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Abstract

A multi-class segmentation model based on improved
DeepLabv3+ is proposed to detect navel orange surface defects.
This model aims to address the problems of the current main-
stream semantic segmentation network, including rough edge seg-
mentation of navel orange defects, poor accuracy of small target
defect segmentation, and insufficient deep-level semantic extrac-
tion of defects, which will result in the loss of feature information.
In order to improve semantic segmentation performance, the
Coordinate Attention Mechanism 1is integrated into the
DeepLabv3+ network. Additionally, the deformable empty convo-
lution of the Atrous Spatial Pyramid Pooling structure replaces the
dilated convolution, improving the network’s ability to fit and tar-
get irregular defects and shape changes. Furthermore, to achieve
multi-scale feature fusion and enhance feature space and semantic
information, a Bi-feature pyramid network-based feature fusion
branch is added at the DeepLabv3+ encoder side. The experimen-
tal findings demonstrate that the improved DeepLabv3+ model
improves the extraction capability of navel orange defect features
and has better segmentation performance. On the navel orange
surface defect dataset, the improved model’s average intersection
ratio and average pixel intersection ratio accuracies are 77.32%
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and 86.38%, respectively, which are 3.81% and 5.29% higher than
the original DeepLabv3+ network.

Introduction

As a fruit with a long hanging period, navel oranges are often
damaged by pests and diseases, and mechanical and chemical fac-
tors during the fruit growing period, leaving scars on the mature
fruit, which greatly reduces its commercial value and affects the
profitability of fruit farmers. Fruit surface defect detection (Jin et
al., 2021; Soltani Firouz & Sardari, 2022) is a key step for fruits
to enter the market, which is based on two parts, defect extraction
and defect classification, to determine the merit of the fruit while
grading the fruit according to the type and percentage of defects
(Ren & Bai, 2013; Zhang et al., 2015; Unay, 2022). This technol-
ogy also enables fruit farmers to improve the quality of their fruits
by allowing them to be more targeted for future orchard mainte-
nance in terms of planting and cultivation. The development of
postharvest treatment methods for different types of defective
fruits also allows for reducing the waste of resources and maxi-
mizing their value.

Initially, the detection of defects on the surface of fruits is
mainly manual, relying on the subjective experience of the picker
to segment the defects, which is prone to human error and variable
results and can consume a lot of labor and time costs (Li et al.,
2015; Zhang et al., 2015). Later, defect detection methods based
on machine vision became popular, and the early applied methods
were mainly image processing and machine learning. Yang et al.
(2014) analyzed the color information of the navel orange surface
in defect detection using image processing techniques and
obtained surface defects with appropriate R/B and G/B ratios with
an identification accuracy of 93.3%. Rong ef al. (2017) gave a
detailed image processing procedure and proposed a comparative
sliding window local segmentation algorithm, which was applied
to 1,191 navel orange samples with a defect detection rate reach-
ing 97%. Xie et al. (2018) proposed a fast navel orange surface
defect detection algorithm by combining wavelet transform and
compressed sensing techniques in image processing, but the num-
ber of false matches increases if the image contains fruit stalks and
nectaries. Bhargava ef al. (2020) proposed a fully automated
detection and categorization mechanism for a wide range of fruits.
The mechanism uses four machine learning algorithms to classify
and detect fruits after segmenting the fruit region and extracting
features, among which the support-vector machines classifier has
the best detection performance with 98.48% classification accura-
cy. The traditional method mainly analyzes the surface defect fea-
tures of the fruit and manually designs the feature extractor, which
can obtain good detection results under specific environments.
However, due to the large influence of the environment, the
extracted image features are often difficult to generalize to new
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images (Fan et al., 2020; Nithya et al., 2022). Compared with tra-
ditional image processing methods and machine learning methods,
deep learning does not require a manual feature selection process,
which not only reduces the difficulty of fruit defect segmentation
but also has higher accuracy and robustness. The defect detection
methods based on deep learning mainly include the image classifi-
cation method, target detection method, and semantic segmenta-
tion method.

At present, most fruit defect detection methods use image clas-
sification, and there have been many related research results. Zhou
et al. (2020) used the stochastic weighted average optimizer and
w-softmax loss function to improve the VGG network, and gener-
ated a network model for Qingmei defect detection, with an aver-
age defect recognition accuracy of 93.8%, but due to the small
sample size, the recognition rate of scars and cracks was low. Tian
et al. (2022) proposed a transfer learning-based classifier for nine
tomato diseases and a healthy tomato leaf recognition mechanism,
and trained three deep-learning network architectures (VGG16,
Inception_v3, and Resnet50) with a test accuracy of 99%.
However, image classification cannot distinguish multiple defects
on a single image, and the defect classification scene is single. In
terms of the application of target detection methods, Yao et al.
(2021) developed a kiwifruit defect detection model based on
improved YOLOVS, which added a small object detection network
to the backbone network and embedded squeeze-and-excitation
Layer to improve the extraction ability of the model, and the
results showed that the mAP@0.5 of the model reached 94.7%.
Target detection makes up for the shortcomings of image classifi-
cation by locating the defect location through a rectangular box,
but the localization becomes more difficult in the case of complex
defect edges.

Semantic segmentation is based on pixel classification, which
can accurately segment defect edges and is more suitable for defect
detection with complex features. In recent years, fruit defect detec-
tion based on the semantic segmentation method has gained more
and more attention. Sun et al. (2020) constructed an attention net-
work (FANet) embedded Unet semantic segmentation model to
recognize the type of segmented orange defects and distinguish
between stem end and flower, and the average recognition accura-
cy can reach 77.468%. Raman et al. (2022) investigated the apple
disease classification and segmentation mechanism and improved
the standard Unet by using Atrous Convolution for segmentation in
step-skipping branches, and this improved Unet model could
achieve up to 94.29% accuracy for apple disease recognition.
Liang et al. (2022) propose a semantic segmentation method based
on BiSeNetV2 deep learning network to segment the defective
parts of defective apples, and use the model pruning method to
optimize the YOLOv4 network structure to help solve the problem
of segmentation networks incorrectly segmenting fruit stems. The
final mPA of the apple defect detection model based on BiSeNetV2
can be obtained as 99.66% and the average accuracy of the apple
classification model based on YOLOV4 is 92.42%.

Selecting an appropriate image segmentation model based on
the characteristics of the dataset is a key step in conducting
research on fruit defect detection. Since there are multiple defec-
tive regions with similar and irregular morphology on the surface
of navel oranges, its detection requires a high-precision semantic
segmentation network. Considering the current transformer type of
segmentation model has more parameters, we mainly select the
baseline model from the mainstream CNN models. In the field of
defect detection, the semantic segmentation models with better
detection effects are Unet (Ronneberger er al, 2015), PSPNet
(Zhao et al., 2017), and DeepLabv3+ (Chen et al., 2018). Unet is
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a kind of symmetric U-shape structure of the encoder and decoder
network, the encoder gradually reduces the resolution of the fea-
ture map, and the decoder gradually restores the feature map reso-
lution, which helps to retain detail information and is suitable for
semantic segmentation tasks with small samples and unbalanced
data. PSPNet is able to add contextual information by introducing
the Pyramid Pooling Module (PPM), which improves the accuracy
and robustness of semantic segmentation of images. Moreover,
adding the PPM module does not increase the number of parame-
ters too much when the input feature dimensions are small.
DeepLabv3+ uses the Atrous Spatial Pyramid Pooling (ASPP)
module, which is similar in structure to the PPM module, to effec-
tively deal with the problems of many types of defects in the
dataset, irregular regions, and unclear details. Compared with the
PPM module, the ASPP module adds Atrous Convolution to
expand the receptive field without increasing the number of
parameters and computation, thus capturing a wider range of con-
textual information. By using multiple parallel Atrous Convolution
branches, ASPP can process the input feature maps with different
sampling rate receptive fields, which can effectively capture
semantic information at different scales. To further improve the
utilization of features at different scales, DeepLabv3+ introduces a
feature fusion module. Feature fusion improves the accuracy of
semantic segmentation by fusing low-level feature (LF) maps with
high-level feature (HF) maps, which can retain both details and
global information. Therefore, DeepLabv3+ is more suitable for
navel orange defect detection. The purpose of this paper is to
design an umbilical cord orange image defect detection algorithm
using image segmentation technology in deep learning to realize
fast and accurate real-time detection of defects in umbilical cord
orange images and to provide technical reference for umbilical
cord orange surface defect detection.

Materials and Methods
DeepLabv3+ semantic segmentation modeling

The structure of DeepLabv3+ is shown in Figure 1.
DeepLabv3+ network uses the encoder-decoder structure. For the
encoder part, first, the image enters the encoder for feature extrac-
tion, and after deep convolutional neural network (DCNN) a shal-
low feature layer and a deep feature layer are generated, the height
and width of the shallow feature layer will be larger, while the deep
feature layer will have more downsampling, so the height and
width will be smaller. The deep feature layer enters the ASPP
structure, and further feature extraction is performed using the
Atrous Convolution with different expansion rates, where there are
3x3 convolutions with expansion rates of 6, 12 and 18, which are
used to improve the receptive field of the network and make the
network have different feature perceptual situations, after which
the feature layers are stacked and then adjusted by 1x1 convolution
for the number of channels to obtain the fused feature (FF) layer.
In the decoder part, the shallow feature layer generated by DCNN
enters into the Decoder decoder, and the feature layer with high
semantic information generated by the encoder enters into the
Decoder for upsampling, after which the results obtained from 1x1
convolution with the shallower features are fused with the features,
after which the feature extraction is performed by 3x3 convolution,
and, finally, the output image is up-sampled with the input. The
image size is the same and the prediction result is obtained.
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Coordinate attention mechanism

The DeepLabv3+ network contains multiple feature channel
fusion operations, and the features of different channels undergo
different convolution operations, and, as the convolution depth
increases, the semantic features obtained become more abstract,
and their impact on target prediction will be different. The atten-
tion mechanism can selectively focus on important information
with high weights and ignore irrelevant information with low
weights. In addition, the mechanism can adaptively adjust the
information weights to select critical information according to the
scene requirements, which enhances the scalability and robustness
of the model. Squeeze and Energize (SE) attention is one of the
most influential attention mechanisms, which learns inter-channel
relationships and compresses them into channel importance vec-
tors through global information pooling, squeezing, and excitation
operations, and scales them to 0 to 1 through excitation operations,
which ultimately achieves attention weighting for different chan-
nels. However, the SE module ignores the location information
(Hu et al., 2018). To compensate for SE attention, Woo et al.
(2018) proposed the Convolutional Block Attention Module
(CBAM), which introduces spatial information encoding through
the convolution of a large-size kernel, but it can only capture local
relations and not long-term dependencies that are important for
visual tasks. In order to obtain long-distance dependencies with
accurate location information, coordinate attention has been fur-
ther proposed.

Coordinate attention (Hou et al., 2021) allows the attention
mechanism to capture long-range dependencies and precise loca-

Article

tion information in different spatial directions so that the network
can focus more on regions or targets of interest. It encodes spatial
information into two parallel one-dimensional feature codes and
uses the two one-dimensional feature codes to insert coordinate
information to avoid the loss of position information caused by
two-dimensional global pooling. Coordinates encode accurate
position information for channel relations and long-term depend-
encies in two steps: coordinate information embedding and coordi-
nated attention generation.

Coordinate information embedding

In coordinate attention, to better capture long-range dependencies
with precise location information, we use a pair of one-dimension-
al feature encoding operations. The spatial extent of the pooling
kernels (H, 1) is used to encode the channel of horizontal coordi-
nates, while the spatial extent of the pooling kernels (1, ) is used
to encode the channel of vertical coordinates.

Given the input, y - {3, 0K o fERCH the output of the ¢ chan-
nel with height 4 can be expressed as

E x,_(_,r',W) @))]

0 TeH

where xc (4, 7) indicates the value of the height coordinate /# and
width coordinate j position feature map of channel ¢ and w is the
width of the feature map.
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Figure 1. Structure of DeepLabv3+ algorithm.

OPEN aAC(ESS

[Journal of Agricultural Engineering 2024; LV:1564]



Similarly, the output of channel ¢ of width w is expressed as

2 (h) =7

LS () (n

[Pyrdis

where x¢ (i, w) is the value of the positional feature map of channel
¢ with width w and height coordinate 7, H is the height of the fea-
ture map.

Coordinate attention generation

The coordinate information embedding module provides a rep-
resentation of the global receptive field and precise location infor-
mation. To make better use of these features, the coordinate atten-
tion generation operation is required. This operation cascades two
feature maps and transforms £ using a shared 1x1 convolution to
generateas intermediate feature maps for spatial information in the
horizontal and vertical directions, with the same downsampling
ratio r as the SE module for controlling the module size, which is
expressed in the following equation

)

where [, ] is the splicing operation along the spatial dimension and
o is the nonlinear activation function defined as:

5(x)= ReLUGé{x-{-S) )

where ReLU6 is defined as:

ReLU6(x) = min(6,max (0, x)) ®)

In order to prevent gradient explosion during reverse transmission,
unlike the ReLU function, the output of ReLUG6 is limited to a
maximum value of 6. Then, f'is sliced into two separate tensors

fhegerd and f » &R along the spatial dimension, and the

feature maps f " and /¥ are transformed to the same number of

(a) Conventional convolutional sampling method
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channels as the input X using two 1x1 convolutions Fj and Fy, to
obtain the following equation

' =o(E(r")) (6)

g"=olF (1)) @)

where O is the sigmoid activation function defined as

1
T{x)=
¢ {t} l+e™

@®)

Then g" and g" are expanded as attention weights, and the final
output of the CA module can be expressed as the following equa-
tion.

v (i) =x (L)% gl (D)= g (/) ®

Deformable convolution

The DeepLabv3+ network uses dilated convolution instead of
the down-sampling operation to increase the receptive field of the
network. Unlike the traditional down-sampling operation, the
Atrous Convolution increases the step length between convolution
kernels by adding a dilation rate parameter, thus expanding the
receptive field without reducing the resolution of the image. The
use of Atrous Convolution can increase the range of information
received by each neuron, thus improving the model’s understand-
ing of the input data features. However, the convolutional kernel
used in this method is square, and the use of a square convolutional
kernel does not fully satisfy the need for recognizing objects of dif-
ferent sizes, shapes, and resolutions in all scenes. In order to make
the convolutional neural network more efficient in extracting the
key semantic information of navel orange surface defects, this
paper proposes to introduce deformable convolution from ASPP,
which can adaptively adjust the sampling points to precisely locate
the objects of different scales and shapes and extract the features.
The regular convolution sampling method and the deformable con-
volution sampling method are shown in Figure 2.

As shown in Figure 2, Figure 2a shows the conventional 3x3
convolution sampling method, where the sampling area is a regular
region, and Figure 2b shows the deformable convolution sampling

E

(b) Deformable convolution sampling method

Figure 2. Plot of conventional and deformable convolution sampling methods.
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method, where the deformable convolution adaptively adjusts the
sampling point positions according to the shape of the target and
makes each sampling point have different degrees of offset in dif-
ferent directions, thus allowing the network to focus more on the
region or target of interest. In traditional convolution, the input and
output feature maps are defined as x and y respectively, and py is
the coordinate in the output feature map, which is the coordinate of
the convolution kernel in the template. The convolution process of
traditional convolution can be expressed as

(p,)x(p,+p,) (10)

y(Pn) E

where pg+py is the coordinate of the sampling point, w(p,) is the
weight parameter in the convolution kernel, 7 is the kernel tem-
plate.

The deformable convolution introduces an offset for each point
based on the traditional convolution, which can be expressed as

Wpo)=Y , @P)x(po+ 2, +4p, ) 1n

where {Apn |n= 1., N}, N= |T| and Ap is a decimal number.
Let Py= pn + Apn then the deformable convolution formula can be
expressed as

YPo)= Y, o @p) x(py +F,) (12)

where T* ={P}, P, ..., Pn}, N= | T | and it should be noted thatis
a decimal point pair. Since the position after adding the offset is
non-integer and does not correspond to the actual existing pixel
points on the feature map, it is necessary to use interpolation to get
the pixel values after the offset, which can usually be done by
bilinear interpolation, expressed by the formula as follows

x(p)=Y Glg.p)-x(q) (13)

Block 3

where ¢ is the coordinate on x, G (', ) is the bilinear interpolation
kernel and it is separated into two one-dimensional kernels as

G(a.p)=g(a,.r.)¢(a,.7,) (14)
where g(a,b) = max(0, |a,b|). p» can be derived as
av{p) av(pg+12,) ; J(,r{q p +B)
s DR [ () —x(g)l  (15)

where py is the coordinate in the output feature map and w(Py) is
the weight parameter in the convolution kernel.

Bidirectional feature pyramid network module

In the DeepLabv3+ decoder, only the shallow 1/4 feature map
is utilized to fuse with the deep features. This method does not
make full use of the features extracted at each stage and thus is less
effective in segmenting small targets. To solve the above problem,
this paper introduces the bidirectional feature pyramid network
module (BiFPN) module (Lin et al., 2017).

BiFPN is a neural network structure for target detection, which
is based on the idea of a feature pyramid network (FPN) and bi-
directional flow for improvement. In traditional FPNs, multi-scale
feature pyramids are built by bottom-up and top-down directions
to better handle objects of different sizes. However, this approach
may lead to information loss or duplication and affect the model
performance. To solve this problem, BiFPN introduces a bidirec-
tional flow mechanism to optimize the feature pyramid network by
using a structure consisting of two branches inside each layer: the
top branch and the bottom branch. The BiFPN module feature
fusion process is shown in Figure 3. As shown in the figure, the left
side is a feature map of three different layers with smaller resolu-
tions from bottom to top. The middle part is BiFPN, which up-
samples the deep layer features, converts them to the size of the
shallow layer feature map, and then fuses them with the shallow
layer features. The right side is the feature map obtained after
BiFPN, which contains not only the features of the deep layer but
also the features of different levels. Here, the feature maps gener-

(728 HI1BW/16) |

Block 2

Y

a

(256, H/B,W/8B)

Block 1

(128 H/4,Wi4)

‘o MY

y o

convolution @ Weighted summation
» Upsampling ¢~ N Short connection

» Downsampling

Figure 3. Simplified Bidirectional feature pyramid network feature fusion schematic.
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ated by Block3 and Block2 in DeepLabv3+ backbone network
Xception are fused, and the feature map sizes of Block3 and
Block2 are 1/16 and 1/8 of the input image size and the number of
channels are 728 and 256, respectively. In BiFPN, 1x1 convolution
dimensionality reduction is performed on the feature maps in
Block3 and Block2. The number of channels in Block3 is reduced
from 728 to 128, and the number of channels in Block2 is reduced
from 256 to 128. Finally, the feature maps of Block3 and Block2
are weighted and summed to obtain the FF map, which is then
weighted and summed again with the reduced feature map of
Block? to obtain the final FF map. The FF map contains the fea-
tures of both levels and has richer semantic and spatial informa-
tion, which can improve the segmentation effect of the
DeepLabv3+ network.

Semantic segmentation model based on improved
DeepLabv3+ navel orange surface defects

Although the navel orange surface defect dataset is trained in
the original DeepLabv3+ network, it can recognize all kinds of sur-
face defects, but the recognition effect for small target defects and
defect edge segmentation is general, and the recognition accuracy
needs to be improved. To address the defects of the original
DeepLabv3+ network, an improved DeepLabv3+ image segmenta-
tion model is proposed in this paper, and the overall structure is
shown in Figure 4. CA mechanism is introduced in the encoder and
decoder to capture the remote dependencies and retain the accurate
position information. Meanwhile, deformable convolution is intro-
duced into the ASPP structure to make the convolutional neural
network more efficient in extracting the key semantic information
of navel orange surface defects and improve the network’s adapt-

kr"".‘
s.""
;.|.

'—-[CA H:’.ﬂconv HUpsamplehyd }—o
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ability and fitting accuracy to irregular defect shape changes. In
addition, to reduce the feature information loss caused by the deep-
ening of the neural network, this paper introduces the BiFPN struc-
ture into the encoder to enhance the fusion of shallow and deep
feature information, improve the learning ability of the model on
the overall features, and reduce the leakage detection rate.

The encoder module has three outputs, the first one is the LFs
output from Blockl in the backbone network, the second one is the
FF from Block2 and Block3 output from BiFPN, and the last one
is the HF extracted from the backbone network Xception embed-
ded with CA mechanism input to the ASPP structure that intro-
duces deformable The ASPP structure with convolution is sampled
in parallel, and the obtained FF are fed into the convolution to
obtain 256 channels of HFs. The HFs are first fused with the FF
output from BiFPN of 1/8 size of the original image after 2-fold
upsampling, and the obtained feature map is again fused with the
underlying feature information of 1/4 size by up-sampling, and,
finally, the output feature map is operated by attention mechanism
and down-sampling, and the output feature map is upsampled by
4-fold to obtain the predicted segmented image.

Datasets and evaluation metrics

Datasets

The image dataset of this paper was obtained from Jiangxi
REEMOON Technology Holdings Company. The dataset was col-
lected by placing multiple navel oranges on a row of 360-degree
rotatable trays, taking a panoramic photograph containing all the
navel oranges at specific intervals, and cropping the panoramic
photographs at a later stage to close-up photographs containing
only individual navel oranges. We collected 5,290 images of vari-

Encoder ‘

Decoder| |

Figure 4. Improved DeepLabv3+ architecture diagram.
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ous navel orange defects, which were divided into training, test,
and validation sets according to a ratio of 8:1:1, with 4,232 images
in the training set and 529 images each in the validation and test
sets. The data set was divided into six categories: rotten, navel
deformation, mild pitting, severe pitting, severe oil spotting, and
background, and some samples of umbilical orange surface defect
data set are shown in Figure 5.

To train a deep learning network for supervised image classifi-
cation and detection tasks, after constructing the navel orange sur-
face defect dataset, this paper uses the open-source tool Labelme
to label the dataset. After completing the image annotation, the tool
generates a JavaScript object notation (JSON) file with the same
name. This JSON file contains information such as the name of the
original image, the name of the defect, and the coordinates of the
mouse clicks used to generate the defect boundary. The original
image and the corresponding Mask annotated image of the dataset
in this paper are shown in Figures 6 and 7, and Table 1 shows the
number of images owned by each category.

roften navel deformation

mild pitting

Article

Evaluation indicators

In image segmentation tasks, accuracy is one of the most dom-
inant and popular technical metrics for evaluating model perform-
ance. In general, we can classify the accuracy estimation methods
into two categories: based on pixel accuracy and based on intersec-
tion over union (IoU). Assuming a total of k+1 categories (labeled
as Lo to Lk, which contains a background category), pj; denotes the
number of pixels with category i predicted as category ;. In this
way Pj; denotes true positives, P; and Pj; denote false positives and
false negatives, respectively.

Pixel accuracy (PA) represents the ratio of the total number of
pixels to the predicted correct pixels, and is expressed as:

k
Ph= i
53 (16

Mean pixel Accuracy (mPA) is the average value obtained by
summing the total number of correct pixels for each category with

severe pitting

severe oil spotting

Figure 5. Example of some samples from the navel orange surface defects dataset.
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the total contrast ratio for each category, as expressed by

_ Pii
mPA = - (17)

Mean IoU (mloU) is a commonly used metric to evaluate the
performance of computer vision tasks such as target detection and
semantic segmentation. It measures the model prediction accuracy
by calculating the degree of overlap between the predicted result
and the region of real labels. The specific expression is as follows:

mloll = L

E =i
k"‘!gzj__npu.-+zi_“pn—pn (18)

Precision indicates how many of the pixels predicted by the
model to be in a particular category are correct, while mean preci-
sion (mPrecision) is the average of the precision rates of all the cat-
egories, which is given by the following formula:

" (19)
1 i=p it

mPrecision = ——

F
K13 i a

Results

Experimental setup

All the processes of training and testing the model described in
this work were implemented on one machine, whose configuration
parameters were Intel Corei7-7700 3.60 GHz Processor, a
NVIDIA GTX 1060 GPU, and 6GB memory. The model in this
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work was trained in a 64-bit Windows 10 environment using
Pytorch 1.8 and CUDA 10.2.

The model is trained by stochastic gradient descent with
momentum, which is set to 0.9. The “poly” learning strategy is
adopted, and the base learning rate is set to 0.007 as the number of
iterations increases, and the input image size is cropped to
144x144. The value of weight decay used to prevent overfitting is
0.0005, the loss function adopts the cross-entropy loss function,
and the step size OS is 16, the batch size is 8, and the number of
iterations epoch is set to 300, considering the problem of limited
video memory resources. Figure 8 shows the training accuracy
curves of the improved DeepLabv3+ algorithm. To illustrate the
stability of the results, in addition to data not related to training, we
give in parentheses after the training results the standard deviation
obtained after the model has been trained three times.

Ablation experiments

To verify the performance of each module of this method,
Xception is used as the backbone network, and the feature map
with an output stride of 16 is extracted. On the navel orange sur-
face defect dataset, the ablation is performed by adding the CA
module, introducing deformable convolution in the ASPP module,
and adding the BiFPN module, respectively. The number of itera-

Table 1. Number of images owned per category.

Train set Test set Total
Category 4232 529 4761
Rotten 1889 257 2145
Navel deformation 2034 302 2336
Mild pitting 1659 285 1944
Severe pitting 1845 276 2121
Severe oil spotting 1738 268 2006

Figure 6. Raw image data for the detection of surface defects on navel oranges.
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tions is set to 300 rounds, and after the model converges, the output
visualization results are shown in Figure 9. It can be found from
Figure 9 that various improvement strategies can improve the
model performance to some extent, but the model detection effect
is the best after considering various improvement strategies togeth-
er. The specific evaluation indexes are shown in Table 2.

As can be seen from Table 2, the introduction of the CA mech-
anism improves the segmentation accuracy by 0.77% and
improves the mPA index by 1.59%, indicating that the module can
enhance the feature expression ability, effectively capture the rela-
tionship between location information and channel information,
and use the key information of the feature map to make the features
of the important regions in the image more by the weighted sum-
mation operation. To improve the segmentation accuracy of navel
orange surface defects by using the key information of the feature
map to make the features of important regions in the image more
obvious through the weighted summation operation; Then replace
the dilated convolution in ASPP structure with deformable dilated
convolution, the accuracy is improved by 1.14%, while the average
pixel accuracy is improved by 1.78%, which proves that
deformable convolution can extract precisely for different scales
and irregular shape defects, and improve the adaptability and fit-
ting accuracy of the network to irregular defect shape changes;

plus the fusion of features of different levels using BiFPN, the
accuracy improved by 1.9% and mPA value improved by 1.92%,
indicating that the module effectively fuses features at different
levels with richer semantic and spatial information to improve the
model’s ability to extract features of small target objects, and also
makes the segmentation results more accurately localized, while
the edge details are further optimized.

Model performance comparison experiments

To verify the effectiveness of the improved algorithm, we con-
ducted experiments on the navel orange defect dataset and com-
pared it with models such as PSPNet, UNet, BiSeNetV2 (Yu et al.,
2021), Segmenter (Xie et al., 2021), SegFormer (Strudel et al.,
2021) and DeepLabv3+ were compared. The above models were
trained using the same dataset and the segmentation results under
different segmentation networks are shown in Table 3. From the
experimental results, it can be seen that the improved model reach-
es the highest value in mloU, mPA, and mPrecision, which further
indicates that the proposed model possesses the best segmentation
performance among all models.

In order to better evaluate the computational cost of the model,
we list the specific values of the number of parameters (Params),
Giga floating-point operations per second (GFLOPs), and frames
per second (FPS) of the proposed model and compare them with

Table 2. Comparison of test results of different improvement options for DeepLabv3+.

mloU (%)

Different network structures

Coordinate Deformable

mPA (%) mPrecision (%)

BiFPN

attention convolution

1 - - 4 72.51 (+0.06) 81.09 (+0.08) 88.95 (+0.03)
2 \ = 5 74.28 (£0.04) 82.68 (+0.11) 89.68 (+0.09)
3 \ N - 75.42 (£0.04) 84.46 (+0.10) 90.41 (+0.08)
4 R \ v 77.32 (+0.05) 86.38 (20.12) 91.34 (£0.06)

mloU, mean intersection over union; mPA, mean pixel accuracy; mPrecision, mean precision;

Table 3. Comparison of the performance of different models on the

BiFPN, Bidirectional feature pyramid network.

navel orange defect test set.

Model Backbone network Training weight settings mloU (%) mPA (%) mPrecision (%)
Unet VGG-16 Fine-tuning 72.70 (x0.05) 80.23 (+£0.15) 89.15 (+0.05)
PSPNet ResNet101 Fine-tuning 67.95 (£0.03) 77.32 (£0.12) 81.94 (+£0.07)
DeepLabv3+ Xception Fine-tuning 73.51 (x0.06) 81.09 (+0.08) 91.09 (£0.03)
BiSeNetV2 - From scratch 52.51 (x0.05) 69.95 (£0.10) 77.32 (£0.07)
Segmenter VIT-S Fine-tuning 71.24 (£0.06) 83.12 (+0.07) 87.87 (+0.08)
SegFormer MIT-B2 Fine-tuning 73.82 (+0.07) 85.36 (+£0.09) 88.67 (+£0.09)
Improved DeepLabv3+  Xception Fine-tuning 77.32 (x0.05) 86.38 (+0.12) 91.34 (0.06)
mloU, mean intersection over union; mPA, mean pixel accuracy; mPrecision, mean precision.
Table 4. Comparison of Params, GFLOPs, and FPS for different models.
Model Backbone network Params (M) GFLOPs (G) Latency (RTX3060)/FPS (512*512)
Unet VGG-16 30.92 274.53 13(%1)
PSPNet ResNet101 46.60 179.23 19(%1)
DeepLabv3+ Xception 54.71 83.44 33(£2)
BiSeNetV2 - 3.35 12.30 109(£2)
Segmenter VIT-S 25.98 37.39 50(%1)
SegFormer MIT-B2 24.73 25.26 37(%3)
Improved DeepLabv3+ Xception 56.11 90.56 31(£2)

GFLOPs, giga floating-point operations per second; FPS, frames per second.
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other models, as shown in Table 4. From the results, we can find and 19 higher than the proposed model in terms of FPS. However,
that although the Params and GFLOPs of the proposed model are Segmenter is 6.08%, 3.26%, and 3.47% lower than the improved
much larger than those of BiSeNetV2, and the FPS is also much model in terms of mloU, mPA, and mPrecision, respectively. This
different, considering that in terms of detection performance, the suggests that although the improved model has some disadvan-
proposed model outperforms BiSeNetV2 by 46.69%, 23.49%, and  tages in terms of computational cost, the advantages brought by its

18.13% in mloU, mPA, and mPrecision, respectively, which is a  detection performance can compensate for this. In terms of com-
mercial value, the proposed model can bring more practical bene-

very significant improvement. From the practical application point
fits compared to other models.

of view, the proposed model is more suitable for navel orange sur-

face defect detection. Moreover, numerically, besides BiSeNetV2, . . .
Segmenter can also be said to be a computationally inexpensive Comparison of segmentation accuracy for differ-

and fast inference model, which is 31.13M and 53.17G lower than ~ ent defect types
the proposed model in terms of Params and GFLOPs, respectively, In order to better measure the segmentation performance of the

Figure 7. Segmented label dataset for navel orange surface defect detection.
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Figure 8. Improving DeepLabV3+ loss and mean intersection over union variation curves.
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models for different defects, the segmentation effectiveness of dif-
ferent models for different navel orange defects was also com-
pared. As shown in Table 5, the proposed model achieves the best
IoU values for all categories of navel orange defects compared to
other models. This indicates that the model is more capable of
learning features for different classes of defects and has the best
segmentation performance compared to PSPNet, UNet,
BiSeNetV2, Segmenter, SegFormer, and DeepLabv3+.

In order to visualize the performance difference between this
method and other methods, we show the segmentation results for
the navel orange defective dataset in Figure 10. In order to better
illustrate the importance of mloU, mPA, and mPrecision on the
defect detection effect, we do not consider BiSeNet here, which
has too large a difference in the values of the evaluation metrics
with the other models, and only show PSPNet, Segmenter, Unet,
DeepLabv3+, SegFormer, Improved DeepLabv3+ visualization
results on the navel orange defect test set and analyze them with

the values of their evaluation metrics.

PSPNet may lead to loss of information due to the pooling
operation with fixed size only, so its mPA and mPrecision are low,
and the probability of detecting defects and detection accuracy are
not strong, basically, it can only segment the approximate shape of
the defects on the surface of navel oranges. Segmenter allows the
global context to be modeled in the first layer and throughout the
network, so there is a large increase in the ability to capture infor-
mation, and many small target defects can be detected, and the
mloU increases by 3.29%, but there are more cases of misidentifi-
cation as can be seen from the figure, especially the harder to dis-
tinguish pitting type defects. UNet uses skip connections, which
can be used to fill in missing information using LF, improving
defect recognition to some extent. mPrecision improves by 1.28%
over Segmenter, but not all skip connections have a positive effect.
DeepLabv3+ introduces ASPP and feature fusion module, which
enhances the ability to learn different defective features, so

(a)Original image

B cotten [l navel deformation

(b)Tags

(c)Experiment 1

(d)Experiment 2 (e)Experiment 3 (HExperiment 4

mild pitting [l severe pitting [l severe oil spotting

Figure 9. Segmentation results from different experiments.

Table 5. Comparison of the performance indicators of the models for different navel orange surface defects.

Evaluation indicators =~ Model Rotten  Navel deformation Mild pitting Severe pitting  Severe oil spotting
IoU (%) Unet 71.32 (+0.05) 72.16 (£0.06) 65.53 (£0.07) 74.90 (£0.02) 79.74 (£0.04)
PSPNet 71.76 (+0.04) 69.22 (+0.05) 60.31 (£0.09) 70.41 (+0.03) 68.05 (+0.06)
DeepLabv3+ 71.24 (£0.05) 74.86 (£0.07) 70.60 (+0.08) 7231 (£0.02) 78.54 (0.08)
BiSeNetV2 57.75 (£0.05) 65.13 (£0.09) 26.47 (20.06) 37.85 (£0.04) 75.36 (£0.07)
Segmenter 71.26 (£0.07) 53.82 (+0.08) 87.13 (£0.04) 60.85 (+0.06) 82.51 (£0.03)
SegFormer 74.18 (£0.09) 83.55 (£0.11) 56.69 (0.06) 65.66 (0.06) 86.80 (+0.08)
Improved DeepLabv3+  76.89 (20.04) 78.05 (£0.04) 74.19 (£0.12) 75.74 (£0.02) 81.73 (£0.06)

ToU, intersection over union.
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mPrecision is higher than that of Segmenter and Unet, and more
defective regions can be recognized while the recognition accuracy
is also improved. SegFormer’s mloU is similar to DeepLabv3+,
with the difference that its detection focuses on the ability to detect
defects, while there is a gap in accuracy with DeepLabv3+. In con-
trast, the improved DeepLabv3+ has the strongest defect detection
capability, with better detection of small spots with minor and
severe flaking, and segmented defect edges that are more similar to
the original label. In addition, from the detection effect, the seg-
mentation error of navel orange defects is mainly divided into two
cases. The first case is the missed or wrong detection of the edge
area of the defects, as well as the complete omission of small areas
of defects. The second case is the wrong judgment of the defect
type. In these two cases, we can improve the model’s ability to
extract locally important information as a way to improve the seg-
mentation accuracy.

In addition, from the segmentation effect graphs of the
improved DeepLabv3+ shown in Figures 9 and 10, we find that the
presentation of umbilical orange skin defects also affects the seg-
mentation effect of the model. For defects with darker color or
obvious outer contour features, such as severe oil spots and navel
deformation, the segmentation of the defective parts is relatively
simple, and thus the defective segmentation region has the highest
overlap rate with the manually labeled region, such as the severe
oil spotting (gray part) in the second figure of experiment 4 in
Figure 9, and the navel deformation (red part) in the third figure.
As for the defects with unclear outer contours, such as rotting and
severe pitting, the segmentation effect has a certain gap compared
with the first two defects because the segmentation area becomes
irregular and the segmentation is more difficult, as shown in the

(a)

(b)

(d)

1119
W o O

=
() |||11u||- navel deformation
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rotten (brown part) of the third graph of experiment 4 in Figure 9
and the severe pitting (green part) of the third graph of Improved
DeepLabv3+ in Figure 10. Finally, for mild pitting, the defective
part is lighter in color and irregular in shape, which not only makes
it difficult to distinguish from normal fruit epidermis, but also
makes the defective region more difficult to be segmented, and
thus the difference between the segmented region of the defect and
the manually labeled region is more obvious, as shown in mild pit-
ting (yellow part) in the third graph of Improved DeepLabv3+ in
Figure 10.

Conclusions

This paper introduces the mainstream semantic segmentation
network DeepLav3+, and analyzes the shortcomings and deficien-
cies of the original model applied to the navel orange surface
defect dataset. Considering the features of navel orange surface
defects, the CA attention mechanism is embedded into the
DeepLabv3+ network with better semantic segmentation perform-
ance in order to strengthen the feature extraction ability of the net-
work and reduce feature loss. Meanwhile, the Atrous Convolution
of ASPP structure is replaced with deformable Atrous Convolution
to improve the network’s adaptability to irregular defect shape
changes and fitting accuracy. In addition, the BiFPN-based feature
fusion branch is introduced at the DeepLabv3+ encoder end to
realize multi-scale feature fusion and enrich the feature space and
semantic information. Through experiments, the proposed model
effectively improves the accuracy of navel orange surface defect
detection compared with the DeepLabv3+ algorithm on the navel
orange surface defect test set.

(e)

(£)

(h)

vere pitting - severe ol spotting

Figure 10. Graph of predicted results from different models. a) Original; b) tag; ¢) PSPNet; d) Segmenter; e) Unet; f) DeepLabv3+; g)

SegFormer; h) improved DeepLabv3+.
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