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Abstract

The ambition of this study was to justify the possibility of
wheat trait prediction using a normalized difference vegetation
index (NDVI) from a newly developed Plant-O-Meter sensor.
Acquired data from Plant-O-Meter was matched with
GreenSeeker’s, which was designated as a reference. The experi-
ment was carried out in the field during the 2022 growing season
at the long-term experimental field. The experimental design
included five different winter wheat genotypes and 20 different
NPK fertilizer treatments. The GreenSeeker sensor always gave
out NDVI values that were higher than those of the Plant-O-Meter
by, on average, 0.029 (6.36%). The Plant-O-Meter sensor record-
ed similar NDVI values (94% of the variation is explained,
P<0.01). The Plant-O-Meter’s NDVIs had a higher CV for differ-
ent wheat varieties and different sensing dates. For almost all vari-
eties, GreenSeeker exceeded Plant-O-Meter in predicting yields
for the early (March 21%t) and late (June 6') growing seasons.
NDVIGreenSeeker data improved yield modeling performance by an
average of 5.1% when compared to NDVIpjant-0-Meter; in terms of
plant height prediction, NDVIGreenSeeker Was 3% more accurate
than NDVIpiant-0-Meter and no changes in spike length prediction
were found. A compact, economical and user-friendly solution, the

Correspondence: Marko Milan Kosti¢, Agricultural Engineering,
University of Novi Sad, Novi Sad, Serbia.
E-mail: markok@polj.uns.ac.rs

Key words: multispectral sensors; NDVI; modelling; proximal sen-
sors; cereals.

Conlflict of interest: the authors declare no potential conflict of interest.
Funding: none.

Received: 10 April 2023.
Accepted: 12 September 2023.

©Copyright: the Author(s), 2024

Licensee PAGEPress, Italy

Journal of Agricultural Engineering 2024, LV:1559
doi:10.4081/jae.2024.1559

This work is licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License (CC BY-NC 4.0).

Publisher's note: all claims expressed in this article are solely those
of the authors and do not necessarily represent those of their
affiliated organizations, or those of the publisher, the editors and
the reviewers. Any product that may be evaluated in this article or
claim that may be made by its manufacturer is not guaranteed or
endorsed by the publisher.

[Journal of Agricultural Engineering 2024; LV:1559]

Plant-O-Meter, is straightforward to use in wheat breeding pro-
grams as well as mercantile wheat production.

Introduction

Wheat is traditionally one of the most grown crops worldwide,
with an estimated production area of 220 million hectares in 2022
and an average yield of 3.5 Mg ha! (World Agricultural
Production, 2022). Also, in the region of the Pannonian Plain,
including Serbia, wheat is the most significant winter cereal crop,
providing a notable alternative for other spring crops such as soy-
bean, maize, or sunflower. In Serbia, total wheat production
increased by 19.8% in 2021, compared to 2020 (Statistical year-
book of the Republic of Serbia, 2022), with the intention of con-
tinuing this in 2022 and maintaining the average yields. As a result
of improvements in both plant breeding and crop management,
grain yield has more than doubled in the Pannonian Plain and
Serbia in recent decades. In the recent past, many aspects and rea-
sons have been identified, including positive effects on weed con-
trol (particularly perennial species), soil structure remediation dur-
ing crop rotation and increased profitability. Although wheat grain
yields in Serbia are higher than the average global yield (ranked
32 out of 124), they are often limited by unfavorable climate con-
ditions and lower than in other production regions, especially
Western Europe (Ja¢imovi¢, 2012).

The last two years have seen a massive disturbance in the
global food market caused by various circumstances (Ukraine cri-
sis and COVID) initiating the price of wheat to rise rapidly
($189/ton in March 2020; $406.7/ton in February 2022, according
to “Wheat Prices — 40 Year Historical Chart”). At the same time,
according to the Fertilizers Price Index (n.d.), the price of nitrogen
fertilizers, which are highly demanded by cereals in general due to
the physiological role of N in plants, has almost tripled in the last
two years. The emerging input/output ratio of wheat production
(and other crops) may open a wide scope for the adoption of
advanced technologies for better nitrogen (N) management and
higher yield performance. Moreover, agriculture is experiencing a
revolution triggered by emerging technologies that seem highly
promising, as they will allow higher yields, quality and profitabil-
ity. According to the results of Raun ez al. (2002), the use of opti-
cal sensors as a diagnostic tool has improved the efficiency of in-
season nitrogen application (nitrogen use efficiency) by 15%,
which helped in recommending the optimal amount of nitrogen
fertilizer. Achieving a better production economy through the
implementation of precision agriculture (PA) is well recognized in
developed countries, where the acceptance of advanced technolo-
gies far exceeds the technologies applied in Serbia. The prevailing
decision-making system in open-sky farming in Serbia is still
based on traditional patterns, personal non-objective “experience,
intuition and habits from the past”, despite the introduction of
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sophisticated mobile systems and equipment that have the
improved ability to operate in a spatially predefined manner (not
just uniformly). Such a stochastic way of managing a temporally
dynamic and spatially heterogeneous field resource leads to results
that are not compatible with the concept of PA, the Green Agenda,
or the Nitrates Directive.

Plants are natural biosensors that indicate deficiencies in soil
through changes in turgor and decreased chlorophyll pigment activ-
ity. Monitoring of soil-plant conditions provides critical informa-
tion for improving resource utilization efficiency and developing a
site-specific database of the relationship between soil conditions
and plant growth for intelligent and sustainable agriculture systems
(Yin et al., 2021). The human eye perceives vegetative changes in
the RGB (440-690 nm) wavelength range with insufficient sensitiv-
ity and the impossibility of impartial quantification of the condition;
hence, a timely intervention is needed in the field. Active optical
reflectance sensing has demonstrated effectiveness in particular
areas for producing prescriptions for N fertilizer that increase N
usage efficiency, but locally produced algorithms have not been
evaluated concurrently across a wide region (Bean ef al., 2018). If
crop yield could be predicted with a certain degree of accuracy, N
fertilizer applications could be customized for each site, taking into
account the crop’s needs and the N status of the soil, to maximize
potential yield (Crain ef al., 2012). The normalized difference veg-
etation index (NDVI), which measures the sharp distinction
between photosynthetic light absorption in the visible portion of the
spectrum and reflectance in the near-infrared region (NIR), is a
well-known vegetation index (Raun et al., 2002; Tagarakis et al.,
2022). Various spectral bands can be used in different ways to check
the health of plants. The normalized simple ratio of two bands (NIR
and RED) was found to be useful, easy to get and has a great poten-
tial for crop monitoring. Normalization has also been proposed to
mitigate the effects of sensor deterioration (Bannari et al., 1995).
The algebraic expression of the level of photosynthetic activity in
the range of discrete values (-1, 1) is applied to discretize the read-
ings for the purposes of analysis and further use of NDVI in man-
agement systems. Throughout history, numerous proximal sensors
have proven useful in agriculture. The early products, including the
Soil Plant Analysis Development meter (Ang et al., 2020) (Konica
Minolta Inc., Osaka, Japan), had a few automations and required
manual data entry. The options for mapping and real-time spatially
variable rate fertilizer applications are now available with fully
automated sensing systems like Yara N-sensor (Raper et al., 2013)
(Yara International ASA, Oslo, Norway), GreenSeeker (Xia ef al.,
2016) (Trimble Inc., CA, USA), Crop Circle (Cao et al., 2017)
(Holland Scientific, NE, USA) and CropScan (Sankaran et al.,
2019) (CROPSCAN, Inc. Rochester, MN, USA), among others. On
the other hand, the complexity of agriculture and limited ability of
farmers to adopt sophisticated technologies impose a need for con-
tinuous development of rapid, cost-affordable and reliable data
acquisition systems, followed by automated data processing and
online data transfer. Thus, the primary objective of this study was to
evaluate the performance of a new Plant-O-Meter active multispec-
tral proximal sensor in a long-term wheat trial and to compare it to
the GreenSeeker portable device, a commonly used commercial
crop sensor. The specific objectives of this study were to: i) deter-
mine the relationship between NDVI measurements from the two
sensors; ii) determine the specific growth stage at which the sensors
provide a more reliable estimate of end-of-season yield under the
specific climatic conditions of the Vojvodina region; iii) determine
the ability of Plant-O-Meter to estimate end-of-season yield traits
from mid-season canopy measurements, compared to the hand-held
GreenSeeker sensor.
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Materials and Methods

Field selection and experimental setup

A comparative test of sensors in real field conditions must be
managed in such a way that the sensor’s advantages can be objec-
tively highlighted, while any uncertainty arising from either poor
trial setup or operator bias are minimized. At present, there is no
standardized in-field test procedure to verify the validity of optical
reflectance sensor measurements. Due to the high soil organic mat-
ter content, crops in the on-farm trials on chernozem soil type
respond poorly to the applied soil treatments, which could jeopar-
dize the effect of the experimental block setup. The objective of
field selection was to ensure that plant variability was attributed to
the treatments of the experiment and not due to spatial variability
in soil properties. Accordingly, sensor testing was conducted in the
fields of the Institute of Field and Vegetable Crops at Rimski
SanCevi (Serbia), which are under long-term (Long-term Field
Experiments in Europe, n.d.) consistent NPK treatment with a cer-
tain plot-to-plot discrepancy. The field trial (45.3326123°N,
19.8300244°E) was established during the 2021-2022 growing
season. The soil type at the site is Haplic Chernozem Aric (WRB,
2014), which dominates in Vojvodina region and is characterized
as highly fertile (approximately 43% of the total arable land,
(Jovanovi¢ et al., 2013). Five domestic high-yielding cultivars of
winter wheat (Triticum aestivum L.), widely grown in Serbia, were
included in the study: NS Igra, NS Rajna, NS Futura, NS Epoha
and NS Obala. The varieties were chosen for their prospective
high-yielding traits, the difference in plant height among varieties
and other grain quality traits. NS Igra is a new high-yielding culti-
var, characterized by a lower habitus and good disease resistance.
NS Obala and NS Rajna are cultivars with awns, characterized by
high yield stability. NS Futura is a cultivar with a higher plant
height and premium quality. NS Epoha is an awnless wheat culti-
var with a stable yield and high grain quality. The experiment was
laid out as a split-plot design with fertilizer treatments as the main
factors and winter wheat cultivars as sub-factors. Each experimen-
tal plot was considered as an independent block (replicated three
times) that consisted of five wheat varieties in a consistent order
with randomized fertilizer treatments (20 combinations of NPK
fertilizer rates, 100 subplots, Figure 1). For practical reasons, the
fertilizer treatments were coded from 1 to 20. The subplots were
initially established at 3x13.5 m (3 m seeder width), from which
1.5%x12.5 m was harvested (the combine harvester width was 1.5
m) to prevent the border effect. Given the limited resources, the
design of the experiment was planned in view of the labor costs
that could be allocated per unit of observed area, while gathering
enough information to enable an objective sensor comparison. In
order to guarantee uniform soil conditions across the plots, the soil
preparation procedures comprised conventional tillage by means
of a moldboard plow at a depth of 20 cm and a final soil consoli-
dation using a combined cultivator. A 25-row wheat seeder with a
double-disc furrow opener (Amazone D8-30 Super) was used for
sowing in fall (October). It was calibrated to achieve a seeding rate
of 500-550 germinated seeds per square meter. In the trials, the
standard pest control strategy was applied: early insecticide appli-
cation after plant emergence (Alfa-cipermetrin, 100 g L!); herbi-
cide application in the early spring (metsulfuron metil, 600 g kg™
concurrent with the first fungicide treatment (Propikonazol, 250 g
L); and the final pesticide application for ear protection at the
beginning of flowering (Tebukonazol, 133 g L-!' + Prohloraz,
267 g L1). Harvest was conducted at the beginning of July when
the plants had attained full maturity and the grain moisture content
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was around 14%. In order to eliminate marginal effects, only the
central part of the subplots was harvested to determine the yield of
each variety using a small plot combine harvester (Witnersteiger
Delta). The samples were weighed in the field and put in bags with
labels before being processed.

During the experiment conducted on March 215, April 6 and
18", May 9t and 20 and June 6™, corresponding to the growth
stages BBCH 22, 31, 37, 52, 73 and 77, respectively, NDVI was
measured by means of two active proximal sensors: the pocket ver-
sion GreenSeeker (Trimble Inc., CA, USA) and the improved ver-
sion of the active multispectral optical sensor, Plant-O-Meter
(BitGear, Serbia), whose prototype was introduced by Kiti¢ et al.
(2019). GreenSeeker, a self-illuminated sensor, emits light and
measures reflectance at 660 nm (R) and 770 nm (NIR) and calcu-
lates NDVI. The capability of the pocket version of GreenSeeker
was confirmed in the study by Crain et al. (2012) who did compre-
hensive testing on wheat and maize. The GreenSeeker sensor was
held about 60 cm above the wheat canopy and parallel to the row
direction. Measurements of in-field reflectance were manually
done, by taking an average reading from the measurement area in
each plot.

pagepress

The Plant-O-Meter (Figure 2) is an active sensor that has a
built-in multispectral source and light sources that emit light at six
indicative wavelengths: 465 nm (blue), 535 nm (green), 630 nm
(red), 740 nm (red edge) and 850 nm (NIR). This sensor detects the
light reflected from the canopy of plants and provides raw data
measurements for user-defined indices, that can be calculated
based on its ability to independently record reflectance for each
band. Plant-O-Meter establishes a connection with any Android
smartphone, as well as it logs and processes data using that
device’s storage and processing resources. In addition, the data are
georeferenced via the smartphone’s GPS receiver. Also, it can be
extended with a wired or wireless connection for different commu-
nication interfaces and protocols. The frequency of data acquisi-
tion was 1 Hz, which corresponds to approximately 10-15 mea-
surements per plot. GreenSeeker was chosen as a reference sensor
in this study, due to its proven capabilities as well as its widespread
commercial and scientific applications (Tagarakis et al., 2022).
Although the sensors use the same principle for detection, there are
some differences between them. As stated by Kiti¢ et al. (2019),
who carried out initial Plant-O-Meter tests, a broader surface may
be covered by the Plant-O-Meter’s elliptical-shaped beam, since it

Code Feri. treal.
(5]

NPE,
S0, 100, 150
kg NFK'ha

Figure 1. Unmanned aerial vehicle-derived normalized difference vegetation index of the experimental field on May 9th, 2022 (anthesis
growth stage). Indices 1, 2 and 3 of the NPK combination refer to the content of specific nutrients (N, P and K) as follows: 50, 100 and

150 kg hal.

Lens -

USB-C connector
Mounting nut

Figure 2. Handheld active proximal sensors used in the study: (a) GreenSeeker; (b) Plant-O-Meter (https://www.plant-o-meter.com/).
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has a wider view angle than the GreenSeeker (72°). In addition, the
GreenSeeker’s minimum operating distance ranged from 60 to 90
cm, depending on the target’s reflectance characteristics; targets
with high reflectance required larger distances, due to saturation.
The minimum operating distance for Plant-O-Meter was 50 cm,
which is less than the GreenSeeker’s minimum operating distance
range of 60-90 cm.

GreenSeeker NDVI formula:  Plant-O-Meter NDVI formula:

NIR759-REDj40 NIRg10-REDg30
NDViGreensesker™ NIR, T REDggy DY Pnt0Meter™ NIR  RED o

The effects of plot treatments on the differences in soil physi-
cal condition were assessed by comparing the mean values of the
observed soil properties. Basic statistical indicators were used in
the following analysis. Duncan’s test with a 95% level of confi-
dence was applied to determine the statistically significant differ-
ences between the data. Pearson’s coefficient (R) was used to
determine the linearity between the observed parameters. The sta-
tistical analyses were performed using Statistica 12 software (Dell
Software, TX, USA). In Statistica, a straightforward best-fit
regression approach was used to model wheat traits by using
NDVI data from each sensor during the trial and for each measure-
ment.

The evaluation of the difference between sensor readings was
done by calculating the relative Root Mean Square Error (RMSE):

RMSE-= | B0’ 100 )

1
n 02

where n is the number of observations, P; is the predicted value, O;
is the calculated value and O is the calculated mean value. The best
method was the one which had the lowest RMSE.

B

Results

Weather and climate data from the experimental site

The beginning of the wheat growing season (October-
November 2021) was characterized by a relatively sufficient water
supply for plant germination. According to the findings from pre-
vious studies in the Vojvodina region (Ja¢imovi¢, 2012), a highly
positive correlation was obtained between the yield and the
amount of rainfall during November. Weather conditions from the
sowing phase until February are crucial for vernalization and water
accumulation in the soil profile. A lower amount of precipitation
from February to March indicated a lack of water in the soil.
Additionally, around this time, the first post-emergence application
of nitrogen fertilizer was carried out to produce adequate nutrient
supplies for the purpose of constructing the organic matter of the
plants. The beginning of stem elongation and fast growth occurs
around the end of February. At this stage, any water scarcity
reduces the yield potential. When compared to the historical cli-
matic average, the average monthly temperatures for the 2021-
2022 growth season were similar. Since the temporal weather
regimes did not significantly deviate from historical records, the
assumption was that a sensor’s recordings reflected wheat devel-
opment dynamics, which might correspond to most growing sea-
sons, thus, the importance of the drawn deductions could be more
universal. As a result, the significance of the conclusions drawn
from these recordings may be more widely applicable in terms of
the potential of sensor utilization in wheat trait predictions.

Overall statistics of wheat traits

Figure 3 represents the results of the analysis of the acquired
data for each variety and fertilizer treatment. Relative values were
calculated for each trait to provide simultaneous characterization.
The data were put on a scale from 0 to 100% while preserving their
relative relationships so that they could be easily compared and
analyzed. This reduced bias in statistical analyses, as it ensured
that different variables were given equal weight in the analysis.
Considering the confidence intervals of the mean values of the
evaluated traits, it is clear that the included factors (variety and fer-
tilizer) had distinctive contributions to the variations of the
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Figure 3. Effect of controlled factors: (a) variety; (b) fertilizer treatment. The error bars represent 95% confidence intervals.
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observed wheat indicators. It can be concluded from Figure 3 that
the variety as a controlled factor did not dominate in grain yield
variability (4.69-5.03 t ha'!). Only NS Obala provided a statistical-
ly significant difference in grain yield with respect to the others.
The wheat variety had a more significant impact on plant height
and spike length. The analysis of the impacts of fertilizer applica-
tion revealed evident variations in wheat phenotypic characteris-
tics. Table 1 gives an overview of the main statistical indicators
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that are already presented in Figure 3. The wheat variety had a
notable impact on plant height (63.60-72.38 c¢cm) and spike length
(5.68-6.33 cm), while a mild impact was achieved in the case of
grain yield, which ranged from 4.69 to 5.03 tha!. Based on
ANOVA analysis, average values of plant height for included vari-
eties were classified into four categories, with the highest mean
value for NS Futura (72.38 cm) and statistically different values
recorded for NS Rajna (67.57 cm) and NS Igra (63.60 cm), while
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Figure 3. Effect of controlled factors: (a) variety; (b) fertilizer treatment. The error bars represent 95% confidence intervals.

Table 1. Descriptive statistics of plant indicators for the tested wheat varieties.

Grain yield, tha'! NS Igra 60 4.78b 4.49 5.06 1.62 6.14 26.75 -1.26 0.26
NS Rajna 60 4.69° 4.41 4.98 1.41 6.20 27.56 -1.08 -0.06
NS Futura 60 4.73b 4.45 5.00 1.43 6.20 26.18 -1.28 0.38
NS Epoha 60 4.78b 451 5.05 1.90 6.09 25.19 -1.19 0.03
NS Obala 60 5.032 4.79 5.27 1.94 6.42 21.63 -1.52 1.68
Plant height, cm NS Igra 60 63.60¢ 62.42 64.78 47.00 72.00 8.36 -1.26 1.12
NS Rajna 60 67.57¢ 65.74 69.39 44.00 79.00 12.13 -1.04 0.52
NS Futura 60 72.382 70.20 74.57 44.00 88.00 13.57 -1.11 0.38
NS Epoha 60 70.02> 68.06 71.97 44.00 82.00 12.56 -0.90 0.17
NS Obala 60 71.582 69.61 73.56 46.00 83.00 12.40 -1.20 0.60
Spike length, cm NS Igra 60 6.202 6.01 6.39 4.00 8.00 13.94 -0.45 0.24
NS Rajna 60 6.12¢ 5.93 6.30 4.00 8.00 13.79 0.21 0.73
NS Futura 60 6.33% 6.15 6.52 4.00 8.00 13.03 -0.31 -0.02
NS Epoha 60 5.68° 5.54 5.83 4.00 7.00 11.31 0.24 -0.22
NS Obala 60 5.90¢ 5.67 6.13 4.00 8.00 17.16 -0.12 -0.61

NDVIGreenSecker NS Igra
NS Rajna
NS Futura
NS Epoha
NS Obala

NDVIplant-0-Meter NS Igra
NS Rajna
NS Futura
NS Epoha
NS Obala

300
300
300
300
300

300
300
300
300
300

0.46¢
0.4820
0.492
0.48>
0.492

0.43¢
0.45%
0.46?
0.45>
0.462

0.44 0.48 0.18 0.81 33.94 0.28 -1.06
0.46 0.50 0.19 0.81 35.82 0.21 -1.40
0.47 0.50 0.19 0.78 34.13 0.17 -1.40
0.46 0.49 0.20 0.77 33.18 0.06 -1.42
0.47 0.50 0.24 0.75 30.24 0.01 -1.30
0.41 0.44 0.15 0.79 34.72 0.28 -1.03
0.44 0.47 0.18 0.78 38.22 0.23 -1.38
0.45 0.48 0.17 0.77 36.29 0.20 -1.35
0.43 0.46 0.17 0.76 36.18 0.15 -1.36
0.45 0.48 0.20 0.76 3243 0.07 -1.28

Note: the mean values in the columns for the same letter do not differ from each other by the Duncan’s test at 5% probability.
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data for NS Epoha (70.02 cm) and NS Obala (71.58 cm) were sim-
ilar to those of NS Rajna and NS Futura. The grain yield hetero-
geneity expressed, as the coefficient of variation (CV) ranged from
21.63 to 27.56%. Also, measured values for Futura showed the
highest variation of plant height (13.57%), while Igra showed a
reasonably lower variation (8.36%). Spike length differed based on
the statistical values (Table 1), where the highest average value
(6.33 cm) was obtained for the NS Futura variety and the highest
CV was settled for the NS Obala variety (17.16%). According to
Duncan’s test, the spike length of the other varieties, with the
exception of NS Igra, were statistically different, whereas NS
Epoha had the smallest average value (5.68 cm).

Table 1 also shows the results of the sensor-based data analysis
relative to the wheat varieties. The highest mean NDVIGreenSecker
was obtained for NS Futura and NS Obala (0.49). NDVIGreenSecker
for NS Rajna and NS Epoha (0.48) were slightly lower, falling into
the same ANOVA group. A significantly lower average
NDVIGreenSecker value was acquired for NS Igra (0.46). An identical
data grouping was obtained by ANOVA in the case of the
NDVIpiant-0-Meter, although with lower average values, ranging
from 0.43 to 0.46. By comparing the CV values of the NDVI

07
a & NS Igra
"G NS Rajna
“®_ NS Futura
“&_NS Epcha
06} “§_ NS Obala

03

02

March21  April 6 April 18 May 9 May 20 June &

recorded with tested sensors, it is clear that they have a very simi-
lar range of values (CVGreenSeeker=30-34%; CVplant-0-Meter=32-38%;
with a bit higher variation of Plant-O-Meter NDVI values). The
skewness and kurtosis are within the range (+2) proposed by
Curran et al. (1996), which indicates normally distributed data.

Comparison of sensors’ output

Figure 4 shows the NDVI values for wheat varieties and espe-
cially for each measurement date. The 95% confidence interval
limits are indicated, based on which statistically significant differ-
ences can be recognized for individual measurement dates between
the varieties. As Alvar-Beltran et al. (2020) suggested, a polynomi-
al regression was used to describe the general NDVI trend of each
variable. Visual inspection of Figure 5 reveals that the NDVI shifts
across the sensing dates for both sensors. The maximum average
NDVIGreenSecker Values were obtained on May 9 (raising vegeta-
tive stage) for the NS Rajna variety (0.63), while NS Epoha had the
lowest value (0.60). Plant-O-Meter provided different scales of
NDVI on May 9'; the highest NDVI was obtained for NS Futura
(0.60) and the lowest for NS Igra (0.56). The NDVI data set for
both sensors generated on March 215t shows weak sensitivity for

b i L NSigra
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=
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Figure 4. Normalized difference vegetation index average values (the vertical bars denote 0.95 confidence intervals) over the observation

period for GreenSeeker (a) and Plant-O-Meter (b).
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Figure 5. Relationship between the normalized difference vegetation index readings from the GreenSeeker and the Plant-O-Meter (a) and

frequency distribution of the difference (b).
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variety differentiation in accordance with confidence intervals for
width and position. On April 6, April 18", May 20t and June 6,
there was a distinct variation in NDVI among different varieties.
With a few exceptions, the data characteristics provided by the
tested sensors were very similar. By observing Figure 4 and com-
paring mean NDVI values for sensing dates, Plant-O-Meter pro-
vided a little bit higher difference in average NDVI between vari-
eties on May 9™, while GreenSeeker got similar advances on May
20t and June 6. In general, the GreenSeeker sensor had system-
atically higher output values over the entire sensing period: they
were on average 0.029. Expressed in absolute values, it was a dif-
ference of 0.02 to 0.03 obtained for March 215t. From the first sens-
ing date to April 18%, the above mentioned difference decreased
and, then, increased.

Figure 5 shows the relationship between the NDVI values of
tested sensors by plotting entire data sets from different sensing
dates on the graph. The Plant-O-Meter sensor readings collected
over the observation period in winter wheat canopies consistently
reproduced similar NDVI values compared to the GreenSeeker
(94% of the variance is explained, P<0.01, RMSE = 10.03%). The
variability in the data set was expected, because of the operator’s
inconsistent handling and the sensor’s manufacturing quality
(sensing element design, signal conditioning, sensor materials,
embedded firmware, efc.). Moreover, the NDVI values from the
GreenSecker handheld sensor were 0.03 points higher than those
from the Plant-O-Meter. Furthermore, Figure 5b depicts the differ-
ence between sensor readings with a frequency bar that illustrates
the distribution of the relative disagreement of compared values.
The average relative difference obtained for all sensing sessions is
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L

i e byw
I 3 e M
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6.36%, while the maximum is 21.49%. The majority of the values
(90%) fall between 0 and 12%, with 5% being the most frequently
calculated value, which is quite satisfactory. The results shown in
Figure 5 suggest that there was a significant interaction between
sensors. Given the experiment design, in which replications were
considered as independent blocks and wheat varieties as indepen-
dent factors with uncertain contributions to the sensorsx readings,
the NDVIGreenSecker and NDVIpjant.0-Meter Were compared for each
wheat variety and sensing date, respectively (Figure 6). In order to
model a trend in the stability of Pearson’s R value over the sensing
period, the correlations between sensors were plotted based on the
performed measurements. Figure 6 clearly shows that there is a
distinct divergence of R values along the replications, which
proves the approach of data analysis. The correlations obtained for
the first replication of the wheat trial show a very strong and con-
sistent relationship among data from the used sensors (0.96),
which is substantially different from the average R value drawn for
the second and third replications (0.9 and 0.9, respectively), based
on Duncan’s test of significance. Concerning the wheat varieties,
no significant difference was obtained but certain disagreements
are evident. The smallest average R and widest confidence inter-
vals were calculated for NS Obala (R = 0.88), whereas the highest
average correlation was achieved for NS Futura (0.96) with the
narrowest confidence intervals. The different correlation strengths
seen among the data from the sensors were most likely caused by
the fact that the NS Obala and NS Futura wheat varieties have dif-
ferent morphologies (NS Obala is an awned variety and NS Futura
is an awnless variety). The R values from other varieties are the
following: RNS Igra, RNS Rajna=0.92, RNS Epoha=0.94. Sensing date
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Figure 6. Correlations between NDVIGreenSecker and NDVIpjant.0-Meter for replications (a), varieties (b) and sensing dates (c).
The vertical bars denote 0.95 confidence intervals. NDVI, normalized difference vegetation index.
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Figure 7. Comparison charts of root mean square error of linear models for replications (a), varieties (b) and sensing dates (c). The vertical

bars denote 0.95 confidence intervals.

[Journal of Agricultural Engineering 2024; LV:1559]

OPEN 8ACCESS



. press

had a remarkable impact on the correlations between the sensors’
data. The obvious lower synchronization of the sensor readings
occurred on March 215 yielding an average correlation of 0.73.
Sensor data that were collected later provided a statistically rea-
sonable and higher level of confidence (0.95-0.96 on average).

RMSE as a quality estimator of linear correlation between the
observed NDVIs is shown in Figure 7. The influence of replica-
tions on the linear fitting error was not statistically significant and
varied from 10.07 to 11.6% accordingly. The smallest deviation of
residuals for linear models between NDVIGreenSeeker and NDVIpiant-
O-Meter Was achieved for variety NS Futura (8.87%), while the high-
est was recorded for NS Igra (13.25%), with an absence of statis-
tical significance among relative RMSE values. Over the sensing
dates, the highest RMSE was acquired on June 6% (13.95%), which
is very close to the RMSE recorded on March 215t (13.82%). The
lowest RMSE was reported for May 20 (7.79%). This implies that
a lower relative RMSE was obtained for a higher NDVI, probably
due to a smaller internal heterogeneity of subplots in terms of veg-
etative growth, with magnified differences among subplots (treat-
ments).

The variability of the NDVI is expressed using the CV. This
parameter is thought to be useful for understanding how well the
sensor can predict yield traits. According to Raun ez al. (2005), the
optimal moment to sense and apply in-season N fertilizer is when
the variability of the NDVI readings is the maximum one. They
claimed that treating crops when they are at their highest variabil-
ity of NDVI is expected to be the most effective method. Figure 8
depicts the mean CV values of NDVI from the tested sensors.
Figure 8a shows the general trend of the CV over the trial period.
From the obtained results, the highest CV values for both NDVI
data sets were recorded on April 18™, during the stem elongation
stage, when rapid growth occurs (Figure 8a). This is a time when
farmers in Serbia usually perform the spring top-dress N applica-
tion as an optional fine-tuning correction of Sharma et al. (2015)
who discovered that the majority of sensor reflectance originates
from the soil surface, since the leaf surface area determined by
NADIR-aimed scans is minimum during the early development
stages.

In total averages, NDVI data derived from Plant-O-Meter con-
tributed to a higher CV (9.15%) with respect to the CV (7.04%)
obtained for GreenSeekerxs NDVIs. The variability of NDVI from
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Plant-O-Meter was higher for all sensing dates (Figure 8a) and all
tested wheat varieties (Figure 8b). When comparing the CV of
NDVI by the sensing dates, the statistically significant influence of
the sensor type on the CV of NDVI was recognized for March 215
(CVGreenSecker = 6.17%; CVplant-0-Meter = 9.93%) and June 6t
(CVGreenseeker = 6.25%; CVplant-0-Meter = 9.4%). The lowest level of
CV for both data sets appeared in a time frame between May 9t
(CVGreenSecker = 6.41%; CVPlant-0-Meter = 7.59%) and May 20t
(CVGreenseeker = 5.84%; CVplant-0-Meter = 7.21%). In the last sensing
session, the Plant-O-Meter showed significantly higher sensitivity.
With reference to the variety, certain differences in terms of CV
were observed. It is obvious from Figure 8b that Plant-O-Meter
delivered NDVI made a stronger distinction between varieties in
terms of CV. According to the confidence intervals, significantly
different average CVs of NDVlIGreenSecker and NDVIpiant-0-Meter
were observed for NS Igra (CVGreenSeeker = 8.27%; CVPlant-O-Meter =
11.35%), NS Rajna (CVGreenSeeker = 7.04%; CVPlant-O-Meter =
9.21%) and NS Epoha (CVGreenSeeker = 5.84%; CVplant-0-Meter =
8.53%). Furthermore, NS Epoha had the lowest CVGreenSecker
(5.83%), while NS Futura had the lowest CVplant-O-Meter average
value (3.07%).

Sensor evaluation in wheat trait modeling

Tables 2-7 demonstrate the capacity of daily NDVI values to
predict end-of-season harvest metrics across all experimental vari-
ants. In this section of the comparison, all the NDVI data that had
been gathered were used. The results of regression analysis are
shown in Tables 2-7, where the regression coefficient of determi-
nation (R?) is calculated as an evaluator of model quality. The
Supplementary Tables 1-6 show all the regression plots with the
fitted models that correspond to the results from Tables 2-7. The
evaluation of a sensor-based yield prediction involved three differ-
ent approaches, including raw reflectance data. In order to test the
robustness of sensor readings and to segment the effects of the
aforementioned factors on the quality of regression models derived
from empirical data (20 fertilizer levels, 3 replications), the corre-
lations were separately created for each variety and each sensing
date. Furthermore, the R? of the regression models was determined
by comparing the average NDVI from all dates for specific vari-
eties and wheat traits evaluated in a single plot. In order to deter-
mine the effects of the date on the strength of correlations for each
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Figure 8. Coefficient of variation with 95% confidence intervals of normalized difference vegetation index: (a) effect of sensing date on
CV; (b) effect of wheat variety on CV. The letters on the graph represent the various classes determined by ANOVA at a 0.05 level of sig-

nificance. CV, coefficient of variation.

OPEN 8ACCESS

[Journal of Agricultural Engineering 2024; LV:1559]



sensor, the measured values of wheat biological parameters and
NDVI that were compared were changed, so that data from differ-
ent varieties were merged into one date. Thus, the variability of the
data caused by variety was generalized over the treatments and
replications. Finally, NDVI values were compared with wheat
traits on a general basis by grouping the data into treatments (repli-
cations) and omitting the sensing dates and varieties as factors, in
order to give a one-way sensor-to-sensor comparison. With this
data analysis approach, the variation of the output results

Table 2. Relationship between NDVIGreenSeeker and grain yield.

w&ss

decreased, thus increasing the accuracy of the regression models.
By using the GreenSeeker sensor, the raw values were the best
for explaining grain yield variations, with an R? of 0.93 for NS Igra
(May 9'h) and NS Epoha (May 20™), while NDVIpjani-0-Meter Pro-
vided the best yield predictions on May 9% for NS Epoha
(R?=0.93) and on May 20t for NS Obala (R?>=0.93). The weakest
positive correlation (R2=0.20) for all plots and both sensors was
achieved for NS Rajna (May 20™), which generally coincides with
the results from Table 3, showing Plant-O-Meter NDVI. The

NS Igra 0.75 0.85 0.75 0.93 0.90 0.82 0.94
NS Rajna 0.78 0.87 0.64 0.81 0.20 0.82 0.82
NS Futura 0.69 0.78 0.81 0.50 0.84 0.62 0.86
NS Epoha 0.74 0.86 0.92 0.92 0.93 0.83 0.94
NS Obala 0.65 0.50 0.76 0.80 0.89 0.78 0.88
RI(E‘;%E 0.83 0.87 0.89 0.89 0.91 0.86 0.96

R2, relationship.

Table 3. Relationship between NDVIpjant-0-Meter and grain yield.

NS Igra 0.56 0.89 0.80 0.89 0.79 0.78 0.94
NS Rajna 0.65 0.83 0.66 0.79 0.17 0.57 0.88
NS Futura 0.75 0.76 0.81 0.49 0.84 0.45 0.87
NS Epoha 0.52 0.83 0.82 0.93 0.92 0.68 0.95
NS Obala 0.34 0.60 0.65 0.82 0.93 0.70 0.86
Rz(%] 0.77 0.89 0.91 0.92 0.89 0.73 0.96

R?, relationship.

Table 4. Relationship between NDVIGreenSecker and plant height.

NS Igra 0.48 0.57 0.43 0.68 0.70 0.68 0.71
NS Rajna 0.66 0.65 0.50 0.71 0.12 0.69 0.72
NS Futura 0.56 0.68 0.70 0.57 0.81 0.63 0.79
NS Epoha 0.61 0.74 0.75 0.78 0.79 0.75 0.80
NS Obala 0.51 0.36 0.55 0.66 0.74 0.63 0.71
Rz(m—-ﬂ,":;",{w ) 0.73 0.81 0.83 0.88 0.87 0.80 0.90

R?, relationship.

Table 5. Relationship between NDVIpjant-0-Meter and plant height.

NS Igra 043 0.67 0.52 0.71 0.69 0.72 0.77
NS Rajna 0.44 0.65 0.53 0.68 0.17 0.53 0.75
NS Futura 0.55 0.70 0.73 0.53 0.82 0.58 0.82
NS Epoha 0.34 0.70 0.66 0.76 0.80 0.63 0.78
NS Obala 031 0.44 0.52 0.71 0.74 0.59 0.70
RI(E‘;%"%) 0.68 0.82 0.85 0.87 0.87 0.79 091

R2, relationship.
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apparently low R? obtained for NS Rajna on May 20" might be
caused by a human error that emerged during the NDVI data
recording and its association with a specific plot. For that reason,
any further explanation is considered as redundant. GreenSeeker
outperformed Plant-O-Meter in early season (March 21%) and late
season (June 6') yield prediction in almost all varieties. Looking
at the correlations between grain yield and NDVIGreenSecker, that
included only variety as a factor, by associating the measurements
from different dates to certain plots, the highest R?> was achieved
for NS Epoha and NS Igra (0.94), while the lowest one was record-
ed for NS Rajna (0.82). In the overall comparison, a significantly
high positive correlation (R?=0.96) was obtained. The comparison
of Tables 2-3 revealed that, for a specific date and variety,
NDVIGreenseeker produced better results in grain yield modeling
than NDVIpjant-0-Meter- The Plant-O-Meter performed better in gen-
eralized analysis when date and variety were disregarded using
one-way analysis.

As the trial was set up in a long-term experimental field that
had been managed in the same way for decades, sensor data were
convenient for modeling good relationships between NDVI and
plant height (Tables 4-5). Unlike grain yield models, plant height
data were fitted by using linear rather than polynomial regression
analysis (Supplementary Tables 3-4). Linear regression models
were also used by Lu et al. (2017). The wheat variety and the sens-
ing date had the biggest impact, independently on the sensor equip-
ment. In contrast to NS Igra and NS Rajna (Table 4), where NDVI
fitted better a quadratic polynomial function, NDVI data from both
sensors showed the best fit to plant height when a linear model was
used for NS Epoha. The GreenSeeker sensor’s measurements pro-
vided the best R2 of 0.78 for NS Epoha (dated May 9'") and rea-
sonably lower explanation confidence for NS Igra (R?=0.43,
March 218%). While NDVIpjant-0-Meter readings for NS Futura had
the highest correlation (R?=0.8) on May 20 and the lowest one

Table 6. Relationship between NDVIGreenSecker and spike length.

(R?=0.31) on March 215, The common feature of both sensors is
reflected in the weaker relationship between NDVI and plant
height in the early stage of plant development, while in the next
development stages, this relationship gradually strengthens. For all
wheat varieties, GreenSeeker outperformed Plant-O-Meter in the
early season (March 21%") plant height forecast. By connecting the
measurements from various dates to specific plots, it was possible
to determine the correlations that solely took into account the vari-
ety. Corresponding to the plant height regression analysis, a gener-
alized approach that included variety as a factor promoted the pref-
erence Of NDVIpjant-0-Meter (R?>=0.70-0.82) in the prediction of
plant height compared to NDVIGreenSecker (R2=0.71-0.80). On the
other hand, if the sensing date was considered as a factor,
GreenSeeker’s data would better fit with plant height (R?=0.73-
0.88) rather than Plant-O-Meter’s data, (R?>=0.68-0.87). From the
sensor perspective, it is possible to see the difference in the aver-
age correlations among the varieties, where NDVIpjant-0-Meter
showed a better final R? (0.70-0.82) rather than NDVIGreenSecker
(0.71-0.80). Furthermore, Plant-O-Meter data were more closely
fitted to the desired model (R2=0.91) rather than GreenSecker data
(R2=0.9) in a generalized correlation analysis between NDVI and
plant height.

R? is shown in Tables 6 and 7 as a result of comparisons
between sensor readings and spike length data. Regression param-
eters indicate weak relationships for both data sets, especially for
date- and variety-specific analysis (R?<0.4). On this level of obser-
vation, sensors equally behaved in terms of spike length prediction
scope. Nonetheless, the obtained results show that there is some
advantage in the prediction accuracy of the NDVIpjant-0-Meter ON
May 6. Valid improvements in R? are derived by using a one-way
approach with sensing date as a category. Plant-O-Meter record-
ings partially achieved a higher model confidence with this analy-
sis setup, particularly on April 6" (R2=0.42), April 18" (R2=0.43),

NS Igra 0.22 0.23 0.11 0.23 0.18 0.10 0.22
NS Rajna 0.10 0.09 0.04 0.15 0.02 0.17 0.13
NS Futura 0.13 0.19 021 0.05 0.20 0.11 0.21
NS Epoha 0.06 0.15 0.14 0.18 0.18 0.17 0.17
NS Obala 0.22 0.25 0.33 0.40 0.37 0.39 041
th@ﬁmmi 0.36 0.38 0.38 0.46 0.42 0.42 0.47

R2, relationship.

Table 7. Relationship between NDVIpjant-0-Meter and spike length.

NS Igra 0.22 0.22 0.15 0.19 0.18 0.18 0.25
NS Rajna 0.05 0.11 0.05 0.17 0.02 0.20 0.16
NS Futura 0.15 021 021 0.06 0.19 0.13 0.22
NS Epoha 0.04 0.09 0.13 0.17 0.18 0.19 0.16
NS Obala 0.11 0.28 032 0.33 0.39 0.35 0.39
Rz(ﬁ“;-‘;‘mm) 0.35 0.42 0.43 0.4 0.43 0.45 0.49

R?, relationship.
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May 20t (R?=0.43) and June 6™ (R?=0.45). With reference to the
variety, NDVIpjant-0-Meter produced better results for NS Igra
(R?=0.25), NS Rajna (R? = 0.16) and NS Futura (R?=0.22), while
NDVIGreenSeeker showed an advantage for NS Epoha (R2=0.17) and
NS Obala (R?>=0.41). Overall regression, by omitting sensing dates
and varieties as different ranks, expressed Plant-O-Meter to be a
bit more reliable sensor for spike length prediction with a moderate
level of confidence (49%), although GreenSeeker reached a similar
score (47%).

Discussion

For the purpose of Plant-O-Meter sensor validation testing in
outdoor conditions, the experiment was set up in a field, which was
undergoing long-term soil treatment with the intention to minimize
side effects on sensor measurements. Small field area helped to
minimize uncontrollable spatial variations, reduce the data collec-
tion time, avoid possible interruptions in measurement quality and
follow the technical specifications of the used equipment (impact
of temperature, battery capacity, sensor calibration, efc.), as well as
the subsequent processing of the data. The included factors (vari-
ety and fertilizer) showed unique contributions to the variances for
the observed wheat indicators, as shown in Figure 4, which is a
prerequisite for effective data analysis and subsequent modeling
using NDVIs. Due to the mutual genetic origin of the included
wheat genotypes, it can be concluded that variety as a controlled
factor did not dominate in grain yield variability. The wheat variety
had a significant impact on plant height and spike length. Wheat
properties noticeably varied after fertilizer application, according
to an analysis of the effects. As the agronomical aspects of the per-
formed treatments were not the focus of this study, a more in-depth
examination of them was omitted.

The variability of NDVI shown in Table 1 can be associated
with different sources. One can be related to the performed treat-
ment, which is expected to be as extensive as possible, even if it
includes the uncontrolled impact of operator handling, sensor hard-
ware imperfection, external lighting side effects, ezc. ANOVA pro-
duced the same data grouping for the measurements from the test-
ed sensors, indicating that GreenSeeker and Plant-O-Meter have
equivalent linearity and repeatability. This general overview
revealed the consistency between NDVI values for different vari-
eties when comparing tested sensors. The results in Table 1 did not
uncover the Plant-O-Meter characteristics in wheat trait modeling,
so further analysis was undertaken.

Visual analysis of Figure 4 reveals NDVI variations across the
sensing dates for both sensors. Figure 4 shows how NDVI data val-
ues change with the stages during the wheat growing season. This
pattern was also observed by Magney et al. (2016), who looked at
how useful the daily NDVI data can be for monitoring crop phe-
nology. The saturation of NDVI occurred on May 9™ (raising),
when the highest values were recorded both for GreenSeeker and
Plant-O-Meter. In the peak of vegetative growth, the saturation
effect signifies a non-linear asymptotic flattening or loss of sensi-
tivity, of the curve between NDVI vs. biomass. The red band,
whose light is strongly absorbed by pigments in plants, is the pri-
mary cause of NDVI saturation. When vegetation becomes very
dense, the presence of supplementary pigments within a leaf leads
to a sustained and relatively unchanging level of reflectance. These
pigments also have a modest capacity to light in the blue band.
Even if the pigment concentration reaches a certain level, more
pigments will lead to a low blue band reflectance. The positive
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slope of the NDVI curve defines the period of vegetation develop-
ment and any deviation is attributed to the uneven field conditions.
NDVI variations over the downslope curve occur from the per-
spective of variety ripening. Sensor characteristics in the matura-
tion stages of wheat are not valuable for the early detection of
nitrogen deficiency but they can be beneficial for grain yield and
biomass production end-of-season prediction (Panek and
Gozdowski, 2020).

By showing the whole data sets from various sensing dates on
the graph, Figure 5 illustrates the link between the NDVI values of
the tested sensors. The NDVI values continuously replicated by the
Plant-O-Meter sensor readings over the observation period in win-
ter wheat canopies were comparable to those of the GreenSeeker
(94% of the variation is explained, P<0.01, RMSE = 10.03%). This
might be an excellent result for a device that is designed and man-
ufactured in a developing country such as Serbia to be commer-
cially used on a global scale. However, more comprehensive test-
ing must be conducted to include different crops, seasons and
regions. The Plant-O-Meter’s stability with respect to the reference
GreenSeeker suggests that no calibration is required before use,
which means that the Plant-O-Meter could be used for extended
periods of time without any concern about the quality of the read-
ings. Kiti¢ et al. (2019) also confirmed the reading stability but
under laboratory conditions. Even if there was some variation in
the stability data, it was most likely caused by the operator and the
ability of the GreenSeeker and Plant-O-Meter sensors to accurately
assess a canopy. The majority (90%) of the numbers lie between 0
and 12%, with 5% being the most often estimated result, which is
quite acceptable. The findings demonstrate that various operators
and sensors can provide outcomes that are comparable, despite the
evident variations. This is crucial for a prototype model, especially
if it will be produced in large quantities and used by several oper-
ators. However, the operators should be taught and given enough
room to gain experience, in order to feel comfortable and compe-
tent operating the pocket sensors.

The correlations between sensors were shown based on the
measurements that were taken to simulate a trend in the stability of
Pearson’s R-value across the sensing time. The data analysis
method (Figure 7) shows that there is a noticeable divergence of R-
values along the replications. It also shows that replications and
sensing dates were the primary factors that influenced the correla-
tions between the sensors’ values. The correlation between
NDVIGreenSeeker and NDVIpjant.0-Meter Was the highest in the first
replication of the wheat treatment (0.96), while it was the lowest in
the second and third ones (0.96). On March 21%, when the tillering
stage ended, a significantly lower R was noted (0.73), compared to
the later wheat development stages (0.95-0.96). The level of the
synergetic impact of measurement inconsistency induced by sub-
jective operator handling error during the sensing process and
intrinsic variations at the plot and subplot level could explain the
apparent disagreement between raw sensor data in a specific scope.
Crain et al. (2012) investigated the aforementioned factors, which
included sensing angle variability and GreenSeeker height. They
discovered some specific interactions between the operator and the
logged data. Proximal sensing requires a small distance between
the sensor and the inspected object, so that the sensor itself must
be hand-held or vehicle-mounted. Eitel et a/. (2009) and Huete
(1987) observed that significant parameters influencing crop
canopy reflectance are sensor view angle, atmospheric conditions,
canopy architecture and plant background. In this study, the man-
operating concept was practiced. Every measurement session took
about 1.5 hours, which can be tiring, especially if the additional
effort of the operator for constant sensor leveling and canopy
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height maintenance is taken into account. During testing, the use of
sensors caused battery discharge, which may have affected the sta-
bility of the readings over time. Two operators were in charge of
field works during the testing, indicating the possibility of subjec-
tive error. The experience that emerged from the given data sug-
gests that sensor mounting platforms that protect records from dis-
turbance caused by height (scene size) and exposure angle (scene
size, leaf/background ratio) should be included in a future study.
The lower R coefficient from March 215 was likely due to the fact
that each plot’s plant canopy covers the soil in a different way.
Uneven sensor movement by the operator might have also caused
differences between the data from GreenSeeker and Plant-O-
Meter.

Figure 8 provides a representation of RMSE as a quality esti-
mate of the linear correlation between the observed NDVI values.
The sensing date gave a statistically significant contribution to
RMSE even if the wheat variety and trial replication did not influ-
ence the relationship between NDVI from GreenSeeker and Plant-
O-Meter, respecting the commonly used threshold for statistical
significance (P<0.05). This implies that a lower RMSE was
obtained for a higher NDVI, probably due to smaller internal het-
erogeneity of subplots in terms of vegetative growth with magni-
fied differences among subplots (treatments).

The coefficient of variation was used to represent the level of
variation in the NDVI. This parameter is considered as crucial for
determining how well the sensor can forecast yield characteristics.
Based on the results, it was possible to discover that the CV values
for both NDVI records were maximum on April 18", i.e., during
the stem elongation stage, which is characterized by fast growth
(Figure 8). Uneven emergence of the plants in the early stages of
their growth, variations in residue kind and cover, as well as the
variations in other surface characteristics, are likely the main caus-
es of the significant coefficient of variation.

By comparing the NDVI variation, there were a few dis-
cernible changes found in terms of CV. NDVI data acquired from
Plant-O-Meter led to a higher CV (9.15%), when compared to that
reported for GreenSeeker’s NDVIs (7.04%). This resulted when
overall averages were considered. The GreenSeeker data were
most likely less influenced by noise rather than the Plant-O-Meter
ones, resulting in higher relative stability reading. Noise reduces
measurement accuracy and resolution, limiting the minimum
quantity of measurements that can be performed with a specified
degree of uncertainty (Vig and Walls, 2000). Although the NDVI
values produced by GreenSeeker were consistently higher than the
NDVI values produced by Plant-O-Meter, NDVIGreenSeeker did not
promote higher variation. This finding suggests that the relative
accuracy of the data may be more informative rather than the abso-
lute data accuracy. Following the completion of the regression
analysis, a response will be provided about this issue. The sensor
type had a statistically significant impact on the CV of NDVI on
March 215 (CVGreenseeker = 6.17%; CVplant-0-Meter = 9.93%) and
June 6 (CVGreensecker = 6.25%; CVPlant-0-Meter = 9.4%). The coef-
ficient of variation was the lowest one for both data sets over the
period between May 9™ (CVGreenSeeker = 6.41%; CVplant-0-Meter =
7-59%) and May 20th (CVGreenSeeker = 5.84%; CVplant-0-Meter =
7.21%). With the increasing biomass in the scanning area, a low
variability of NDVI is expected, presumably due to the well-
known saturation effect or loss of sensibility (Yue et al., 2019). In
the last sensing session, Plant-O-Meter showed a significantly
higher sensitivity. Even if in the late development stage nitrogen
management is not feasible at all, predictions of certain wheat
properties can be successfully performed (Jin ef al., 2017). Plant-
O-Meter is able to measure NDVI, which provides a clearer differ-
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entiation among wheat varieties in terms of CV (Figure 8b). For
NS Igra (CVGreenSeeker = 8.27%; CVplant-0-Meter = 1 1-35%), NS
Rajna (CVGreenseeker = 7.04%; CVplant-0-Meter = 9.21%) and NS
Epoha (CVGreenSecker = 5.84%; CVPlant-0-Meter = 8.53%), significant-
ly different average CV values of NDVIGreenSeeker and NDVIpiant-0-
Meter Were observed. Additionally, NS Futura had the lowest
CVplant-O-Meter average value, while NS Epoha had the lowest
CVGreenSeeker Value (5.83%). Overall sensor data variability does
not confirm its performance in the prediction of wheat traits, as
correlation analysis will be the final criterion. When properties are
measured in the natural environment by using sensing methods, the
small-scale heterogeneity of soil or plants contributes to short-term
changes in the sensor signal; this is described as the noise effect
(Kerry et al., 2010). The operator and the precision of the measure-
ments taken with the Plant-O-Meter and GreenSeeker sensors are
likely due to some variation in the stability data. The findings
demonstrate that various operators can produce comparable out-
comes, despite the discrepancies that were noticed. Even if the
Plant-O-Meter and GreenSeeker sensors had comparable perfor-
mance, there were instances of noticeable distinction between the
NDVI values at a level of a=0.05. The variations in NDVI
occurred at low values of this index, even if the Plant-O-Meter sen-
sor, in the vast majority of cases, had confidence levels of 95% or
more, that were within GreenSeeker’s acceptable range. The sig-
nificance of the existing deviation between the two data sets can be
analyzed from the perspective of its impact on the accuracy of the
fertilizer rate. In the case of wheat, N recommendations would
only deviate by 3-5 kg N ha'! from the actual rate, considering that
the Plan-O-Meter NDVI lags by an average of 0.03. According to
the sensor-based nitrogen calculator (https://www.nue.okstate.edu/
SBNRC/mesonet.php), even with a difference of 0.05 in NDVI, the
suggested N rate would differ from the required N rate by 8-10 kg
N ha'!. In real field conditions, the spinning disc centrifugal fertil-
izer spreader, which is widely used by farmers all over the world,
causes more distortion of the target rate (10-35%), particularly at
extremely low or high rate settings (Parish, 2002), due to the
spreader patterns varying with changes in rate setting up.
According to Lawrence and Yule (2007), urea application using a
spinning disc spreader was successful only 24% of the time within
the planned application rate. Therefore, even with minor devia-
tions, a recommended rate from the Plant-O-Meter would typically
be close enough to the needed rate, so that application error and
other environmental factors might have a higher impact on crop
development.

The ability of daily NDVI data to forecast harvest metrics at
the end of the growing season is shown in Tables 2-7. The correla-
tions were developed independently for each variety and each
sensing date, in order to verify the reliability of sensor readings
and analyze the impacts of the aforementioned factors on the qual-
ity of regression models built from empirical data. In general, the
modeling of grain yield and plant height with sensor readings sug-
gests strong relationships (in most cases, R*>0.8), which are a con-
sequence of the long-term trial effect on the stability of output
(Tables 2-3). This statement is supported by Laurent et al. (2022),
who uncovered that the standard deviation was three times higher
in on-farm experiments, compared to small-plot trials conducted at
agricultural experimental stations of research institutes or univer-
sities. Tables 2 and 3 show that the sensors were able to detect the
majority of variations in grain yield of all wheat varieties with high
confidence, even for specific sensing dates. The graphs in the sup-
plementary material (Supplementary Tables 1-2) testify that all of
the examined correlations between sensor data and wheat traits
were positive. A number of studies on crop yield as their main
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research topic have used the linear model (Oglesby et al., 2022) as
the best mathematical way to describe the relationship between
NDVI and grain yield. However, the polynomial function was also
used (Varinderpal-Singh et al., 2022). Given model curves have a
tendency to flatten, which means that NDVTI loses its ability to pre-
dict yield when plants reach a certain level of development. By
comparing Tables 2 and 3, it is evident that NDVIGreenSecker Outper-
formed NDVIpjant-0-Meter in grain yield modeling for a particular
date and variety. In nearly all varieties, GreenSeeker performed
better than Plant-O-Meter in predicting grain yield early (March
215t and late (June 6) in the growing season. These two dates
delineate R? for the sensors, where NDVIGreenSeeker Was more rele-
vantly efficient rather than NDVIs from Plant-O-Meter. An accu-
rate early-season yield forecast has broad implications for farm
resource management (e.g., nitrogen and water management), eco-
nomic trading (Yiqing et al., 2017) and global food security.
However, in generalized analysis, where date and variety were
ignored by using one-way analysis, the Plant-O-Meter performed
better. The captured characteristics could be associated with the
discrepancy in Plant-O-Meter readings during the sensing dates,
which was smoothed out in the one-way approach and diminished
the advantage of GreenSecker.

The modeling of plant height using sensor data mainly sug-
gests moderate to strong connections as a consequence of the long-
term trial effect on output stability (Tables 4-5). The lower associ-
ation between NDVI and plant height in the early stages of plant
growth, whereas this relationship eventually becomes stronger
with plant development, reflects the similar characteristics of both
sensors. Again, in the early season (March 215t) GreenSeeker per-
formed better than Plant-O-Meter in plant height prediction for all
cultivars. This could be very important due to the fact that early
prediction of biomass yield can help stakeholders, energy man-
agers and decision-makers working in the sustainable and renew-
able energy sectors to consider agriculture biomass for energy pro-
duction at a larger scale (Saleem, 2022). NDVIGreenSecker data were
slightly more linearly oriented to the plant height data pattern,
implying that GreenSeeker had slightly more favorable character-
istics in terms of sensitivity for detecting plant height changes
(Supplementary Tables 3-4). NDVIplant-0-Meter sShowed a better R?
(0.70-0.82), that was higher than NDVIGreenSeeker, allowing to see
the difference in the average correlations among the varieties from
the sensor’s point of view (0.71-0.80). GreenSeeker’s data were
better fitted with plant height (R?=0.73-0.88) rather than Plant-O-
Meter’s ones if the sensing date is taken into account (R?=0.68-
0.87). Overall regression results show that GreenSeeker’s data are
slightly more suitable for predicting plant height rather than Plant-
O-Meter ones.

Tables 6 and 7 show the coefficient of determination as a con-
sequence of comparisons and modeling of spike length from sen-
sor values. On this level of observation, sensors equally behaved in
terms of spike length prediction scope (R?<0.4). Nonetheless, the
given tables show that there is some advantage in the prediction
accuracy of the NDVIpjant-0-Meter on May 6™, Experts in plant
breeding might be interested in this, because it could help them to
understand how different wheat traits affect grain yield per unit
area, which is becoming more important in harsh growing condi-
tions. With a reasonable degree of confidence (49%), the general-
ized regression determined that Plant-O-Meter was a little more
accurate as a sensor for predicting spike length rather than
GreenSeeker (47%), even after excluding the sensing dates and
varieties as separate rankings.
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Conclusions

In this study, a hand-held active proximal sensor called Plant-
O-Meter was tested to see how well it could predict wheat traits,
by comparing its features to those of the well-proven GreenSeeker.
With a high level of confidence, we came to the following conclu-
sions by using about 2,000 representative readings per sensor that
were based on repeated measurements of each trial plot, it was pos-
sible to conclude that:

» the GreenSeeker sensor had consistently higher output values
rather than Plant-O-Meter over the entire sensing period, i.e.,
on average 0.029 (6.36%); the differences between the com-
pared values (90%) were between 0 and 12%; the different
central operating wavelengths, the impact of the operator on
sensor readings and the different sensing angles of Plant-O-
Meter and GreenSeeker can help to explain this;

+ although the Plant-O-Meter and GreenSeeker readings were
analogous, they were noticeably different at the 0.05 level in
some cases; the previously mentioned differences in NDVIs
appeared when this index was low but, in most cases, the
Plant-O-Meter sensor had confidence levels of 95%, which
were within the limits of the GreenSeeker;

e the stability of the Plant-O-Meter, compared to the
GreenSeceker, suggests that it does not need to be calibrated
before use; therefore, the Plant-O-Meter could be used for a
long time without worrying about the accuracy of the readings;

* the NDVI data from Plant-O-Meter distinguished wheat vari-
eties more clearly in terms of CV rather than the NDVI ones
from GreenSeeker;

* GreenSeeker performed better than Plant-O-Meter for predict-
ing grain yield early (March 21st) and late in the growing sea-
son (June 6th), for almost all varieties; based on
NDVIGreenSeeker data, the performance of yield modeling
was better, on average, by 5.1%, compared to NDVIPlant-O-
Meter; NDVIGreenSeeker was 3% more accurate rather than
NDVIPlant-O-Meter in predicting plant height and there were
almost no difference in predicting spike length;

e in the field, the Plant-O-Meter was easier to use, because it
includes a mobile phone app that automatically records the
measured data and synchronizes them with the cloud server;
this option eliminates room for subjective error during mea-
surement and data logging; moreover, the raw data can be
retrieved from any place and post-processed with geospatial
representation in geographic information systems; Plant-O-
Meter’s raw data recordings saved in digital format are easy to
filter for outliers, reducing “pseudo” variations and their nega-
tive impact on data modeling; this can be a disadvantage for
the common user-farmer, who usually does not have the appro-
priate skills to manipulate data;

« for final approval, the Plant-O-Meter proximal sensor must
pass more tests, including trials with wide row crops, which
are different in their canopy architecture and Leaf Area Index
and have a high nitrogen demand, that can be managed in the
middle of the growing season using this type of diagnostic
approach.

Generally, the Plant-O-Meter sensor has commercial potential,
because it is affordable (<5008) and user-friendly, along with its
proven ability to accurately map crop status variations, which may
make it a viable and economical option for small and medium-
sized farmers who want to implement precision agriculture.
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