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Abstract 

In order to produce marketable yield, scientific methodologies must be used to forecast the 

greenhouse microclimate, which is affected by the surrounding macroclimate and crop management 

techniques. The MATLAB tool NARX was used in this study to predict the strawberry yield, indoor 

air temperature, relative humidity, and vapor pressure deficit using input parameters such as indoor 

air temperature, relative humidity, solar radiation, indoor roof temperature, and indoor relative 

humidity. The data were normalized to improve the accuracy of the model, which was developed 

using the Levenberg–Marquardt backpropagation algorithm. The accuracy of the models was 

determined using various evaluation metrics, such as the coefficient of determination, mean square 

error, root mean square error, mean absolute deviation, and Nash–Sutcliffe efficiency coefficient. The 

results showed that the models had a high level of accuracy, with no significant difference between 

the experimental and predicted values. The VPD model was found to be the most important as it 

influences crop metabolic activities and its accuracy can be used as an indoor climate control 

parameter. 

 

Introduction 

A greenhouse is a structure with a transparent covering that creates a microclimate, which protects 

the crops grown within it from the external macroclimate (Zakir et al., 2022). Controlled- 

environment agriculture or protected cultivation allows for the monitoring and maintenance of a 

desirable microclimate for each crop and makes it possible to grow crops in the off-season, increasing 

the crop yield and quality. Moreover, it enables the growth of crops in areas where the open-field 

macroclimate would normally not support their growth. In addition, protected 

cultivation offers greater predictability and reduces the cost of production (Russo et al., 2014; 

Gorjian et al., 2020; Akpenpuun et al., 2022). Indoor agriculture or controlled-environment plant 

production system (CEPPS) has rapidly evolved from simple greenhouse structures to high-

tech plant factories that can achieve optimal crop productivity and human labor utilization owing to 

recent advances in precision technology, data processing, and smart farming (Shamshiri et al., 2018; 

Uyeh et al., 2021b). Global challenges that greenhouse technology seeks to address include food 

scarcity fuel scarcity, natural resources scarcity, environmental pollution, and ecosystem instability 

(Kozai et al., 1997; Akpenpuun et al., 2020; Ogunlowo et al., 2022). When compared to open-field 

cultivation, protected cultivation techniques typically have higher returns per unit area. Because of 

the non-static conditions of the macroclimate, installed microclimate monitoring and control 

equipment and crop production systems are complex and dynamic (Azaza et al., 2015; Uyeh et al., 

2021a). Greenhouse systems can be found all over the world with a variety of climatic conditions. 



Therefore, to achieve favorable environmental conditions for plant growth, these production systems 

must be designed in such a way that the various components, shapes, glazing material, shading 

materials, and indoor operations are based on prevalent production systems site conditions. As a result 

of their importance in food safety and security, these systems have recently received a lot of attention 

(Fitz-Rodríguez et al., 2010; Hu et al., 2011; Su et al., 2017; Escamilla-García et al., 2020; Uyeh et 

al., 2021a; Rabiu et al., 2022). Because of the complexity of protected farming systems and variety 

of crops that can be grown in them, the general rule is to focus on factors that are most important for 

plant growth (Escamilla-García et al., 2020).  

A machine learning algorithm based on the concept of human neurons is known as artificial neural 

network (ANN). ANNs are a popular forecasting model that have been successful in forecasting 

process in many fields. ANNs are valuable and appealing for forecasting tasks due to several 

distinguishing characteristics, such as being data-driven, self-adaptive, having the potential to be 

generalized, and having the ability to learn the sample data and infer correctly even with noisy data 

(Taki et al., 2016). Moreover, ANNs can work as universal functional estimators. It has been 

demonstrated that a network can approximate any continuous function to any desired accuracy. In 

addition, ANNs are capable of solving both linear and nonlinear problems (Khashei et al., 2010). 

Since the development of effective neural network training tools to successfully model microclimate 

and yield prediction, several researchers have used neural networks (NN) to model nonlinear 

relationships governing the greenhouse environment (Zeng et al., 2012; Taki et al., 2016; Owolabi et 

al., 2017; Singh et al., 2017; Hongkang et al., 2018). Moon et al. (2018), for example, developed an 

ANN prediction model to predict CO2 concentration using temperature, relative humidity (RH), 

atmospheric pressure, and solar radiation as input. They established that ANN accurately estimated 

CO2 concentration in the greenhouse with an accuracy of 97%. NNs models have been demonstrated 

to be reliable, suitable for modeling dynamic systems in real-time, and capable of solving nonlinear 

system relationships that are difficult to solve using traditional modeling techniques. However, none 

of the models took into account vapor pressure deficit (VPD), another important climate parameter, 

and the majority of these researchers used the feedforward neural network (FFNN) with daily or 

hourly mean data, which was often very short, ranging from 14 to 60 days. Furthermore, because the 

previously developed ANN models are specific to greenhouse types and locations, they cannot be 

used for new greenhouses in new locations because the models lack explicit structural components 

and other parameters in common.  

In response to the knowledge gap identified in the literature, predictive models for indoor climate 

parameters were developed for two single-span gothic greenhouses. Because greenhouse 

microclimates are complex, multiparametric, nonlinear, and their climates are influenced by 



macroclimate conditions, planted crops, structural members, accessories, and equipment, the dynamic 

feedback time series nonlinear autoregressive external (Exogenous) input (NARX) neural network 

was used in this study. NARX models are a type of nonlinear recurrent neural network that can be 

used to model dynamic systems with inputs and outputs that are time series data. They are particularly 

useful for predicting time series data when there is a nonlinear relationship between the inputs and 

outputs, and when there are exogenous inputs (inputs that are not part of the system being modeled). 

The Levenberg–Marquardt backpropagation algorithm was used to train, validate, and test the 

network using data collected from the two greenhouses over six months because the algorithm gave 

the best model evaluating parameter in terms of mean square error (MSE) and coefficient of 

determination (R2). The models were further evaluated using root mean square error (RMSE), mean 

absolute deviation (MAD), and Nash–Sutcliffe efficiency coefficient (NSE). This research was 

carried out using data collected from two single-span double-layer greenhouses that had different 

thermal curtain positions (R greenhouse (RGH) had its thermal curtain located directly at the roof 

ridge, while the Q greenhouse (QGH) had its thermal screen at 5 degrees from the centre of the roof 

ridge). This was done to determine the effect of the thermal curtain position on the microclimate of 

the greenhouses. 

 

Materials and Methods 

Experimental setup and data acquisition 

The experiments were performed in two greenhouses (RGH and QGH) on the Smart Agricultural 

Innovation Centre’s greenhouse farm at 35.89°N and 128.61°E coordinates in Daegu, Republic of 

Korea. The greenhouses (oriented in the east-west) had the same structural configurations (gothic 

roofed), polyethylene glazing (thickness: 150 μm; transmittance: 91%), motorized thermal screen 

(thermal conductivity (0.037 Wm-1K-1), thermal radiation transmittance (<0.001%), reflectance 

(0.10), and emittance (0.90)), roof and side vents, dimensions (22 m × 8.4 m × 4 m), and four 0.5 hp 

air-circulating fans. The motorized roof and side vents were activated at 21°C and 23 °C, respectively, 

while the boiler activation and deactivation temperature range were 7.5°C–8.5°C as 8°C is the 

minimum temperature recommended for optimum strawberry growth and development. The primary 

fuel source for the boiler to generate heat was diesel fuel. The boilers’ heating range was 15,000 

kcal/h to 62,802 kcal/h, while the heating efficiency and continuous hot water supply were both 90% 

each. The same open-loop fertigation system was activated five times daily at 90 minutes intervals 

beginning at 0830 for a 3 minutes fertigation period. Solar radiation, RH, and air temperature were 

the environmental parameters measured in both greenhouses, and these were measured using standard 

sensing devices. The five-month experiments were conducted from November 2021 to April 2022. 



Figures 1, 2 and 3 show a greenhouse model, experimental greenhouses showing thermal screen 

positions and sensor positions in both greenhouses.  

The Seolhyang strawberry cultivar was planted in 76 cm wide and 1500 cm long greenhouse beds, 

with 30 cm spacing between plants on each bed. Each greenhouse bed was divided into five plots for 

a total of 25 plots. Standard strawberry cultivation practices are being implemented. Fruits were 

harvested from December 2021 to April 2022 and only marketable fruits (diameter > 20 mm; weight 

> 5 g) were used for analysis. The air temperature and RH sensors (temperature measurement range 

−20°C to 80°C, accuracy of ± 0.25°C; humidity measurement range of 0% to 100%, accuracy of ±2%, 

HOBO PRO v2 U23 Pro v2, ONSET, USA) were installed (three per row) at 1.54 m from the floor 

and placed in protective plastic cases to shield them from direct solar radiation, which could lead to 

data inaccuracies. The solar radiation sensors (HOBO RX3000, ONSET, USA, measurement range: 

0 to 1280 W/m2; accuracy: ±10 W/m2 operating temperature range: −40°C to 70°C) were installed 

just above the crop canopy. All data loggers recorded readings every ten minutes. The vapor pressure 

deficit (VPD) was computed using the following equations 1-4 (Abd-El Baky et al., 2004). 
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where: 

A = −1.044 × 10 4; B = −1.129 × 10 1; C = −2.702 × 10⁻2 

D = +1.289 × 10⁻5; E = −2.478 × 10−9; F = + 6.545 

T = air temperature in °C; RH = air relative humidity (%) of the greenhouse 

VPsat = air saturation vapor pressure (psi); VPair = vapor pressure of the air (psi) 

VPD = vapor pressure deficit (kPa) 

The yield data was prepared using the resampling technique. Data resampling involves the 

upsampling or downsampling technique. Upsampling technique was, however, used in this study to 

adjust the frequency of the yield data to match the climate data.  The upsampling techniques is shown 

in equation 5. 

y[n] = x 86
7
9 , for	n = 0, 1, 2, … , (L − 1)N `    (5) 

where x[n] is the original discrete time signal, L is the upsampling factor, and y[n] is the upsampled 

signal. The length of the upsampled signal is L times the length of the original signal. 



The data was normalized in MATLAB using the minimum–maximum normalization method to 

address the issue of differences in units and orders of magnitude between the input and target 

variables, as shown in equation 6. 

x8 =	 9$:9%$&
9%"':9%$&

																																																																												(	6) 

x8 = normalized or standardized value/score; xi = raw individual data; in = population minimum value; 

xmax = population maximum value 

 

Description of the network 

A neural network algorithm for the indoor climate of two gothic greenhouses was proposed. To begin, 

the coefficient of determination (R2) was used in Matrix Laboratory to select the best network training 

algorithm from Levenberg–Marquardt (LM), Bayesian regularization BR), and scaled conjugate 

gradient of the NARX dynamic multi-layer perceptron ANN time series methodology (MATLAB 

version R2021a, MathWorks, Inc, USA). To have a seamless network architecture, and model the 

following was done: the 

(a) nine predictor inputs (indoor air temperature, RH, VPD, indoor roof temperature (irT), indoor 

roof relative humidity (irRH), and solar radiation, and outside temperature RH, and SR). 

(b) nine inputs for predicting indoor RH (indoor air temperature, RH, VPD, indoor roof 

temperature (irT), indoor roof relative humidity (irRH), and solar radiation, and outside temperature 

RH, and SR). 

(c) nine predictor inputs (indoor air temperature, RH, VPD, indoor roof temperature (irT), indoor 

roof relative humidity (irRH), and solar radiation, and outside temperature, RH, and SR). 

(d) the data was divided into three subsets: training, testing, and validation and the target 

timesteps were 70%, 15%, and 15%. 

(e) the network architecture (Figure 1) was trained by varying the number of input/feedback 

delays while keeping the number of hidden neurons constant. The training process was iterated until 

the model with the best validation matrices (R2, RMSE, MAD MAPE), and Nash-Sutcliffe 

efficiency coefficient (NS)) were obtained. To determine the ideal number of neurons in the hidden 

layer, the rule of thumb that states the number of hidden neurons should be between the size of the 

input layer and the size of the output layer was used in this work. Based on this rule of thumb, four 

hidden layers of neurons were used to avoid overfitting or underfitting. 

(f) the best model selected from step (e) was chosen, and the predicted climate parameters were 

retrieved and analyzed.  

Figures 4 and 5 show the NARX architecture and MATLAB NARX neural network diagram. The 

Nonlinear AutoRegressive model with eXogenous inputs (NARX) is an architecture used in dynamic 



artificial neural networks (ANNs). The NARX architecture is designed to capture the relationship 

between an input sequence (the exogenous input) and an output sequence (the endogenous input) that 

may have a time lag. The NARX model has a feedforward structure that consists of a series of input 

layers, hidden layers, and output layers. 

 

Statistical analysis  

The observed and predicted data were compared to see if they differed significantly from each other. 

The null hypothesis assumed that the observed and predicted data samples were identical, whereas 

the alternative hypothesis assumed that the data sets were not identical. These hypotheses were tested 

using a confidence level of 95% (p-value = 0.05).  

The coefficient of determination (R2), which is a measure of the correlation between the observed 

and predicted values, the MSE, the RMSE, the MAD, and the Nash–Sutcliffe efficiency coefficient 

(NSE) of the developed model were determined using equations 7–10. The RMSE can be used to 

calculate the degree of dispersion of a prediction against the measured, and the MAD can be used to 

calculate the model’s tendency for overestimation or underestimation. Low values of MAD, MSE, 

and RMSE are desired for good model accuracy. The Nash–Sutcliffe efficiency coefficient is used to 

describe the accuracy of model output with observed data. An NSE value of 1 represents a perfect 

match between observed data and outputs. As a result, the closer the model efficiency is to unity, the 

more accurate the model is (Adesanya et al., 2022). 
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βpredicted = predicted data; βactual = experimental data; βactual = mean experimental data; nobs = number 

of observations; 𝑚U  = mean of experimental data 

 

Results 

The data collected from two greenhouses, referred to as RGH and QGH, is presented in Table 1. The 

statistics indicate that the RGH had a higher average temperature and vapor pressure deficit compared 

to the QGH. However, the QGH had a higher relative humidity. Both greenhouses had similar mean 

solar radiation values. The RGH had a mean temperature of 20.01±4.78 oC and a mean VPD of 



1.23±0.86 kPa, while the QGH had a mean relative humidity of 52.36±2.06%. The mean SR for the 

RGH and QGH were 254±150.67 Wm-2 and 205±127.64 Wm-2 respectively. 

To predict, a NARX neural network was utilized with indoor temperature, relative humidity, vapor 

pressure deficit, solar radiation, roof temperature, roof relative humidity, outside temperature, and 

outside relative humidity as inputs. The network was trained, validated, and tested using a ratio of 

70:15:15, with 10 hidden neurons and 2, 3 and 4 delays.  

The NARX neural network was trained, validated, and tested using indoor air temperature, RH and 

VPD as the target variables and the indoor air temperature, RH, VPD, SR, irT and irRH, and outdoor 

temperature, RH and SR as the inputs. The result of the process is presented in Tables 2 and 3. In 

most cases, the 70:15:15 training, validation, and testing ratio with 10 number of hidden neurons and 

4 delays resulted in higher R-squared values and low MSE, RMSE, and MAD.  

The analysis of variance (ANOVA) presented in table 4 shows that the actual and predicted were 

statistically insignificantly at the 95% confidence level. The ANOVA revealed that the actual and 

predicted values were not significantly different at both the 95% and 99% confidence levels (df1 = 1; 

df2 = 8110), which is desirable. There was no significant difference between the actual and predicted 

yield within the same greenhouse whereas there was a significant difference between the actual and 

predicted yield among the greenhouses with the QGH having higher yield. The MAD and NSE were 

0.01 and 1.00 in both greenhouses. This means that the NARX model used to make predictions was 

able to accurately represent the actual values, as the difference between the two was not statistically 

significant. This implies that the model is reliable and can be used for future predictions with a high 

level of confidence. Figures 6 to 8 show the trend of the predicted parameters in RGH vs QGH. 

Table 5 shows the predicted mean indoor air temperature, relative humidity (RH), vapor pressure 

deficit (VPD) and yield for RGH and QGH. The predicted mean of indoor air temperature, RH, VPD 

and yield for the RGH is 20.1±4.64 oC, 50.35±21.17%, 1.31±0.63 kPa and 6.33±1.58 g, respectively, 

while for the QGH it is 19.29±4.69 oC, 52.33±20.56%, 1.21±0.76 kPa and 7.72±1.92 g, respectively. 

The MAD for temperature, RH, VPD and yield for RGH is 1.96 oC, 8.58%, 0.28 kPa and 0.01, 

respectively and for QGH it is 2.10 oC, 7.58%, 0.24 kPa and 0.01, respectively. The Analysis of 

variance performed on the predicted VPD in the RGH and QGH at 5% level of confidence showed 

that there was a significant difference between the VPD in both greenhouses. 

The MAD of all the predicted parameters was less than the mean of each predicted indoor parameters 

and yield. This result meets the requirement that a MAD value less than or equal to the dataset means 

is desirable and considered a good result. A low MAD indicates that the majority of the data values 

are close to the mean (since the expected distance from each data value to the mean is small). A large 

MAD indicated that many of the data values are far from the mean. The Nash–Sutcliffe efficiency 



coefficient, also known as the sensitivity coefficient, was 0.68, 0.68, 0.78 and 1.00, and 0.65, 0.73, 

0.82 and 1.00 for indoor air temperature, Rh, VPD and yield, respectively. These NSE values indicate 

that the accuracy of modeled outputs concerning observed data depicts a perfect match, as the closer 

the model efficiency is to unity, the more accurate the model.  

Table 6 depicts the frequency distribution of VPD in the RGH and QGH.The QGH had higher 

percentages of VPD within the optimal band than the RGH and lower VPD percentages outside the 

optimal band. 

 

Discussion 

The NARX models were evaluated to determine prediction accuracy in terms of MSE, RMSE, MAD, 

and NS. Although indoor air temperature, RH, and VPD were modeled in this study, only the VPD 

was used later to evaluate the thermal environment of the greenhouses and compare the NARX 

models because VPD is the primary parameter that controls most of the plant metabolic activities, 

such as transpiration and photosynthesis rates, evaporation from plant leaves, and stomatal opening, 

which controls carbon dioxide assimilation, and nutrients and water uptake. In two greenhouses 

adjacent to each other, the NARX neural network was used to train, validate, and test the network for 

indoor air temperature, RH, and VPD. The NARX VPD model showed that the highest R2 in the RGH 

was 99.1%, 98.7% and 98.6% for the 70:15:15 network architecture and 10:4 neuron-delays ratios. 

The corresponding validation MSE and RMSE value of 1.04×10-4 and 1.02 × 10-4, and MAD, and NS 

value were 0.28, and 0.78, respectively, in the RGH. The NARX model for the QGH showed the that 

the model was good in terms of training R2, training MSE, and RMSE, MAD and NS values of 98.9%, 

8.66×10-4, and 2.94×10-4, 0.24 and 0.78 ,respectively. These models have satisfied the conditions of 

MSE, RMSE, and NSE, therefore, they are considered to be good based on these model evaluating 

parameters. Seginer et al. (1994) predicted greenhouse climate using a fitting NN model tool trained 

with experimental data from two greenhouses in Avignon, France, and Silsoe, UK, and obtained R2 

values of 0.95 for Avignon, and 0.97 for Silsoe. To characterize the indoor air temperature of a 

naturally ventilated greenhouse in Western Europe using outside air temperature and RH, global solar 

radiation received, and the amount of cloud cover, Frausto et al. (2003)  also developed a linear 

autoregressive model with external input (ARX) and autoregressive moving average models with 

external input (ARMAX). They obtained R2 ranges of 0.85 to 0.99 for ARMAX and 0.93 to 0.99 for 

ARX models. However, due to a lack of adaptability to extended periods and the low accuracy of 

these models compared to NARX. Frausto et al. (2004), on the other hand, created an autoregressive 

moving average model with external input (NNARX) model by combining linear autoregressive 

models (ARX) with neural network architectures and predicted internal greenhouse temperature as a 



function of outside air temperature and humidity, global solar radiation, and sky cloudiness with 

corresponding goodness of fit of 75%, which is lower than the lowest goodness of fit of 96.8% 

obtained using. This shows that NARX has a higher predicting accuracy than other neural network 

tools. Dariouchy et al. (2009), on the other hand, obtained 0.987 and 0.972, and 0.991 and 0.989 for 

training temperature and humidity, respectively, while using a neural network fitting tool to predict 

internal temperature and humidity while using a neural network fitting tool to predict the internal 

temperature and humidity in a greenhouse with external humidity, total radiation, wind direction, 

wind speed, and temperature as inputs in a 7 days experiment. Similarly, Taki et al. (2016) predicted 

inside roof temperature (Tri), indoor air humidity (RHis), soil temperature (Tis), and soil humidity 

(RHia) of a semi-solar greenhouseusing roof temperature, inside air humidity, soil temperature, inside 

radiation, and inside air temperature as inputs. Taki et al. (2016) found 0.25°C, 0.30%, 1.06°C, and 

0.25% for Tri, RHis, Tis, and RHia, and concluded that ANN is a promising tool for predicting indoor 

climate and is useful in fully automated greenhouses. Petrakis et al. (2022) nonlineardesigned a to 

model the internal temperature, RH, wind speed, and solar irradiance of a greenhouse using the 

Levenberg–Marquardt training algorithm with external temperature, RH, wind speed, and solar 

irradiance as input variables, and internal temperature, and RH as output/target variables. Petrakis et 

al. (2022) reported an R2 of 99.9% for internal temperature and RH. Even though Petrakis et al. 

(2022) obtained an R2 close to 100%, the accuracy of the nonlinear input–output neural network 

cannot be compared to the nonlinear autoregressive with external (Exogenous) input (NARX) used 

in this study. The use of nonlinear autoregressive with external (Exogenous) input (NARX), dynamic 

NN , and one of the neural network time series applications has demonstrated that it is the best 

predicting tool. Indoor microclimate revealed that the position of the thermal curtain had a significant 

influence on the VPD, which is considered the most important indoor climate parameter. 

 

Conclusions 

Greenhouse microclimate modeling is important because the microclimate is a dynamic system that 

is considerably influenced by the macroclimate of the surroundings, thereby making its modeling by 

conventional methods and techniques difficult. Therefore, the advent of the dynamic artificial neural 

networks (ANN) through Nonlinear AutoRegressive models with eXogenous inputs (NARX) 

modeling tool in MATLAB has enabled the modeling of dynamics and complex systems, such as the 

greenhouse microclimate, with high accuracy and reliability as compared to the general ANN models. 

The NARX modeling tool was able to reliably model the nonlinear and dynamic greenhouse 

environment of two gothic greenhouses with various thermal curtain positions, and the results 

obtained using such models like this can aid in the design of control systems based on the VPD, which 



is a climate parameter that more accurately describes the environment than temperature and RH. 

Thus, this study shows that using a dynamic neural network model to simulate the thermal 

environments of greenhouses with different thermal curtain positions is effective. The comparison of 

the VPD in the RGH and QGH showed that the RGH had 36.1% of its VPD readings within the 

optimal range of 0.5-1.19 kPa, whereas the QGH had 46% of VPD data within the optimal range.  

There was also a significant difference (p<0.05) between the VPD recorded in the two greenhouses 

with the QGH having better VPD readings than the RGH. This model can be used to optimize the 

thermal environment of greenhouses and improve the growth and productivity of plants. 

The dynamic ANN model was preferred over the general ANN model because the dynamic ANN 

models is capable of nonlinear modeling, can model the time-dependent relationship between 

variables, high accuracy, enhanced predicting capabilities and good adaptation to change. Despite the 

advantages of using the dynamic ANN models through NARX the following challenges might be 

encountered in its implementation (1) complex model design is required, (2) significant amount of 

data ir required to accurately capture the complex and nonlinear relationships between the variables, 

and (3) require high computational resources. The potential use of dynamic ANN models can help to 

understand the impact of reducing greenhouse gas emissions or increasing the use of renewable 

energy sources and can also help in identifying feedback loops that amplify the impact of climate 

change. 
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Figure 1. Greenhouse model. 

 

 

 

 

 
Figure 2. Thermal curtain positions. 

 



 
Figure 3. Sensor location in both greenhouses. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. NARX architecture. 
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Figure 5. MATLAB NARX neural network diagram. 

 

 

 

 
 

 
Figure 6. Predicted temperature in RGH and QGH. 
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Figure 7. Predicted RH in RGH and QGH. 
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Figure 8. Predicted VPD in RGH and QGH. 
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Table 1. Descriptive statistics of microclimate parameters. 

 

  

Parameter /Statistical 

tool 

Mean Standard 

error 

Standard 

deviation 

Sample 

variance 

Range Minimum Maximum 

Temperature R 20.01 0.06 4.78 22.86 34.03 2.05 36.08 

Q 19.31 0.06 4.83 23.37 34.5 1.42 35.92 

Outside 9.16 0.09 7.54 56.83 41.77 -9.8 31.97 

RH R 50.32 0.27 22.01 484.28 84.33 13.77 98.11 

Q 52.36 0.26 21.06 443.32 84.31 14.36 98.67 

Outside 42.57 0.21 17.16 294.52 82.56 13.1 95.65 

VPD R 1.23 0.01 0.86 0.74 4.21 0.02 4.23 

Q 1.21 0.01 0.77 0.59 4.08 0.02 4.1 

SR R 254.64 1.83 150.67 22702.21 784.7 3.74 786.2 

Q 205.33 1.55 127.64 16291.06 535.7 2.13 536.82 

 Outside 377.27 2.07 195.72 48728.31 977.2 5.54 982.80 

irT R 18.75 0.19 16.01 256.31 62.74 1.75 53.99 

Q 22.77 0.08 6.97 48.63 44.37 2.36 46.73 

irRH R 53.15 0.4 32.58 1061.38 90.69 5.47 96.16 

Q 44.49 0.27 22.06 486.68 86.69 10.01 96.71 

Yield R 6.33 0.02 1.58 2.51 6.69 3.82 13.51 

Q 7.72 0.03 1.92 3.70 11.77 4.68 16.44 



Table 2. Model architecture and accuracy parameter for RGH. 
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Table 3. Model architecture and accuracy parameter for QGH. 
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Table 4. ANOVA of actual vs predicted data for RGH and QGH. 

For T, RH and VPD: df1 = 1; df2 = 13526, For yield: df1 = 1; df2 = 11034 

 

 

Table 5. Mean of parameters. 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Frequency distribution of VPD in RGH and QGH. 

 

 
RGH  QGH  

  T RH VPD Yield T RH VPD Yield 

Fstatistics 9.26e-05 1.68e-04 0.13 0.05 0.08 0.02 0.04 0.01 

P-value 0.99 0.99 0.72 0.82 0.77 0.89 0.84 0.90 

F critical 3.84 3.84 3.84 3.84 3.84 3.84 3.84 3.84 

Parameter RGH QGH 

Actual Predicted Actual Predicted 

Temperature, oC 20.01 20.01 19.31 19.29 

RH, % 50.34 50.35 52.38 52.33 

VPD, kPa 1.31 1.31 1.20 1.21 

Yield, g 6.33 6.33 7.72 7.72 

Description VPD range 
RGH QGH 

Actual Predicted Actual Predicted 

Optimal range 0.5–1.19 2490 

(36.8%) 

2445 

(36.1%) 

3045 (45%) 3114 

(46%) 

Outside optimal 

range 

0.1–0.49/1.2–

4.29 

4274 

(63.2%) 

4319 

(63.9%) 

3719 (55%) 3650 

(54%) 


