and DBSCAN, the pro-
posed adaptive density clustering has a higher accuracy in
locating infructescences under normal conditions while it
requires fewer parameters. Meanwhile, it also has higher appli-
cability for robust samples.

5. Compared with deep learning-based object detection algo-
rithms, the algorithm proposed in this paper proved to be valu-
able in the case of small samples. All indicators are significant-
ly higher than faster RCNN and YOLOv5, and are also com-
petitive with the latest YOLOv7.
To realize the automatic yield estimation of Zanthoxylum, fur-

ther research on the growth density and area size of Zanthoxylum
is also needed to build the relationship between them and the yield.
In the future, experiments can be conducted on more scenes in the
natural environment, such as more complex lighting conditions,
and Zanthoxylum at different growth stages. Meanwhile, more
samples should be collected so that advanced technologies, such as
deep learning, can be introduced to conduct further research.
Moreover, the precented algorithm can be transferred to other
related studies of varieties with similar characteristics, such as the
identification of immature grapes.
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Online supplementary material:

Table S1. Framework of the density-based rough clustering.
Table S2. Points allocation (step 6 of Table S1).
Table S3. Cluster sets merging (step 7 of Table S1.).
Table S4. Local Calinski-Harabasz-based cluster merger.
Table S5. Framework of adaptive-density-clustering-based Zanthoxylum infructescence detection.
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