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Abstract 

To address the problems of current mainstream semantic segmentation network such as rough edge 

segmentation of navel oranges defects, poor accuracy of small target defect segmentation and 

insufficient deep-level semantic extraction of defects, feature information will be lost, a multi-class 

segmentation model based on improved DeepLabv3+ is proposed to detect the surface defects of 

navel oranges. The Coordinate Attention Mechanism is embedded into the DeepLabv3+ network for 

better semantic segmentation performance, while the dilated convolution of Atrous Spatial Pyramid 

Pooling structure is replaced with deformable empty convolution to improve the fitting ability of the 

network to target shape changes and irregular defects. In addition, a BiFPN-based feature fusion 

branch is introduced at the DeepLabv3+ encoder side to realize multi-scale feature fusion and enrich 

feature space and semantic information. The experimental results show that the average intersection 

ratio and average pixel intersection ratio accuracies of the improved DeepLabv3+ model on the navel 

orange surface defect dataset are 77.32% and 86.38%, which are 3.81% and 5.29% higher than the 

original DeepLabv3+ network, respectively, improving the extraction capability of navel orange 

defect features and having better segmentation performance. 

 

Introduction 

As a fruit with a long hanging period, navel oranges are often damaged by pests and diseases, 

mechanical and chemical factors during the fruit growing period, leaving scars on the mature fruit, 

which greatly reduces the commercial value of the fruit and affects the profitability of fruit farmers. 

Fruit surface defect detection (Jin et al., 2021; Soltani Firouz and Sardari, 2022) is a key step for fruits 

to enter the market, which is based on two parts, defect extraction and defect classification, to 

determine the merit of the fruit while grading the fruit according to the type and percentage of defects 

(Ren and Bai, 2013; Zhang et al., 2015; Unay, 2022). This technology also enables fruit farmers to 

improve the quality of their fruits by allowing them to be more targeted for future orchard 

maintenance in terms of planting and cultivation. The development of postharvest treatment methods 

for different types of defective fruits also allows to reduce the waste of resources and maximize their 

value. 

Initially, the detection of defects on the surface of fruits is mainly manual, relying on the 

subjective experience of the picker to segment the defects, which is prone to human error and variable 



results, and can consume a lot of labor and time costs (Zhang et al., 2014; Li et al., 2015). Later, 

defect detection methods based on machine vision became popular, and the early applied methods 

were mainly image processing and machine learning. Yang et al. (2014) analyzed the color 

information of navel orange surface in defect detection using image processing techniques and 

obtained surface defects with appropriate R/B and G/B ratios with an identification accuracy of 93.3%. 

Rong et al. (2017a) gave a detailed image processing procedure and proposed a comparative sliding 

window local segmentation algorithm, which was applied to 1,191 navel orange samples with defects 

detection rate reached 97%. Xie et al. (2018) proposed a fast navel orange surface defect detection 

algorithm by combining wavelet transform and compressed sensing techniques in image processing, 

but the number of false matches increases if the image contains fruit stalks and nectaries. Bhargava 

et al. (2020) proposed a fully automated detection and categorization mechanism for a wide range of 

fruits. The mechanism uses four machine learning algorithms to classify and detect fruits after 

segmenting the fruit region and extracting features, among which the SVM classifier has the best 

detection performance with 98.48% classification accuracy. The traditional method mainly analyzes 

the surface defect features of the fruit and manually designs the feature extractor, which can obtain 

good detection results under specific environments. However, due to the large influence of the 

environment, the extracted image features are often difficult to be generalized to new images (Fan et 

al., 2020; Nithya et al., 2022). 

Compared with traditional image processing methods and machine learning methods, deep 

learning does not require manual feature selection process, which not only reduces the difficulty of 

fruit defect segmentation, but also has higher accuracy and robustness. The defect detection methods 

based on deep learning mainly include image classification method, target detection method and 

semantic segmentation method. 

At present, most fruit defect detection methods use image classification, and there have been 

many related research results. Zhou et al. (2020) used the stochastic weighted average (SWA) 

optimizer and w-softmax loss function to improve the VGG network, and generated a network model 

for Qingmei defect detection, with an average defect recognition accuracy of 93.8%, but due to the 

small sample size, the recognition rate of scars and cracks was low. Tian et al. (2022) proposed a 

transfer learning-based classifier for nine tomato diseases and a healthy tomato leaf recognition 

mechanism, and trained three deep learning network architectures (VGG16, Inception_v3, and 



Resnet50) with a test accuracy of 99%. However, Image classification cannot distinguish multiple 

defects on a single image, and the defect classification scene is single. In terms of the application of 

target detection methods, Yao et al. (2021) developed a kiwifruit defect detection model based on 

improved YOLOv5, which added a small object detection network to the backbone network and 

embedded SE Layer to improve the extraction ability of the model, and the results showed that the 

mAP@0.5 of the model reached 94.7%. Target detection makes up for the shortcomings of image 

classification by locating the defect location through a rectangular box, but the localization becomes 

more difficult in the case of complex defect edges.  

Semantic segmentation is based on pixel classification, which can accurately segment defect 

edges and is more suitable for defect detection with complex features. In recent years, fruit defect 

detection based on semantic segmentation method has gained more and more attention. Sun et al. 

(2020) constructed an attention network (FANet) embedded Unet semantic segmentation model to 

recognize the type of segmented orange defects and distinguish between stem end and flower, and the 

average recognition accuracy can reach 77.468%. Raman et al. (2022) investigated the apple disease 

classification and segmentation mechanism and improved the standard Unet by using Atrous 

Convolution for segmentation in step-skipping branches, and this improved Unet model could achieve 

up to 94.29% accuracy for apple disease recognition. Liang et al.(2022) proposes a semantic 

segmentation method based on BiSeNetV2 deep learning network to segment the defective parts of 

defective apples, and uses the model pruning method to optimize the YOLOv4 network structure to 

help solve the problem of segmentation networks incorrectly segmenting fruit stems. The final mPA 

of the apple defect detection model based on BiSeNetV2 can be obtained as 99.66% and the average 

accuracy of the apple classification model based on YOLOv4 is 92.42%. 

Selecting an appropriate image segmentation model based on the characteristics of the dataset is 

a key step in conducting research on fruit defect detection. Since there are multiple defective regions 

with similar and irregular morphology on the surface of navel orange, its detection requires a high 

precision semantic segmentation network. Considering the current transformer type of segmentation 

model has more parameters, we mainly select the baseline model from the mainstream CNN models. 

In the field of defect detection, the semantic segmentation models with better detection effect are 

Unet (Ronneberger et al., 2015), PSPNet (Zhao et al., 2017), and DeepLabv3+ (Chen et al., 2018). 

Unet is a kind of symmetric U-shape structure of the encoder and decoder network, the encoder 



gradually reduces the resolution of the feature map, and the decoder gradually restores the feature 

map resolution, which helps to retain detail information and is suitable for semantic segmentation 

tasks with small samples and unbalanced data. PSPNet is able to add contextual information by 

introducing the Pyramid Pooling Module (PPM), which improves the accuracy and robustness of 

semantic segmentation of images. Moreover, adding the PPM module does not increase the number 

of parameters too much when the input feature dimensions are small. DeepLabv3+ uses the Atrous 

Spatial Pyramid Pooling (ASPP) module, which is similar in structure to the PPM module, to 

effectively deal with the problems of many types of defects in the dataset, irregular regions, and 

unclear details. Compared with the PPM module, the ASPP module adds Atrous Convolution to 

expand the receptive field without increasing the number of parameters and computation, thus 

capturing a wider range of contextual information. By using multiple parallel Atrous Convolution 

branches, ASPP can process the input feature maps with different sampling rate receptive field, which 

can effectively capture semantic information at different scales. To further improve the utilization of 

features at different scales, DeepLabv3+ introduces a feature fusion module. Feature fusion improves 

the accuracy of semantic segmentation by fusing low-level feature maps with high-level feature maps, 

which can retain both details and global information. Therefore, DeepLabv3+ is more suitable for 

navel orange defect detection. 

 The purpose of this paper is to design an umbilical cord orange image defect detection 

algorithm using image segmentation technology in deep learning to realize fast and accurate real-time 

detection of defects in umbilical cord orange images, and to provide technical reference for umbilical 

cord orange surface defect detection. 

 

Materials and Methods 

DeepLabv3+ semantic segmentation modeling 

The structure of DeepLabv3+ is shown in Figure 1. DeepLabv3+ network uses encoder and 

decoder structure. For the encoder part, first the image enters the encoder for feature extraction, and 

after Deep Convolutional Neural Network (DCNN) a shallow feature layer and a deep feature layer 

are generated, the height and width of the shallow feature layer will be larger, while the deep feature 

layer will have more downsampling, so the height and width will be smaller. The deep feature layer 

enters the ASPP structure, and further feature extraction is performed using the Atrous Convolution 



with different expansion rates, where there are 3x3 convolutions with expansion rates of 6, 12 and 18, 

which are used to improve the receptive field of the network and make the network have different 

feature perceptual situations, after which the feature layers are stacked and then adjusted by 1x1 

convolution for the number of channels to obtain the fused feature layer. In the decoder part, the 

shallow feature layer generated by DCNN enters into the Decoder decoder, and the feature layer with 

high semantic information generated by the encoder enters into the Decoder for upsampling, after 

which the results obtained from 1x1 convolution with the shallower features are fused with the 

features, after which the feature extraction is performed by 3x3 convolution, and finally the output 

image is up-sampled with the input The image size is the same and the prediction result is obtained. 

 

Coordinate attention mechanism 

The DeepLabv3+ network contains multiple feature channel fusion operations, and the features 

of different channels undergo different convolution operations, and as the convolution depth increases, 

the semantic features obtained become more abstract, and their impact on target prediction will be 

different. The attention mechanism can selectively focus on important information with high weights 

and ignore irrelevant information with low weights. In addition, the mechanism can adaptively adjust 

the information weights to select critical information according to the scene requirements, which 

enhances the scalability and robustness of the model. Squeeze and Energize (SE) Attention is one of 

the most influential attention mechanisms, which learns inter-channel relationships and compresses 

them into channel importance vectors through global information pooling, squeezing, and excitation 

operations, and scales them to 0 to 1 through excitation operations, which ultimately achieves 

attention weighting for different channels. However, SE Module ignores the location information (Hu 

et al., 2018). To compensate for SE attention, Woo et al. proposed the Convolutional Block Attention 

Module (CBAM), which introduces spatial information encoding through the convolution of a large-

size kernel(Woo et al., 2018), but it can only capture local relations and not long-term dependencies 

that are important for visual tasks. In order to obtain long-distance dependencies with accurate 

location information, coordinate attention has been further proposed.  

Coordinate attention (Hou et al., 2021) allow the attention mechanism to capture long-range 

dependencies and precise location information in different spatial directions so that the network can 

focus more on regions or targets of interest. It encodes spatial information into two parallel one-



dimensional feature codes, and uses the two one-dimensional feature codes to insert coordinate 

information to avoid the loss of position information caused by two-dimensional global pooling. 

Coordinates encode accurate position information for channel relations and long-term dependencies 

in two steps: coordinate information embedding and coordinated attention generation. 

 

Coordinate information embedding: 

In coordinate attention, to better capture long-range dependencies with precise location 

information, we use a pair of one-dimensional feature encoding operations. The spatial extent of the 

pooling kernels is used to encode channel of horizontal coordinates, while the spatial extent of 

the pooling kernels is used to encode channel of vertical coordinates. Given the input

, the output of the th channel with height can be expressed as 

  
(1) 

where indicates the value of the height coordinate and width coordinate position feature map 

of the channel and is the width of the feature map. 

Similarly, the output of channel of width is expressed as 

  
(2) 

where is the value of the positional feature map of the channel with width and height 

coordinate , is the height of the feature map. 

Coordinate attention generation: The coordinate information embedding module provides a 

representation of the global receptive field and precise location information. To make better use of 

these features, the coordinate attention generation operation is required. This operation cascades two 

feature maps and transforms using a shared 1x1 convolution to generate as 

intermediate feature maps for spatial information in the horizontal and vertical directions, with the 

same down sampling ratio r as the SE module for controlling the module size, which is expressed in 

the following equation 
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where is the splicing operation along the spatial dimension and is the nonlinear activation 

function defined as: 

  (4)  
where is defined as: 

  (5) 

In order to prevent gradient explosion during reverse transmission, unlike the function, the 

output of  is limited to a maximum value of 6. Then, is sliced into two separate tensor

and along the spatial dimension, and the feature maps and are 

transformed to the same number of channels as the input using two 1x1 convolutions and to 

obtain the following equation 

  (6) 

  (7) 

where is the sigmoid activation function defined as 

  (8) 

Then and are expanded as attention weights, and the final output of the CA module can be 

expressed as the following equation. 

  (9) 

 

Deformable convolution 

The DeepLabv3+ network uses dilated convolution instead of down-sampling operation to 

increase the receptive field of the network. Unlike the traditional down-sampling operation, the 

Atrous Convolution increases the step length between convolution kernels by adding a dilation rate 

parameter, thus expanding the receptive field without reducing the resolution of the image. The use 

of Atrous Convolution can increase the range of information received by each neuron, thus improving 

the model's understanding of the input data features. However, the convolutional kernel used in this 

method is square, and the use of a square convolutional kernel does not fully satisfy the need for 

recognizing objects of different sizes, shapes, and resolutions in all scenes. In order to make the 
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convolutional neural network more efficient in extracting the key semantic information of navel 

orange surface defects, this paper proposes to introduce deformable convolution from ASPP, which 

can adaptively adjust the sampling points to precisely locate the objects of different scales and shapes 

and extract the features. The regular convolution sampling method and the deformable convolution 

sampling method are shown in Figure 2. 

As shown in Figure 2, Figure 2(a) shows the conventional 3x3 convolution sampling method, 

where the sampling area is a regular region, and Figure 2(b) shows the deformable convolution 

sampling method, where the deformable convolution adaptively adjusts the sampling point positions 

according to the shape of the target and makes each sampling point have different degrees of offset 

in different directions, thus allowing the network to focus more on the region or target of interest. In 

traditional convolution, the input and output feature maps are defined as and respectively, and is 

the coordinate in the output feature map, which is the coordinate of the convolution kernel in the 

template. The convolution process of traditional convolution can be expressed as 

  
(10) 

where is the coordinate of the sampling point, is the weight parameter in the convolution 

kernel, is the kernel template. 

The deformable convolution introduces an offset for each point based on the traditional 

convolution, which can be expressed as 

  
(11) 

where , and is a decimal number. 

Let then the deformable convolution formula can be expressed as 

  
(12) 

where , and it should be noted that is a decimal point pair. Since the position 

after adding the offset is non-integer and does not correspond to the actual existing pixel points on 

the feature map, it is necessary to use interpolation to get the pixel values after the offset, which can 

usually be done by bilinear interpolation, expressed by the formula as follows 

  
(13) 
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dimensional kernels as 

  (14) 

where . can be derived as 

  
(15) 

where is the coordinate in the output feature map and is the weight parameter in the 

convolution kernel. 

 

BiFPN module 

In the DeepLabv3+ decoder, only the shallow 1/4 feature map is utilized to fuse with the deep 

features. This method does not make full use of the features extracted at each stage, and thus is less 

effective in segmenting small targets. To solve the above problem, this paper introduces the BiFPN 

module (Lin et al., 2017). 

BiFPN is a neural network structure for target detection, which is based on the idea of feature 

pyramid network (FPN) and bi-directional flow for improvement. In traditional FPNs, multi-scale 

feature pyramids are built by bottom-up and top-down directions to better handle objects of different 

sizes. However, this approach may lead to information loss or duplication and affect the model 

performance. To solve this problem, BiFPN introduces a bidirectional flow mechanism to optimize 

the feature pyramid network by using a structure consisting of two branches inside each layer: the top 

branch and the bottom branch. The BiFPN module feature fusion process is shown in Figure 3. As 

shown in the figure, the left side is a feature map of three different layers with smaller resolution from 

bottom to top. The middle part is BiFPN, which up-samples the deep layer features, converts them to 

the size of the shallow layer feature map, and then fuses them with the shallow layer features. The 

right side is the feature map obtained after BiFPN, which contains not only the features of the deep 

layer but also the features of different levels. Here, the feature maps generated by Block3 and Block2 

in DeepLabv3+ backbone network Xception are fused, and the feature map sizes of Block3 and 

Block2 are 1/16 and 1/8 of the input image size and the number of channels are 728 and 256, 

respectively. In BiFPN, the feature maps in Block3 and Block2 are subjected to 1 ×The number of 

channels in Block3 is reduced from 728 to 128, and the number of channels in Block2 is reduced 
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from 256 to 128. Finally, the feature maps of Block3 and Block2 are weighted and summed to obtain 

the fused feature map, which is then weighted and summed again with the reduced feature map of 

Block2 to obtain the final fused feature map. The fused feature map contains the features of both 

levels and has richer semantic and spatial information, which can improve the segmentation effect of 

DeepLabv3+ network. 

 

Semantic segmentation model based on improved DeepLabv3+ navel orange surface defects 

Although the navel orange surface defect dataset is trained in the original DeepLabv3+ network, 

it can recognize all kinds of surface defects, but the recognition effect for small target defects and 

defect edge segmentation is general, and the recognition accuracy needs to be improved. To address 

the defects of the original DeepLabv3+ network, an improved DeepLabv3+ image segmentation 

model is proposed in this paper, and the overall structure is shown in Figure 4. CA mechanism is 

introduced in the encoder and decoder to capture the remote dependencies and retain the accurate 

position information. Meanwhile, deformable convolution is introduced into the ASPP structure to 

make the convolutional neural network more efficient in extracting the key semantic information of 

navel orange surface defects and improve the network's adaptability and fitting accuracy to irregular 

defect shape changes. In addition, to reduce the feature information loss caused by the deepening of 

the neural network, this paper introduces the BiFPN structure into the encoder to enhance the fusion 

of shallow and deep feature information, improve the learning ability of the model on the overall 

features, and reduce the leakage detection rate. 

The encoder module has three outputs, the first one is the Low-level Features (LF) output from 

Block1 in the backbone network, the second one is the Fused Features (FF) from Block2 and Block3 

output from BiFPN, and the last one is the high-level features extracted from the backbone network 

Xception embedded with CA mechanism input to the ASPP structure that introduces deformable The 

ASPP structure with convolution is sampled in parallel, and the obtained fused features are fed into 

the convolution to obtain 256 channels of High-level Features (HF). The high level features are first 

fused with the fused features output from BiFPN of 1/8 size of the original image after 2-fold 

upsampling, and the obtained feature map is again fused with the underlying feature information of 

1/4 size by up-sampling, and finally the output feature map is operated by attention mechanism and 

down-sampling, and the output feature map is upsampled by 4-fold to obtain the predicted segmented 



image. 

 

Datasets and evaluation metrics 

Datasets 

The image dataset of this paper was obtained from Jiangxi REEMOON Technology Holdings 

Company. The dataset was collected by placing multiple navel oranges on a row of 360-degree 

rotatable trays, taking a panoramic photograph containing all the navel oranges at specific intervals, 

and cropping the panoramic photographs at a later stage to close-up photographs containing only 

individual navel oranges. We collected 5,290 images of various navel orange defects, which were 

divided into training, test and validation sets according to a ratio of 8:1:1, with 4,232 images in the 

training set and 529 images each in the validation and test sets. The data set was divided into 6 

categories: rotten, navel deformation, mild pitting, severe pitting, severe oil spotting and background, 

and some samples of umbilical orange surface defect data set are shown in Figure 5. 

To train a deep learning network for supervised image classification and detection tasks, after 

constructing the navel orange surface defect dataset, this paper uses the open source tool Labelme to 

label the dataset. After completing the image annotation, the tool generates a JSON file with the same 

name. This JSON file contains information such as the name of the original image, the name of the 

defect, and the coordinates of the mouse clicks used to generate the defect boundary. The original 

image and the corresponding Mask annotated image of the dataset in this paper are shown in Figure 

6 and Figure 7 and Table 1 shows the number of images owned by each category. 

 

Evaluation indicators 

In image segmentation tasks, accuracy is one of the most dominant and popular technical metrics 

for evaluating model performance. In general, we can classify the accuracy estimation methods into 

two categories: based on pixel accuracy and based on Intersection over Union (IoU). Assuming a total 

of k+1 categories (labeled as to , which contains a background category), denotes the 

number of pixels with categor predicted as categor . In this way denotes True Positives (TP),

and denote False Positives (FP) and False Negatives (FN), respectively 

Pixel Accuracy (PA) represents the ratio of the total number of pixels to the predicted correct 

pixels, and is expressed as 
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Mean Pixel Accuracy (mPA) is the average value obtained by summing the total number of 

correct pixels for each category with the total contrast ratio for each category, as expressed by 

 

Mean Intersection over Union (mIoU) is a commonly used metric to evaluate the performance 

of computer vision tasks such as target detection and semantic segmentation. It measures the model 

prediction accuracy by calculating the degree of overlap between the predicted result and the region 

of real labels. The specific expression is as follows: 

 

Precision indicates how many of the pixels predicted by the model to be in a particular category 

are correct, while Mean Precision (mPrecision) is the average of the precision rates of all the 

categories, which is given by the following formula: 

 

 

Results 

Experimental setup 

All the process of training and testing the model described in this work were implement on one 

machine, whose configuration parameters were Intel Corei7-7700 3.60 GHz Processor, a NVIDIA 

GTX 1060 GPU and 6GB memory. The model in this work was trained in a 64-bit Windows 10 

environment using Pytorch 1.8 and CUDA 10.2.  

The model is trained by stochastic gradient descent with momentum, which is set to 0.9. The 

"poly" learning strategy is adopted, and the base learning rate is set to 0.007 as the number of 

iterations increases, and the input image size is cropped to . The value of weight decay used 

to prevent overfitting is 0.0005, the loss function adopts the cross-entropy loss function, and the step 

size OS is 16 and batchsize is 8, and the number of iterations epoch is set to 300, considering the 

problem of limited video memory resources. Figure 8 shows the training accuracy curves of the 
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improved DeepLabv3+ algorithm. To illustrate the stability of the results, in addition to data not 

related to training, we give in parentheses after the training results the standard deviation obtained 

after the model has been trained three times. 

 

Ablation experiments 

To verify the performance of each module of this method, Xception is used as the backbone 

network, and the feature map with output stride (OS) of 16 is extracted. On the navel orange surface 

defect dataset, the ablation is performed on adding the CA module, introducing deformable 

convolution in the ASPP module and adding the BiFPN module, respectively. The number of 

iterations is set to 300 rounds, and after the model converges, the output visualization results are 

shown in Figure 9. It can be found from Figure 9 that various improvement strategies can improve 

the model performance to some extent, but the model detection effect is the best after considering 

various improvement strategies together. The specific evaluation indexes are shown in Table 2. 

As can be seen from Table 2, the introduction of the CA mechanism improves the segmentation 

accuracy by 0.77% and improves the mPA index by 1.59%, indicating that the module can enhance 

the feature expression ability, effectively capture the relationship between location information and 

channel information, and use the key information of the feature map to make the features of the 

important regions in the image more by the weighted summation operation. to improve the 

segmentation accuracy of navel orange surface defects by using the key information of the feature 

map to make the features of important regions in the image more obvious through the weighted 

summation operation; Then replace the dilated convolution in ASPP structure with deformable dilated 

convolution, the accuracy is improved by 1.14%, while the average pixel accuracy is improved by 

1.78%, which proves that deformable convolution can extract precisely for different scales and 

irregular shape defects, and improve the adaptability and fitting accuracy of the network to irregular 

defect shape changes; plus the fusion of features of different levels using BiFPN, the accuracy 

improved by 1.9% and mPA value improved by 1.92%, indicating that the module effectively fuses 

features at different levels with richer semantic and spatial information to improve the model's ability 

to extract features of small target objects, and also makes the segmentation results more accurately 

localized, while the edge details are further optimized. 

 



Model performance comparison experiments 

To verify the effectiveness of the improved algorithm, we conducted experiments on the navel 

orange defect dataset and compared it with models such as PSPNet, UNet , BiSeNetV2 (Yu et al., 

2021), Segmenter (Xie et al., 2021), SegFormer (Strudel et al., 2021) and DeepLabv3+ were 

compared. The above models were trained using the same dataset and the segmentation results under 

different segmentation networks are shown in Table 3. From the experimental results, it can be seen 

that the improved model reaches the highest value in mIoU, mPA and mPrecision, which further 

indicates that the proposed model possesses the best segmentation performance among all models. 

In order to better evaluate the computational cost of the model, we list the specific values of the 

number of parameters (Params), Giga Floating-point Operations Per Seconds (GFLOPs) and Frames 

Per Second (FPS) of the proposed model and compare them with other models, as shown in Table 4. 

From the results, we can find that although the Params and GFLOPs of the proposed model are much 

larger than those of BiSeNetV2, and the FPS is also much different, considering that in terms of 

detection performance, the proposed model outperforms BiSeNetV2 by 46.69%, 23.49%, and 18.13% 

in mIoU, mPA, and mPrecisiom, respectively, which is a very significant improvement. From the 

practical application point of view, the proposed model is more suitable for navel orange surface 

defect detection. Moreover, numerically, besides BiSeNetV2, Segmenter can also be said to be a 

computationally inexpensive and fast inference model, which is 31.13M and 53.17G lower than the 

proposed model in terms of Params and GFLOPs, respectively, and 19 higher than the proposed model 

in terms of FPS. However, Segmenter is 6.08%, 3.26% and 3.47% lower than the improved model in 

terms of mIoU, mPA and mPrecisiom, respectively. This suggests that although the improved model 

has some disadvantages in terms of computational cost, the advantages brought by its detection 

performance can compensate for this. In terms of commercial value, the proposed model can bring 

more practical benefits compared to other models. 

 

Comparison of segmentation accuracy for different defect types 

In order to better measure the segmentation performance of the models for different defects, the 

segmentation effectiveness of different models for different navel orange defects was also compared. 

As shown in Table 5, the proposed model achieves the best IoU values for all categories of navel 

orange defects compared to other models. This indicates that the model is more capable of learning 



features for different classes of defects and has the best segmentation performance compared to 

PSPNet, UNet, BiSeNetV2, Segmenter, SegFormer and DeepLabv3+.  

In order to visualize the performance difference between this method and other methods, we 

show the segmentation results for the navel orange defective dataset in Figure 10. In order to better 

illustrate the importance of mIoU, mPA and mPrecision on the defect detection effect, we do not 

consider BiSeNet here, which has too large a difference in the values of the evaluation metrics with 

the other models, and only show PSPNet, Segmenter, Unet, DeepLabv3+, SegFormer, Improved 

DeepLabv3+ visualization results on the navel orange defect test set and analyze them with the values 

of their evaluation metrics. 

PSPNet may lead to loss of information due to the pooling operation with fixed size only, so its 

mPA and mPrecision are low, and the probability of detecting defects and detection accuracy are not 

strong, basically, it can only segment the approximate shape of the defects on the surface of navel 

oranges. Segmenter allows the global context to be modeled in the first layer and throughout the 

network, so there is a large increase in the ability to capture information, and many small target defects 

can be detected, and the mPA increases by 3.29%, but there are more cases of misidentification as can 

be seen from the figure, especially the harder to distinguish pitting type defects. UNet uses skip 

connections, which can be used to fill in missing information using low-level features, improving 

defect recognition to some extent. mPrecision improves by 1.28% over Segmenter, but not all skip 

connections have a positive effect. DeepLabv3+ introduces ASPP and feature fusion module, which 

enhances the ability to learn different defective features, so mPrecision is higher than that of 

Segmenter and Unet, and more defective regions can be recognized while the recognition accuracy is 

also improved. SegFormer's mIoU is similar to DeepLabv3+, with the difference that its detection 

focuses on the ability to detect defects, while there is a gap in accuracy with DeepLabv3+. In contrast, 

the improved DeepLabv3+ has the strongest defect detection capability, with better detection of small 

spots with minor and severe flaking, and segmented defect edges that are more similar to the original 

label. In addition, from the detection effect, the segmentation error of navel orange defects is mainly 

divided into two cases. The first case is the missed or wrong detection of the edge area of the defects, 

as well as the complete omission of small areas of defects. The second case is the wrong judgment of 

the defect type. In these two cases, we can improve the model's ability to extract locally important 

information as a way to improve the segmentation accuracy. 



In addition, from the segmentation effect graphs of the improved DeepLabv3+ shown in Figure 

9 and Figure 10, we find that the presentation of umbilical orange skin defects also affects the 

segmentation effect of the model. For defects with darker color or obvious outer contour features, 

such as severe oil spots and navel deformation, the segmentation of the defective parts is relatively 

simple, and thus the defective segmentation region has the highest overlap rate with the manually 

labeled region, such as the severe oil spotting (gray part) in the second figure of Experiment 4 in 

Figure 9, and the navel deformation (red part) in the third figure. As for the defects with unclear outer 

contours, such as rotting and severe pitting, the segmentation effect has a certain gap compared with 

the first two defects because the segmentation area becomes irregular and the segmentation is more 

difficult, as shown in the rotten (brown part) of the third graph of Experiment 4 in Figure 9 and the 

severe pitting (green part) of the third graph of Improved DeepLabv3+ in Figure 10. Finally, for mild 

pitting, the defective part is lighter in color and irregular in shape, which not only makes it difficult 

to distinguish from normal fruit epidermis, but also makes the defective region more difficult to be 

segmented, and thus the difference between the segmented region of the defect and the manually 

labeled region is more obvious, as shown in mild pitting (yellow part) in the third graph of Improved 

DeepLabv3+ in Figure 10. 

 

Conclusions 

This paper introduces the mainstream semantic segmentation network DeepLav3+, and analyzes 

the shortcomings and deficiencies of the original model applied to the navel orange surface defect 

dataset. Considering the features of navel orange surface defects, the CA attention mechanism is 

embedded into the DeepLabv3+ network with better semantic segmentation performance in order to 

strengthen the feature extraction ability of the network and reduce feature loss. Meanwhile, the Atrous 

Convolution of ASPP structure is replaced with deformable Atrous Convolution to improve the 

network's adaptability to irregular defect shape changes and fitting accuracy. In addition, the BiFPN-

based feature fusion branch is introduced at the DeepLabv3+ encoder end to realize multi-scale 

feature fusion and enrich the feature space and semantic information. Through experiments, the 

proposed model effectively improves the accuracy of navel orange surface defect detection compared 

with the DeepLabv3+ algorithm on the navel orange surface defect test set. 
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Figure 1. Structure of DeepLabv3+ algorithm. 
 

 

 

 

Figure 2. Plot of conventional and deformable convolution sampling methods. 

 
 

 



 
Figure 3. Simplified BiFPN feature fusion schematic. 

 

 

 

 

 
Figure 4. Improved DeepLabv3+ architecture diagram. 
 

 



 

Figure 5. Example of some samples from the navel orange surface defects dataset. 
 

 

 

Figure 6. Raw image data for the detection of surface defects on navel oranges. 

 
 
 



 
Figure 7. Segmented label dataset for navel orange surface defect detection. 
 
 

 

 

 

 
Figure 8. Improving DeepLabV3+ loss and mIoU variation curves. 
 

 

 



 
Figure 9. Segmentation results from different experiments. 
 
 
 

 

Figure 10. Graph of predicted results from different models. a) Original; b) Tag; c) PSPNet; 

d) Segmenter; e) Unet; f) DeepLabv3+; g) SegFormer; h) Improved DeepLabv3+. 
  



Table 1. Number of images owned per category. 

 

 

 

 

 
Table 2. Comparison of test results of different improvement options for DeepLabv3+. 

Experiment  Different network structures mIoU (%) 
mPA 

(%) 

mPrecision 

(%) 

 
Coordinate 

Attention 

Deformable 

Convolution 
BiFPN   

 

1 - - - 
72.51 

(±0.06) 

81.09 

(±0.08) 

88.95 

(±0.03) 

2 √ - - 
74.28 

(±0.04) 

82.68 

(±0.11) 

89.68 

(±0.09) 

3 √ √ - 
75.42 

(±0.04) 

84.46 

(±0.10) 

90.41 

(±0.08) 

4 √ √ √ 
77.32 

(±0.05) 

86.38 

(±0.12) 

91.34 

(±0.06) 

mIoU, Mean Intersection over Union. mPA, Mean Pixel Accuracy. mPrecision, Mean Precision. 
 
 
 
 

 Train set Test set Total 

Category 4232 529 4761 

rotten 1889 257 2145 

navel deformation 2034 302 2336 

mild pitting 1659 285 1944 

severe pitting 1845 276 2121 

severe oil spotting 1738 268 2006 



Table 3. Comparison of the performance of different models on the navel orange defect test set. 

Model Backbone 
network 

Training 
weight 
settings 

mIoU 
(%) 

mPA 
(%) 

mPrecision 
(%) 

Unet VGG-16 Fine-tuning 72.70 
(±0.05) 

80.23 
(±0.15) 

89.15 
(±0.05) 

PSPNet ResNet101 Fine-tuning 67.95 
(±0.03) 

77.32 
(±0.12) 

81.94 
(±0.07) 

DeepLabv3+ Xception Fine-tuning 73.51 
(±0.06) 

81.09 
(±0.08) 

91.09 
(±0.03) 

BiSeNetV2 - from scratch 52.51 
(±0.05) 

69.95 
(±0.10) 

77.32 
(±0.07) 

Segmenter VIT-S Fine-tuning 71.24 
(±0.06) 

83.12 
(±0.07) 

87.87 
(±0.08) 

SegFormer MIT-B2 Fine-tuning 73.82 
(±0.07) 

85.36 
(±0.09) 

88.67 
(±0.09) 

Improved 
DeepLabv3+ Xception Fine-tuning 77.32 

(±0.05) 
86.38 
(±0.12) 

91.34 
(±0.06) 

mIoU, Mean Intersection over Union. mPA, Mean Pixel Accuracy. mPrecision, Mean Precision. 
 

 

Table 4. Comparison of Params, GFLOPs, FPS for different models. 

Model Backbone 
network Params(M) GFLOPs(G) Latency(RTX3060) 

/FPS(512*512) 

Unet VGG-16 30.92 274.53 13(±1) 

PSPNet ResNet101 46.60 179.23 19(±1) 

DeepLabv3+ Xception 54.71 83.44 33(±2) 

BiSeNetV2 - 3.35 12.30 109(±2) 

Segmenter VIT-S 25.98 37.39 50(±1) 

SegFormer MIT-B2 24.73 25.26 37(±3) 

Improved 
DeepLabv3+ Xception 56.11 90.56 31(±2) 

GFLOPs, Giga Floating-point Operations Per Seconds. FPS, Frames Per Second. 
 



Table 5. Comparison of the performance indicators of the models for different navel orange 
surface defects. 

Evaluation 
Indicators Model Rotten Navel 

deformation 
Mild 
pitting 

Severe 
pitting 

Severe 
oil 
spotting 

IoU(%) 

Unet 71.32 
(±0.05) 

72.16 
(±0.06) 

65.53 
(±0.07) 

74.90 
(±0.02) 

79.74 
(±0.04) 

PSPNet 71.76 
(±0.04) 

69.22 
(±0.05) 

60.31 
(±0.09) 

70.41 
(±0.03) 

68.05 
(±0.06) 

DeepLab
v3+ 

71.24 
(±0.05) 

74.86 
(±0.07) 

70.60 
(±0.08) 

72.31 
(±0.02) 

78.54 
(±0.08) 

BiSeNet
V2 

57.75 
(±0.05) 

65.13 
(±0.09) 

26.47 
(±0.06) 

37.85 
(±0.04) 

75.36 
(±0.07) 

Segment
er 

71.26 
(±0.07) 

53.82 
(±0.08) 

87.13 
(±0.04) 

60.85 
(±0.06) 

82.51 
(±0.03) 

SegForm
er 

74.18 
(±0.09) 

83.55 
(±0.11) 

56.69 
(±0.06) 

65.66 
(±0.06) 

86.80 
(±0.08) 

Improve
d 
DeepLabv3+ 

76.89 
(±0.04) 

78.05 
(±0.04) 

74.19 
(±0.12) 

75.74 
(±0.02) 

81.73 
(±0.06) 

IoU, Intersection over Union. 
 

 


