
Abstract
Terrestrial laser scanning (TLS) is a promising technology for

quantity checking huge grain stocks with low cost, light workload
and high efficiency. Existing applications of TLS in bulk grain
measurement and quantification lack the ability to capture com-
plete structural information of grain bulks and thus will result in
large errors. In this paper, we propose a bi-temporal TLS scheme
for fast 3D modeling and accurate volume measurement of bulk
grains stored in large warehouses. The scheme uses bi-temporal
multi-site TLS datasets acquired under both empty and full or high
loading conditions to obtain complete surface information about

grain bulk’s structure. In order for a grain bulk’s all external sur-
faces and the 3D volumetric model reconstructed therefrom to be
automatically derived from the bi-temporal TLS dataset, several
dedicated methods are developed for the scheme. A fully automat-
ed marker-free strategy exploring structurally semantic informa-
tion inherent in the large grain storehouses is adopted to register
multi-scan TLS point cloud data captured in large-scale granary
scenes. Also, a local minima-based region growing technique is
devised to extract underlying surfaces from a granary scene point
cloud model. Experiments show that the proposed 3D modeling
and volume measurement scheme can work effectively and quick-
ly in TLS-based granary field applications and repeated test data
demonstrate its correctness, repeatability and accuracy. Compared
with the conventional manual measurement approach, the bi-tem-
poral TLS scheme can not only achieve much higher measurement
precision, but also greatly improve efficiency by significantly
reducing cost, workload, and manpower. It has good potential for
use in the area of nationwide grain inventory inspection in China.

Introduction
As one of the most significant tasks for grain reserve manage-

ment, the national grain inventory inspection in China plays a vital
role in structure adjustment of agricultural production, macro-
scopic regulation of grain markets and guaranteeing of national
food security. In grain inventory inspection, the quantity (or
weight) of grains needs to be measured accurately and quickly,
and yet it is a difficult technical task. Conventionally, an approach
known as the “volume-density method” is applied in the nation-
wide grain inventory practice of China (Ren, 2007), which per-
forms the calculation of the grain weight by multiplying the grain
bulk’s volume by its average density. Thus, how to measure the
volume of stored bulk grains is one of the two critical issues in
estimating the grain quantity using this method. In the convention-
al way, the grain bulk is assumed to be a three-dimensional (3D)
object with some regular geometrical shape (e.g., a rectangular
cuboid, a cylinder or a circular cone), and then basic dimensions
of the grain bulk, measured with steel or leather tapes, goniome-
ters and other tools, could yield the value of the bulk’s volume
according to routine volume computation formulas for standard
geometrical shapes (Ren, 2007). Yet for the irregular grain bulks
(before leveling or during charge and discharge process), applica-
tion of this method necessitates manual forming and geometric
approximation, which implies low efficiency and high cost by
manpower and will lead to considerable errors. In summary, this
conventional method is a fast estimation technique for grain quan-
tity with low cost, light workload and high efficiency, but it cannot
achieve high precision and is only suitable for quantity checking
of grain bulks with regular shapes.

Terrestrial laser scanning (TLS) is a relatively low-cost optical
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surveying technique in 3D spatial data acquisition, which allows
measured objects to be digitally captured with unprecedented res-
olution and accuracy (Buckley et al., 2008; Reshetyuk, 2009; Chen
et al., 2018). The spatial resolution of terrestrial laser scanners is
high with a density to be several thousand or even more points per
m2, and their accuracy is sufficient to obtain very detailed informa-
tion about the objects’ structure (Lumme et al., 2008). Also, tripod-
mounted TLS systems are considered to be practical for opera-
tional use (O’Neal, 2014). The instrument’s portability, ease of use,
low expenses and sufficient accuracy open the possibility of appli-
cation of the laser scanning technology in the field of close-range
sensing and measurement.

In recent years, TLS has been commonly used in different
engineering survey applications, including terrain and landscape
mapping (Huising and Pereira, 1998), historical and cultural her-
itage documentation (Montuori et al., 2014), and civil building
modeling (Pu and Vosselman, 2009), etc. Among significant expe-
riences based on the use of TLS, Barreca et al. (2017) adopted
advanced 3D surveying techniques (i.e., TLS) on agri-food facili-
ties to create a three-dimensional parametric model for the purpose
of energy performance assessment in agri-food buildings; TLS was
also used to calculate the volumes of outdoor manure piles (OMPs)
in a Korean OMP investigation project (Park et al., 2021).
Theoretically, TLS can also be applied in volume measurement of
bulk grains stored in large warehouses, but the literature relating to
this area is rare and only a few scattered academic papers or tech-
nical reports can be found. For example, Liang and Sun (2011)
focused their presentation on a flow of methods to fast and accu-
rately obtain the grain storage’s internal structure and further esti-
mate the grain volume, covering preprocessing, segmentation, fea-
ture identification, registration, surface reconstruction and volume
estimation. Similarly, a laser scanning system dedicated to the
measurement of grain volume in the large storage tank, which con-
sists of a laser scanner, a stepping motor, a power supply and frame
assembled with slotted angle iron, was described in detail by Zeng
et al. (2012). Zhu et al. (2012) reported their experiments for
measuring the volume of irregular grain bulks using laser scanning
technology. An online measuring system for stored bulk grain
using a 3D laser scanning technology was proposed by Shao et al.
(2016). These systems can reconstruct the grain’s surface by con-
ducting contactless measurements of 3D coordinates of surface
points in a granary and estimate the volume of the stored grain bulk
based on a derived surface model. Due to the inability of such sys-
tems to capture hidden surfaces underlying the stored bulk grain,
volume estimation based solely on upper surface models would
result in large errors.

Accurate volume measurement of bulk grains should utilize
3D volumetric models constructed from data from multiple laser
scans acquired at different times and different sites. Considering
the difficulty of obtaining complete information on the granary
structure or grain surfaces by single-site scanning (or one view-
point) and other factors (e.g., occlusion effect, uneven density and
discontinuous spatial distribution characters, etc.), multi-site
scanning (or multiple viewpoints) is required (Liang and Sun,
2011). Besides the scans taken under high or full loading condi-
tions to capture grain surfaces, it is necessary to perform laser
scanning in an empty storehouse with no grain loaded to acquire
the internal structure of the granary. As the underlying surfaces
can be derived from the granary’s structural information, a volu-
metric model depicting the grain bulk’s 3D shape could be recon-
structed by merging these scanning data collected under different
loading conditions.

In this paper, we propose a TLS-based 3D modeling and vol-

ume measurement scheme for bulk grains stored in large ware-
houses. This scheme utilizes bi-temporal multi-site TLS datasets
acquired under both empty and full or high-loading conditions to
obtain complete surface information about grain bulks. In order for
a grain bulk’s all external surfaces and the 3D volumetric model
reconstructed therefrom to be automatically derived from the bi-
temporal TLS dataset, several dedicated methods are developed for
the scheme. A fully automated marker-free strategy exploring
structurally semantic information inherent in the large grain store-
houses is adopted to register multi-scan TLS point cloud data cap-
tured in large-scale granary scenes. Also, a local minima-based
region growing technique is devised to extract underlying surfaces
from a granary scene point cloud model. The proposed scheme is
experimentally applied to bi-temporal TLS data acquired in large
storehouses of several different grain reserves across China and its
correctness and accuracy is evaluated by repeated TLS measure-
ment tests.

Materials and Methods
Study area and data acquisition

The study was conducted in the Dadushe Grain Reserve Depot
located in Tongzhou District, Beijing, China (Figure 1a). This
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Figure 1. Experimental granary and terrestrial laser scanning data
acquisition. (a) A snapshot of Dadushe Grain Reserve depot where
experiments took place; (b) front view of the large grain store-
house; (c) scanning experiment under an empty condition; (d)
scanning experiment under a full condition.
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depot contains more than 10 large granaries. Figure 1b shows an
example granary, which is a large rectangular storehouse, about 50
meters long and 26 meters wide. The total height of the grain store-
house is about 10 meters and its grain pile height is 6 meters.
Terrestrial laser scans were performed in each grain storehouse to
generate 3D point cloud data which reflects the grain bulk’s geom-
etry and the storehouse’s internal structure.

In order to collect bi-temporal data, laser scanning experiments
were carried out in two different temporal phases where a large
grain storehouse shows great differences in terms of loading con-
ditions: one set of laser scans was performed in an empty condition
with no grain loaded to capture hidden surfaces underlying the
grain bulk (Figure 1c) while the other set of scans were taken under
high loading conditions to capture grain surfaces (Figure 1d). Also,
multi-site scanning is needed to fully cover a large-scale scene.
Prior to scanning experiments, measure stations (i.e., the sites
where individual scans are performed) were reasonably arranged
according to the granary structure, the shape of the object and the
effective range of the instrument. Two sets of four-site raw laser
scanning data acquired under different loading conditions are
shown as an example of bi-temporal TLS data in Figure 2a-b,
respectively. In this example, the layout of measuring sites for the
3D laser scanner is illustrated in Figure 2c. Scanning measure-
ments were performed at four sites roughly along the centerline of
the grain storehouse successively in both experiments.

The terrestrial laser scanner used for the experiments is an
application-specific 3D laser scanner designed for grain inventory
inspection ASQ-MStar8000i, as shown in Figure 1c-d. It is a class
1 eye-safe laser product operating with a wavelength of 1550 nm,
an emergent spot diameter of 3.25 mm and a beam divergence of
no more than 0.4 mrad, which generates a point cloud of up to
13,000 points per second with a range of up to 80 m and a typical
accuracy of ±5 mm. The point cloud is a data set comprised of
three-dimensional coordinates (in millimeters) of all laser foot-
prints hitting the grain or other objects’ surfaces. The derived point
cloud data in this study assumed the x-y-z Cartesian coordinate
system and permitted an average footprint density of 195 pt/m2. A
fixed scanning rate of 8,000 points per second was used for all
experiments. As the maximum number of points contained in the
data generated by every measure station is 1.5 million in this study,
the surveying time for a single scanning experiment would not
exceed 5 minutes. Considering the length of the grain storehouse is
less than 60 meters, the 3D laser scanner was also set to cut points
outside the optimal range (0.2~60 m) to ensure millimeter-level
measurement accuracy.

Methodological workflow
We propose a TLS-based schematic flow of 3D modeling and

volume measurement methods for bulk grains stored in large ware-
houses. In the entire scheme, a bi-temporal multi-site TLS dataset
will go through a series of mathematical processing tasks, such as
data preprocessing, registration, surface extraction, 3D reconstruc-
tion and volume calculation. The methodological workflow is
illustrated in Figure 3, where the ellipses represent data or models
and the rectangles represent processes or calculations. Each essen-
tial processing stage will be described in detail in the following
part of this section.

Data preprocessing
Due to various environmental disturbances (e.g., the interfer-

ence from outside light), instrumental vibrations and operational
factors in the data acquisition process, noisy points will inevitably

be introduced into the generated point cloud datasets. In addition
to these noisy data produced by random factors, the concave geom-
etry’s occlusion effect or variability in the measurement might lead
to sparse outliers (namely the data points further away from the
sample mean than what are deemed reasonable) which corrupt the
reconstructed point cloud model even more. The noisy point cloud
complicates the estimation of local point cloud characteristics such
as surface normals or curvature changes, leading to erroneous val-
ues, which in turn might cause subsequent point cloud processing
tasks (e.g., registration, segmentation, feature extraction and sur-
face reconstruction, etc.) failures. Moreover, the amount of data
captured directly by the 3D laser scanner is usually very large and,
to a certain extent, redundant, which seriously affects the speed
and accuracy of the subsequent processing. Therefore, it is neces-
sary to preprocess the raw point cloud data in a proper way.

In the preprocessing phase, filtering algorithms are utilized to
remove outliers and down-sample the point cloud. We adopt the
statistical outlier removal method to remove the noise and outliers
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Figure 2. An example of acquired bi-temporal multi-site 3D terres-
trial laser scanning data for an experimental grain storehouse. (a)
Four-site raw point clouds under an empty condition; (b) four-site
raw point clouds under a full condition; (c) site distribution.
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(Rusu, 2009). The basic idea behind this method is to perform a
statistical analysis on each point’s neighborhood in the dataset and
trim those that do not meet a certain criterion. For each point, its
average distance to the K nearest neighbors is computed. By
assuming that, the resulting distribution is Gaussian with a mean
and a standard deviation, all points whose average distances are
outside an interval defined by the global mean and standard devi-
ation can be considered as outliers and trimmed from the dataset.
The voxel grid method is also used for point cloud down-sampling
to reduce the number of points while keeping the contour of the
point cloud unchanged, aiming to improve the running speed of
subsequent key algorithms, such as feature recognition and point
cloud registration (Rusu, 2009). This technique creates a 3D voxel
grid (i.e., tiny 3D boxes in space) over the point cloud data and
then in each voxel, all the points present will be approximated
with their centroid. Figure 4 illustrates the effects of the statistical
outlier removal and the voxel grid-based down-sampling: the
original point cloud is shown in Figure 4a, while the resultant
dataset after statistical analysis and filtering and the down-sam-
pled dataset with the compression ratio of approximately 1/4 are
in Figure 4b-c, respectively.

Multi-site registration
Multiple laser scans acquired at different sites are needed to

fully cover large-scale granary scenes in full detail. Because each
scan refers to its own local coordinate reference, a prerequisite for
any further processing of such data is the registration process
which aligns all individual scans into a uniform coordinate refer-
ence system to obtain one large point cloud of the complete scene.
To circumvent an artificial marker-based strategy that is signifi-
cantly time-consuming as marker positioning is rather troublesome
and requires careful planning, the automatic marker-free registra-
tion method for multi-scan granary scene point cloud data present-
ed in (Hu et al., 2021) is adopted in this study. The framework of
the markerless method follows the common procedure to split the
entire registration into global alignment (i.e., coarse registration)
and fine registration. To tackle the correspondence problem, which
is at the core of a registration task, the geometrically semantic
information inherent in grain storehouses is explored in the stage
of global coarse alignment. A point-to-plane iterative closest point
algorithm presented by Chen and Medioni (1992) is used in the
fine registration step to minimize the cumulative distance between
point clouds of different scans.

                             Article

Figure 3. Workflow of the proposed bi-temporal terrestrial laser
scanning scheme for 3D modeling and volume measurement of
stored bulk grains. TLS, terrestrial laser scanning.

Figure 4. An example of point cloud filtering (outlier removal) and
data down-sampling. (a) Original point cloud data; (b) the filtered
point cloud after statistical analysis; (c) down-sampled point cloud
using the voxel grid method (Leaf size=0.1 m).
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Prior to the coarse alignment is the step of extraction of geo-
metrical features. There are 3 types of features of interest in a typ-
ical grain storehouse: point features (e.g., vertices and corner
points), line features (e.g., edges and intersection lines of surfaces)
and surface features (e.g., walls, ground and grain surfaces), as
illustrated in Figure 5. In these geometrical features, the corner
lines refer to the joint lines of adjacent walls and the corner points,
i.e., intersections of the vertical corner lines with the roof, are used
as semantic features to establish point-to-point correspondences
between different point clouds in coarse registration. Extraction of
corner points begins with determining the approximate horizontal
positions of four corner lines by measuring the rectangularity of a
quadrilateral region formed by the projected 2D point set of a spe-
cific scan. Then each corner point is located by searching for the
point with the highest elevation in the vicinity of each corner line.

The global coarse alignment is a crucial step of the whole regis-
tration process, which roughly aligns point clouds with a precision
that avoids the following fine registration from getting stuck in a local
minimum. In this step, the extracted semantic features (i.e., corner
points) are mathematically modeled as a 4-element ordered set:

                     (1)

where the symbol % represents a modulus calculation and
i∈{0,1,2,3}, indicating the ordered set starts with the point with
the index of i. In order to establish reliable correspondences
between the geometrical features from two different scans with a
sufficient overlap of point clouds, a simple enumeration process is
employed to match feature points by anchoring the target scan’s
feature set Gq and iteratively reordering the source scan’s feature
set Gp, where the matching pair with the maximum LCP (largest
common point-set) measure (Yon et al., 2017) is regarded as the
solution for the global coarse alignment between two scans. The
idea behind the enumeration process is to perform alignment tests
for all possible matching pairs of two sets of geometrical features
extracted from the source scan P and target scan Q, respectively.
Each aligning transformation is assigned a score based on the num-
ber of common points that are brought into alignment up to a
threshold. Over all trials, the matching pair with the optimum
transformation (i.e., the transformation with the best score) is
regarded as the solution for the global alignment between two dif-
ferent point clouds. Figure 6a-b shows the multi-site registration
results of the above-mentioned method for TLS point cloud
datasets acquired under empty and full conditions respectively, in
which different colors indicate points from different scans. For a
detailed description of the automatic marker-free registration
method, please refer to Hu et al. (2021).

Extraction of ground and grain surfaces
The 3D volumetric modeling of bulk grains stored in large

warehouses necessitates the extraction or segmentation of ground
surfaces and grain surfaces from the point clouds of different laser
scans taken under empty and full loading conditions respectively.
Segmentation in point cloud data is difficult because the points are
usually unorganized, incomplete, noisy, sparse, have inconsistent
point density, and in addition, the surface shape can be arbitrary
with sharp features. Segmentation methods can be divided into two
categories: border-based approaches and region-based approaches
(Nurunnabi et al., 2012). In a border-based approach, boundary
and edge points are first identified and then the extracted border
points are used to segment the surface according to different

saliency features (e.g., curvatures, normal vectors or local neigh-
borhood distribution) (Wang et al., 2018). Region-based approach-
es use local neighborhood properties to seek the homogeneity
within a specific feature or find variation among the features, and
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Figure 5. The geometric model of the large grain storehouse. 
(a) An empty condition; (b) a full condition.

Figure 6. Multi-site registration results for 4 terrestrial laser scan-
ning point clouds with different colors (black, yellow, grey and
blue) representing points from different scans. (a) An empty con-
dition; (b) a full condition.
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merge the spatially close points. Region growing, as a kind of sim-
ple region-based method, is widely adopted for the extraction of
feature surfaces in 3D point cloud data (Hu et al., 2017). Region-
based segmentation can also resort to clustering algorithms or the
random sample consensus algorithm (Wang et al., 2018). In gener-
al, region-based methods are more robust to noise than border-
based ones due to the use of global information.

Actually, the acquired TLS data has one property that should not
be ignored in working out a surface segmentation scheme for the
point cloud in the application of bulk grain measurement. The z-axis
of its acquisition coordinate system is vertical (i.e., along the direc-
tion of gravity) due to the automatic leveling ability inherent in the
laser scanner, and thus the ground or grain surface in the point cloud
model can be regarded as an underlying surface, any point on which
has the lowest elevation in the vicinity of the vertical line through it.
In this work, we propose a local minima-based region-growing tech-
nique to segment the underlying surface from a granary scene point
cloud model. The conventional region-based methods cannot dis-
pense with the time-consuming pointwise computation and a more
crucial issue in directly applying the region-based segmentation is
how to determine the initial seed points, whose numbers and loca-
tions would strongly influence subsequent processing steps. A
“divide and conquer” strategy is adopted in this technique to improve
computational efficiency by partitioning the 3D space containing the
point cloud model into small vertical units and perform a standard
region-growing process in each partition. The initial seed point for
each region’s growing process can be determined by finding the local
minimum point in terms of elevation in a specific vertical unit. The
first step is to perform a 3D space division of the TLS point cloud
captured in a granary scene. Create an axis-aligned minimum bound-
ing box for the 3D dataset and divide the box into many vertical
cuboids of the same size. Let cx, cy and cz denote the cuboid’s sizes in
the x-, y- and z-axes, respectively, and they are determined as

                     (2)

                     (3)

and

                     (4)

where BX, BY and BZ are the edge lengths of the 3D bounding box
in the directions of x-, y- and z-axes, respectively, and Ndiv is
named the space division coefficient, which assumes a positive
integer, for example, 8, 16, 32, etc. The basic idea of the 3D space
division of the point cloud model is illustrated in Figure 7a-b. 
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Figure 7. An example of the 3D space partition of the granary
scene terrestrial laser scanning point cloud (Ndiv=8). (a) Top view;
(b) divide the 3D axis-aligned bounding box containing the point
cloud model into vertical cuboids with identical sizes. The local
minimum points are marked in red.

Figure 8. Extraction of the granary surface in a granary scene point cloud model. (a) Extracting the underlying surface (rendered in green)
in a vertical cuboid by exploiting a region-growing process. The red dot represents the local minimum point of the cuboid; (b) concate-
nating neighboring regions to form a complete grain surface (rendered in orange).

[page 96]                                              [Journal of Agricultural Engineering 2024; LV:1555]                                                             

Non
-co

mmerc
ial

 us
e o

nly



For each vertical cuboid, locate its local minimum point that is
defined as the point with the lowest elevation inside it, as shown in
Figure 7b. In order to eliminate the deleterious effects of noise, the
local minimum point can be determined by finding Mlm (it is a pre-
defined parameter) lowest points in a specific cuboid and then tak-
ing the average of these points’ coordinate values.

Next, a region-growing method is employed in each vertical
cuboid to extract its underlying surface. In this step, a surface
region begins its growth from the local minimum point in the spe-
cific cuboid and the points that are close enough in terms of the
distance and smoothness constraints are clustered. The region-
growing method based on the distance and smoothness constraints
is described as follows:
i) construct a subset S from the point set contained in the vertical

cuboid: delete points whose heights are greater than zmin + (cz
- zmin)/2 (zmin is the coordinate value in the z-dimension of the
local minimum point) and sort the remaining points by their
height values. Set the local minimum point as the initial seed
and add it to the current seed list LS, and then start the process
of region growing;

ii) for every seed point in LS, find K nearest neighbors in S. Each
neighbor is tested for the angle between its normal and the nor-
mal of the current seed point. If the calculated angle θ is less
than a predefined threshold value θth (set to 45°), the neighbor-
ing point is added to the current seed list LS and the current
region Rc, and then removed it from S. Current seed is also
removed from LS;

iii) repeat Step 2 until the current seed set LS becomes empty,
which means the algorithm has grown a complete region that is
considered to be the underlying surface in the vertical cuboid.
The algorithm is terminated when all the points contained in the
underlying surface are extracted from the point set S.
Finally, the grown regions in all vertical cuboids of the 3D

bounding box are merged to form the underlying surface of a gran-
ary scene point cloud model. Figure 8 presents an example of
extracting the granary surface from a TLS point cloud captured in
a grain storehouse by merging all regions grown in each vertical
cuboid. The underlying surface in a specific vertical cuboid is
extracted by applying a distance and smoothness constraints-based
region growing method, as illustrated in Figure 8a. Figure 8b
shows the result of the final merging operation.

3D modeling of grain bulks
The 3D volumetric modeling of a grain bulk is essentially to

reconstruct the external surfaces of this grain bulk. The grain bulk
stored in a large warehouse mainly consists of a grain surface, a
ground surface and/or several wall surfaces. As the surfaces cannot
be reconstructed altogether in a single scanning experiment, deriv-
ing a volumetric model of the grain bulk from these surfaces
implies the simultaneous use of bi-temporal TLS datasets, which
are acquired under empty and full conditions, respectively. For
either dataset, multi-view registration is needed for all scans in it
and generates a complete point cloud model by merging all the reg-
istered scan data. Then a pairwise registration is performed on the
two partially overlapping point cloud model merged from both reg-
istered datasets, as illustrated in Figure 9a. So, the underlying sur-
faces of the bi-temporal granary scene point cloud models can be
extracted in a uniform coordinate system. Points above the grain
surface in both models are removed and the remaining points con-
stitute a point set that precisely characterizes the grain bulk’s exter-
nal surfaces. Figure 9b shows a point set for the grain bulk derived
in the way described above. Finally, a greedy projection triangula-
tion (Marton et al., 2009) is adopted to perform 3D surface recon-

struction on the derived point set. The ultimate 3D volumetric
model for the grain bulk is shown in Figure 9c.

Volume calculation
In the process of 3D volumetric modeling, the triangulation

operation yields a surface mesh model for the grain bulk by
decomposing each bounding surface that envelops the 3D point set
into numerous facets. Triangular facets in the grain and ground sur-
faces are utilized to estimate the volume of the point cloud model
representing a grain bulk’s 3D shape. In order to speed up the com-
putation, we devise a simple algorithm to calculate the grain bulk’s
volume based on facet projection, which is illustrated in Figure 10.
Firstly, a reference plane parallel to the xoy plane is inserted into
the mesh model. Each triangular facet in the grain and ground sur-
faces is projected onto the reference plane and an approximate tri-
angular prism is then created with this triangle and its projected
copy. Thus, the 3D mesh model can be divided into numerous
seamless approximate tri-prisms and its volume can be computed
by summing up the volumes of all triangular prisms:

                             Article

Figure 9. An example of generating 3D volumetric model for a grain
bulk. (a) Pairwise registration for bi-temporal granary scene point
cloud models. Different colors represent different terrestrial laser
scanning datasets acquired under empty and full conditions, respec-
tively; (b) the point set depicting the grain bulk derived from bi-tem-
poral point clouds. Points in the grain, ground and wall surfaces are
rendered in orange, green and white, respectively; (c) the 3D model
is reconstructed by a greedy projection triangulation method.
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                     (5)

where, N*f is the number of triangular facets, p*(i) is called the
polarity index, S*(i) denotes the area of triangle projected onto the
reference plane by the facet contained in the grain or ground sur-
face, h*(i) denotes the height of each tri-prism, and the subscript t
or b means that the mathematical quantity is related to the grain or
ground surface, respectively. The polarity index p*(i) takes only
the values of ±1. For a triangular facet in the grain surface, if its
centroid is above the reference plane, pt(i) takes the value of +1,
otherwise it takes the value of -1. For any facet located in the
ground surface, the reverse applies.

Software design
The overall mathematical processing contained in the scheme

is performed on a C/C++ software system for TLS data processing
that we specifically developed for a research project for Chinese
grain industry. The software system was designed with Qt, which
is a cross-platform GUI framework for desktop, embedded and
mobile application development. For the sake of convenient devel-
opment and maintenance, the object-oriented modular structure
design was adopted by the software system, where various func-
tional modules were integrated by means of static link libraries
(lib) or dynamic link libraries (dll). Graphics rendering application
programming interfaces in OpenGL were utilized for visualization
of 3D point clouds and drawing other 3D shapes (e.g., mesh mod-
els and other 3D shapes) on screen. As for the implementation of
3D processing algorithms, the software integrated some modular
libraries provided by the Point Cloud Library (PCL), which is an
open-source library of algorithms for point cloud processing tasks
and 3D geometry processing, such as occur in three-dimensional
computer vision (Rusu and Cousins, 2011). Generic techniques for
data representation, nearest neighbor search, feature description,
point classification, filtering, segmentation, interpretation, model-
ing and so on, were implemented with the methods and classes
contained in PCL’s modules, while the application-specific algo-
rithms, such as geometrical feature extraction, pairwise registra-
tion, surface isolation and volume calculation, were implemented
from scratch.

The software makes it easy to create 3D polygon models and
meshes from scanned point cloud data depicting a large-scale gran-
ary scene. It mainly consists of six modules: Ganary3D, OGL,
G3dBasic, G3dPlugin, IO and Algorithm. Key features of this soft-
ware include: rendering and manipulation of 3D data, surface
analysis, distance measurement and volume calculation, automatic
alignment of scanned point clouds, automatic conversion of point
cloud data to polygons, automatic surface segmentation, output
matching with standard file formats, etc. Source codes of the soft-
ware’s non-commercial version can be available free of charge on
request.

Results
Parameter setting

As described in the previous section, the proposed flow of
methods has several parameters that must be specified before a
scanning experiment. These parameters can control the qualities of
filtering, registration, segmentation and surface reconstruction and
will have a significant influence on the overall performance in
terms of accuracy and speed. Specifying the control parameters
before data processing is also an important task of the experiments.
The global parameter settings depend mainly on the size of the
storehouse, the complexity of the scene, the point-cloud density,
and the computational cost. Scheme-specific parameters used in
the experiments are listed in Table 1.

The voxel grid filter’s leaf size Sleaf determines the sampling
rate or compression ratio when the original TLS data is down-sam-
pled. A high sampling rate can speed up the processing process, but
will lead to loss of accuracy. Setting Sleaf to 0.1m, which implies a
sampling rate of approximately 1/4 can be achieved, is a tradeoff
between time and performance. For the sake of reliable registra-
tion, the slicer number Nslic should take a large number (e.g., 1024)
to ensure sufficient point samples for straight-line fitting-based
edge outlining. The same principle also applies to the setting of the
other two parameters used in the registration process: search radius
RS and uncertainty measure δ. The space division coefficient Ndiv
controls the quality and time cost of underlying surface segmenta-
tion. A large value of this parameter could achieve high computa-
tional efficiency for this task but would degrade its robustness to
noises. Thus, we take a small integer 16 for Ndiv to limit the com-
pletion of surface segmentation to less than 1 minute while achiev-
ing enough good results.
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Figure 10. Triangular facet projection-based volume calculation for
a 3D surface mesh model of bulk grains stored in a large warehouse.

Table 1. Parameter setting for terrestrial laser scanning experiments.

Parameter            Description                                                                                                                                                               Value

Sleaf                             Leaf size for the voxel grid filters used in data preprocessing                                                                                                      0.1 m
Nslic                            Number of point slicers for edge outline sampling used in registration                                                                                        1024
RS                              Search radius for determining geometrical feature points used in registration                                                                             0.5 m
δ                                 Uncertainty measure for point pattern matching between two-point sets used in registration                                                    10 cm
Ndiv                             Space division coefficient used in segmentation                                                                                                                               16
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Experimental results
A total of 8 sets of bi-temporal TLS data were selected from

the experiments to demonstrate 3D modeling and volume measure-
ment results. We feed these sets of data into the dedicated software
system, which implies that a series of mathematical processing
procedures described in Section 2 will be performed on them.
Figure 11 shows the 3D volumetric models of grain bulks recon-
structed from 8 sets of bi-temporal TLS point cloud data collected
in different rectangular storehouses. The first two models are for

regular grain bulks, while the other six models are derived from
grain bulks with irregular surfaces or even irregular geometrical
shapes. Utilizing these 3D models, we can calculate the volumes of
grain bulks, as shown in Table 2. In contrast, the volume values of
these grain bulks acquired by the conventional manual measure-
ment method are also listed in Table 2. Comparison results show
the relative errors of calculated volumes in two different ways
were no more than 4%.
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Figure 11. Reconstructed 3D volumetric models from bi-temporal terrestrial laser scanning point cloud datasets captured in 8 different
grain storehouses. (a) The model for Dataset #1; (b) the model for Dataset #2; (c) the model for Dataset #3; (d) the model for Dataset #4;
(e) the model for Dataset #5; (f) the model for Dataset #6; (g) the model for Dataset #7; (h) the model for Dataset #8.
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Time estimation
To demonstrate the time performance of the proposed bi-tem-

poral TLS scheme, its time costs should be evaluated. The total
time to complete the whole workflow described in Figure 3 com-
prises two parts: data acquisition time and data processing time.
The data acquisition time includes all surveying time at different
scanning sites under two different loading conditions. The data
processing time refers to the CPU running time for each step of the
proposed mathematical processing flow. We have run the TLS data
processing software on an HP® workstation computer with a 2.5
GHz Intel® CoreTM i7-6700 processor, 16 GB of RAM and 2 TB
of solid-state drive. Table 3 lists the details of time costs for each
task of the proposed TLS scheme performed on 3 sets of bi-tempo-
ral point cloud data collected in different rectangular storehouses.
From Table 3, we can see that it takes only tens of minutes to use
the bi-temporal TLS scheme for 3D modeling and volume meas-
urement of stored bulk grains, which is much faster than the con-
ventional manual measurement method.

Discussion
Correctness verification

Although Table 2 indicates the results produced by the TLS-
based measurement are consistent with those by the manual meas-
urement, it is insufficient to verify the correctness of the proposed
scheme for the reason that there are considerable errors in manual
measurements due to various approximate operations. The pro-
posed bi-temporal TLS measurement scheme should be verified by
comparing the volume measurements of bulk grains with the stan-
dard value that has been previously determined. This verification

method can be used to determine the correctness and accuracy of
the measurement scheme without considering the effect of geomet-
rical deformation.

We conducted repeated TLS measurements 10 times at differ-
ent sampling rates on a standard experimental granary bin with a
known volume value. Figure 12 shows the standard bin’s appear-
ance and structure. It belongs to a square steel silo with a regular
shape and smooth surface, whose volume can be estimated accord-
ing to standard geometric formula. Yet a high-precision total sta-
tion with 5'' for horizontal and angle accuracy and ±2mm +
2ppm×D for distance accuracy is utilized to obtain more accurate
volume value for the standard bin. Setting out enough observed
points can achieve 1‰ accuracy for the total station-based volume
measurement, whose result is regarded as a reference value for cor-
rectness verification. The workflow described in Section 2 was
applied to the TLS dataset acquired in the standard bin again.
Volume calculation results at different sampling rates are listed in
Table 4, in which the sampling rate - 1/n means that one data is
taken every n rows/columns from the original TLS data. From
Table 4, although the sampling rate has some effect on the accura-
cy of volume measurements, the correctness and repeatability of
the proposed scheme were verified by 60 repeated test results.

Error analysis
The error data listed in Table 2 show that the average error

between the TLS measurement and the artificial measurement is
within 4%. The volume values calculated by the TLS-based 3D
modeling are assumed to be closer to the true values. Table 4
reveals that there exist systematic errors in the measured results.
Systematic errors are mainly caused by experimental errors, data
acquisition errors and modeling errors. Generally, experimental
errors could exist in the measurement procedure, instrument oper-
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Table 2. Comparison of calculated volumes between the proposed 3D modeling-based scheme and the conventional manual measurement
and calculation method.

TLS Dataset Calculated Volume (m3)                                                                               Relative error
                                                By 3D modeling                               By manual measurement                                                       

#1                                                             3548.87                                                              3545.32                                                                           0.1%
#2                                                             5238.78                                                              5222.29                                                                           0.3%
#3                                                              764.23                                                                773.41                                                                            1.2%
#4                                                             2973.01                                                              2919.48                                                                           1.8%
#5                                                             1568.13                                                              1604.25                                                                           2.3%
#6                                                             1305.44                                                              1258.64                                                                           3.7%
#7                                                              819.15                                                                847.82                                                                            3.4%
#8                                                             1240.75                                                              1272.06                                                                           2.5% 
TLS, terrestrial laser scanning.

Table 3. Running time for each task of the proposed bi-temporal multi-site terrestrial laser scanning scheme for 3D modeling and volume
measurement.

TLS Dataset               No.             Loading          Average surv.                                   CPU running  time (sec.)                             Total 
                                  of sites          condition    time per site (sec.)    Preprocess                  Registration                 Others          (min.)

#2                                         4                     Empty                         184                            48                                      288                                 74                  31.63
                                                                     Full                           178                            40                                                                                                       
#6                                         4                     Empty                         193                            56                                      316                                 81                  33.82
                                                                    High                          189                            48                                                                                                       
#7                                         2                     Empty                         161                            16                                       87                                  46                  13.45
                                                                     Low                          160                            16
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ation, environmental conditions, and so on. To eliminate systemat-
ic experimental errors, experimenters should be required good
insight, proper tools and guidelines. This subsection focuses on the
analysis of the latter two errors.

The data acquisition errors are reflected by the quality of TLS
point cloud. Among the factors influencing the quality of point
cloud data, the sampling rate is the most important one, which
determines the resolution and density of a point cloud. Table 4
indicates that a low TLS sampling rate could induce considerable
measurement errors. Although increasing the sampling rate can
reduce the error, it will produce a large volume of data, which
implies a high computational cost. A compromise should be
reached between the computational efficiency and the measure-
ment accuracy. Experimental results show that a sampling rate of
1/3 or 1/4 for the original TLS data can fully satisfy the ultimate
accuracy requirements.

The modeling errors refer to miscellaneous errors generated in
the TLS-based methodological workflow for 3D modeling and
volume calculation of bulk grains. As the automatic markerless
multi-site registration is a vital task in the entire mathematical pro-
cessing, registration accuracy would directly affect the magnitude
of modeling errors. The overall registration accuracy can be quan-
titatively assessed by a pair of error metrics widely adopted by the
academic literature on point cloud registration: rotation error (RE)
and translation error (TE). RE and TE evaluate the estimated pose
against its ground truth by measuring the registration errors of fea-
tures used for correspondence matching (Hu et al., 2021). The pro-
posed automatic marker-free registration method can achieve high
geometrical accuracy of a maximum RE of 7° and a maximum TE
of 5 cm by making the correspondence determination from routine
to concrete, which is very helpful in reducing modeling errors to a
very low level.

Conclusions
This paper presents a bi-temporal TLS scheme for fast 3D

modeling and accurate volume measurement of bulk grains stored
in large warehouses. The use of bi-temporal TLS data provides the
scheme with the ability to capture complete surface information
about a grain bulk and accurately reconstruct its 3D volumetric
model accordingly. The scheme-specific methods or techniques,
including automated marker-free multi-view registration, region

growing-based surface extraction and triangular facet projection-
based volume calculation, can accomplish reliable and fast model
reconstruction and volume measurement by exploring the large
grain storehouse’s structural characteristics. Experimental results
reveal that the proposed 3D modeling and volume measurement
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Table 4. Measured values of the volume for a standard experimental granary bin with a known volume value of 229.57 m3.

Sampling rate (1/n)          Volume values calculated for ten            Mean (m3)     Standard devaition (m3)             Relative error
                                           repeated tests (m3)                                              

1                                                228.55, 229.92, 230.52, 230.47, 229.26,                  229.76                               0.78                                           0.08%
                                                  231.16, 229.67, 229.73, 229.30, 229.08                        
1/2                                             230.57, 229.03, 229.91, 229.34, 230.09,                  229.89                               0.82                                           0.14%
                                                  229.29, 230.26, 230.48, 231.34, 228.65                        
1/3                                             228.37, 227.79, 226.95, 229.44, 229.16,                  228.58                               1.05                                           0.43%
                                                  228.95, 227.16, 230.31, 229.24, 228.44                        
1/4                                             228.45, 228.02, 225.89, 227.99, 227.19,                  227.46                               1.19                                           0.92%
                                                  226.97, 226.71, 227.63, 225.97, 229.83                        
1/5                                             224.89, 223.90, 223.42, 229.97, 228.28,                  225.60                               2.20                                           1.73%
                                                  225.86, 223.62, 223.77, 225.36, 226.94                        
1/6                                             222.38, 226.98, 223.39, 223.51, 226.18,                  224.94                               2.08                                           2.02%
                                                  227.15, 222.85, 227.59, 226.39, 222.95                        

Figure 12. A standard granary bin for experimental verification. (a)
Appearance; (b) structure.Non
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scheme can work effectively and quickly in TLS-based granary
field applications and repeated test data demonstrate its correct-
ness, repeatability and accuracy. Compared with the conventional
manual measurement approach, the bi-temporal TLS scheme can
not only achieve much higher measurement precision, but also
greatly improve efficiency by significantly reducing cost, work-
load, and manpower. Noteworthily, the proposed scheme is a ded-
icated solution for TLS-based measurement in rectangular grain
storehouses. The major limitation of the scheme is that it is diffi-
cult to extend to other structured grain storehouse (e.g., circular
silos). Future work is still needed to develop a more generic TLS
scheme for bulk grain measurement to enhance its potential for use
in the area of national grain inventory inspection in China.
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