
Abstract
In order to improve the efficiency of robots picking apples in

challenging orchard environments, a method for precisely detect-
ing apples and planning the picking sequence is proposed. Firstly,
the EfficientFormer network serves as the foundation for
YOLOV5, which uses the EF-YOLOV5s network to locate apples
in difficult situations. Meanwhile, the soft non-maximum suppres-
sion algorithm is adopted to achieve accurate identification of
overlapping apples. Secondly, the adjacently identified apples are
automatically divided into different picking clusters by the
improved density-based spatial clustering of applications with
noise. Finally, the order of apple harvest is determined to guide the
robot to complete the rapid picking, according to the weight of the
Gauss distance weight combined with the significance level. In the
experiment, the average precision of this method is 98.84%, which

is 4.3% higher than that of YOLOV5s. Meanwhile, the average
picking success rate and picking time are 94.8% and 2.86 seconds,
respectively. Compared with sequential and random planning, the
picking success rate of the proposed method is increased by 6.8%
and 13.1%, respectively. The research proves that this method can
accurately detect apples in complex environments and improve
picking efficiency, which can provide technical support for har-
vesting robots.

Introduction
The planting area and output of apples in China account for

more than 50% of the wors production, but picking apples is still
mainly manual and expensive (Wang et al., 2016). Therefore, the
apple picking robot is the future development direction (Hu et al.,
2022; Ji et al., 2021). However, the apple picking robot still has
problems with low precision and low picking efficiency in com-
plex environments (Wang et al., 2017), so how to improve the
picking efficiency of the apple-picking robot is the focus and dif-
ficulty of the research on the apple-picking robot (Bu et al., 2022).
At present, in order to solve the problem of the low efficiency of
apple robot picking, researchers have carried out research on apple
identification and picking planning (Zhang et al., 2016; Tang et
al., 2023; Wu et al., 2023).

For apple target recognition, Ji et al. (2022) described an apple
detection approach based on Shufflenetv2-YOLOX, which could
achieve 26.3 frames per second on the Jetson Nano. And the
method boosted the precision and speed of detection. Jia et al.
(2020) proposed a visual detection network based on Mask R-
CNN, which took advantage of the detection of overlapping
apples. The precision rate of the model is 97.31%, and the recall
rate is 95.70%. Gao et al. (2020) proposed a multi-class apple
identification method for dense fruit trees based on a fast regional
convolutional neural network, which could effectively identify
occluded apples with an average precision of 0.879.

In the research on apple-picking planning, Zhang et al. (2021)
drove a three-degree-of-freedom apple-picking manipulator based
on a nonlinear control plan, and the average time to plan an apple
was 8.8 seconds. Zhao et al. (2011) succeeded in planning apples
in 77% of their experiments. The complex calculation of algo-
rithms resulted in an average picking time of 15 seconds. Yu et al.
(2021) developed a new apple-picking robot, which had a preci-
sion rate of 82.5% and a success rate of 72%. The single apple-
picking time was approximately 14.6 seconds, which was still
much slower than manual apple-picking. The aforementioned
research findings essentially show the average precision and speed
of detection, but the anti-interference capacity and efficiency of
robots need to be further enhanced in subsequent studies.

Despite the fact that the above study has significantly
improved the precision of recognition, there are still problems. In
challenging environments, high precision and speed of detection
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cannot coexist (Xu et al., 2023). It is also hard to automatically
identify the picking cluster and locate the best path in dense plant-
ing, and robotic picking planning is complicated and inefficient.
The outcome is that the final apple-picking takes a long time and
does not yield the intended results. In order to increase the preci-
sion of detection and reduce the picking time, this study offers a
method to precisely detect apples and plan the picking sequence.

The following is a summary of the major contributions of this
study: i) in order to improve the precision, a method for apple
detection in the complex orchard is provided based on the EF-
YOLOV5s network, which uses the EfficientFormer structure and
soft non-maximum suppression (NMS) to improve the precision
and effectiveness; ii) in order to improve the efficiency of picking,
a picking sequence plan is suggested based on an enhanced densi-
ty-based spatial clustering of applications with noise (DBSCAN)
algorithm, which is logically designed by combining Gaussian
weights of distance and significance level. The function of the
improved DBSCAN algorithm is automatically dividing the near-
by apples into several picking clusters.

Materials and Methods
Image acquisition

In this study, the Fengxian Apple Demonstration Base in
Xuzhou City, Jiangsu Province, China, provided the apples used in
the research. Fuji Apple, the primary apple variety in China, served
as the research object. The distance between the camera and the
apple is maintained at 0.3-2 m. The richness of the data set was
ensured by the simultaneous capture of 1877 images in various
natural settings, including 1234 images of unbagged apples, 316
images of apples at night, and 327 images of bagged apples, as
shown in Figure 1. It is required to increase the number of images,
such as apples at night and bagged apples, because deep learning
has restrictions on the size of the data set. In order to extend these
two types of images, the image enhancement approach is utilized
(Ji et al., 2023). The images are enhanced by using the
Albalentations library in PyTorch, which contains mirror image
flipping, scaling rotation, randomly rearranging the RGB channels
of the input image, image exposure, composition enhancement,
and other operations. Finally, 9358 images were acquired. By
using LabelImg annotation, a training set and a verification set are
created in the ratio of 9:1. A deep-field camera captured 50 apple
images simultaneously to assess the effectiveness of the method.
Apple target detection based on EF-YOLOV5s
network

This research suggests an EF-YOLOV5s network based on
YOLOV5s to improve the precision and speed of detection in a
real-time apple-picking robot, and its network topology is depicted
in Figure 2. And replacing the C3 structure with the
EfficientFormer structure can increase the speed and precision of
detection (Li et al., 2022). Additionally, the SoftNMS algorithm,
which is an improvement of the original NMS method, increases
the network’s precision for overlapping apples (Bodla et al., 2017).

Backbone design
The C3 structure, which has many parameters and a slow speed

of detection, is used by YOLOV5’s feature extraction network.
This vast and sophisticated network is challenging to implement in
some real-world application settings, such as mobile or embedded
devices. Additionally, the transformer has the ability to gather
global information, which can compensate for YOLOV5’s inade-

quacies, since it is a convolutional neural network and cannot con-
duct global modeling (Han et al., 2021). The newest lightweight
Transformer network, EfficientFormer, can simultaneously
increase speed and fix flaws in convolutional neural networks.
EfficientFormer serves as the foundation of YOLOV5’s feature
extraction network in this study. The construction of
EfficientFormer is depicted in Figure 3.

Two convolution layers are the first levels in
EfficientFormer, which is then followed by a MetaBlock layer
and a patch embedding layer. Both of these layers contain pooled
and multi-head self-attention mixers in various arrangements that
are all the same size.

Anchor frame algorithm improvement
YOLOV5s automatically adopts the NMS algorithm, primarily

using Intersection over Union (IoU) to weed out eligible boxes.
IoU is one of them and serves as a benchmark for gauging the pre-
cision of matching items in a given data set. The final box that sat-
isfies the requirements is obtained by the NMS method after itera-
tively performing IoU operations with other boxes and filtering
those with high IoU (Wu et al., 2020).

The NMS algorithm forcibly discards consecutive identifica-
tion frames with overlaps bigger than the overlapping threshold as
a result of this filtering technique, which lowers the precision of
detection of genuine objects in overlapped areas. Additionally, the
NMS threshold value must be carefully chosen. It’s necessary to
use experience to debug threshold values.

The screening formula of the NMS identification box is as fol-
lows:

                                                    
(1)

where si is the score of the recognition frame, bi represents the can-

didate box, is the maximum score, and Nt is the overlap threshold.
This study therefore opts to apply the soft-NMS method based

on NMS. Instead of removing identification boxes forcibly like
NMS does, the soft-NMS algorithm primarily maintains identifica-
tion accuracy by lowering the score of overlapping boxes, which
significantly improves the accuracy of the identification of over-
lapping apples.

The following formula is used in the soft-NMS identification
box screening:

                                                    
(2)

where D is the last detection frame, and s is the parameter of
Gaussian penalty function. Non-maximum suppression starts with
a list of detection boxes B with scores S. After selecting the detec-

tion with the maximum score , it removes it from the set B and
appends it to the set of final detections D. It also removes any box

that has an overlap greater than a threshold Nt with in the set B.
This process is repeated for the remaining boxes B. A major issue
with non-maximum suppression is that it sets the score for neigh-
boring detections to zero. Thus, we propose a single-line modifica-
tion to the traditional greedy NMS algorithm in which we decrease
the detection scores as an increasing function of overlap instead of
setting the score to zero as in NMS. This soft-NMS algorithm is
shown in Supplementary Figure 1.
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Figure 3. Structure of EfficientFormer.

Figure 2. EF-YOLOV5s network structure schematic diagram.
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Identify the location of apples
Planning the picking sequence begins with accurate apple posi-

tioning and detection. Every apple in a dense orchard may have a
complicated background. The three-dimensional location coordi-
nates Li of apples are expected for the end effector’s picking action
after the robot has identified the apple. In this study, the center
coordinates of the detection frame on the detection map are used as
the position of the apple anchor point, and the three-dimensional
coordinates of the apple anchor point in the camera coordinate sys-
tem are calculated according to the depth information and camera
parameters. 

                                                   
(3)

where z is the depth measured by the camera, and r is a 3×3 matrix
containing the internal parameters of the camera. u and v are the
horizontal and vertical coordinates of the apple center point.

According to Eq. (3), the spatial distance Dij between two pick-
ing points can be obtained as follows:

           
(4)

Design of apple picking sequencing based on 
the improved density-based spatial clustering 
of applications with noise algorithm

A crucial requirement for effective robot picking is the auto-
matic sorting of recognized apples into picking clusters. As a
result, the picking planning method presented in this research is
based on the improved DBSCAN clustering algorithm. The high-
density area is referred to as an “apple cluster” to distinguish it
from the low-density area. Then, by utilizing depth information
and the significance level of the Gaussian kernel function, the
picking order of each apple fruit is planned.

Apple cluster classification based on the improved densi-
ty-based spatial clustering of applications with noise clus-
tering algorithm

DBSCAN is a density-based spatial clustering algorithm that
can divide regions with sufficient density into clusters and find
clusters with arbitrary shapes in noisy spatial databases. However,
the DBSCAN clustering algorithm relies on manual judgment
when deciding on the domain radius (Eps) and the minimum cov-
erage points of core points (MinPts), making it difficult to apply
automation to this process (Schubert et al., 2017). The study there-
fore suggests a novel technique based on the K-distance function
(Swanepoel et al., 1999). The construction of the k-distance func-
tion and its integration with real objects yield the values of Eps and
MinPts. The following definitions are given:
Eps: domain radius, that is, the maximum distance between two

apples.
MinPts: the minimum number of domain points required for a

given apple to become the core object in the domain.

Selection of Eps
To realize the function of automatically clustering the identi-

fied apples quickly and accurately, this study proposes to use the

k-distance function to determine the Eps value in the DBSCAN
clustering algorithm. The spatial distance Dij is sorted by size using
the k-distance function, and the value of Eps is based on where the
first inflection point is located. The k-distance plot is shown in
Supplementary Figure 2.

In this study, the characteristic number, dim, is used to derive
the k value according to Eq. (5), where k equals 3.

                                                                       (5)

Selection of MinPts
The choice of MinPts is guided by the principle that dim

denotes the dimension of the data to be clustered. Setting MinPts to
1 would be illogical because each single apple fruit would consti-
tute a separate cluster. The outcome was the same for the neighbor-
ing cluster at that time. MinPts must therefore select a number
greater than or equal to 3. Two nearby clusters with high densities,
though, might merge into one cluster if the value is sufficiently
high. Given the analysis above, the value of MinPts in this study is:

                                                                           (6)

Process of improving the density-based spatial clustering
of applications with noise algorithm

Algorithmic processes are optimized by combining deep learn-
ing reliability and coordinate information. The accuracy of robot
clustering is improved, which lays a good foundation for picking
sequence planning. The process of the improved DBSCAN algo-
rithm is shown in Figure 4.

Picking sequence planning method based on Gaussian
weights of distance and significance level

In order to ensure efficient picking in a complex environment,
this study determines the following picking plan based on the fol-
lowing information: i) divide prepared apples with improved
DBSCAN density clustering algorithms; ii) according to the
weight of distance, all apples are picked one by one, starting from
the nearest cluster to the farthest cluster; iii) for each cluster, the
apple is picked according to its significance level, and the outer-
most apple is given priority to prevent collision with other apples.

To plan the picking sequence according to the above picking
plan, it is necessary to sort the order of clusters first and then sort
the apples in each cluster in turn. Therefore, this study uses the
Gaussian kernel function to rank each cluster. Then, according to
the significance level of each apple, the picking order of apples in
the cluster is planned (Sun et al., 2018).

The center of the coordinate system is where the depth camera
of the apple picking robot is located. The Gaussian kernel function
is used to assign weights of distance to each apple cluster in the
detection area (Wang et al., 2003):

                                                              
(7)

where k(x,x*) is the Gaussian kernel function, x is the three-dimen-
sional coordinate of the core point P of the apple cluster, and x* is
the center point. The closer the apple cluster is to the center point,
the greater its weight for distance. To sum up, this research sorts
the Gaussian weights of distance across apple clusters after first
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grouping the discovered apples, by using the DBSCAN. The
apples with significance levels ranging from high to low were then
selected one at a time, after the association between significance
level and depth information had been established. Repeat the pro-
cess until all of the apples have been selected.

Results and Discussion
Introduction of the experimental platform

The configuration of the industrial computer used in this study
is shown in Table 1. The detection algorithm is written in Python
on PyCharm. In model training, epoch is set to 150, batch size is
set to 64, and input image size is set to 640× 640. In order to verify
the performance of the identification algorithm proposed in this
study, 50 test sets in complex situations were selected for identifi-
cation and location experiments. Recall, precision, and F1 score
are used to evaluate the detection performance. 

                                                       
(8)

                                                       
(9)

                                               
(10)

where TP is the number of positive samples predicted by positive
samples, FP is the number of positive samples predicted by nega-
tive samples, and FN is the number of negative samples predicted
by positive samples.

EF-YOLOV5s network performance verification
In order to verify the detection effect of the network on apples

in complex environments, this study takes 50 complex orchard pic-
tures as the test set, including 10 unbagged apples, 20 apples at
night, and 20 bagged apples. Because night and bagging are the
key in the visual research of picking robots at present, this study
chooses night and bagging test images to account for a high pro-
portion, which can better reflect the detection effect of the network
on apples in complex environments. At the same time, this study
chose to conduct ablation experiments to evaluate each step. As
evaluation indices, average precision (AP), frame per second
(FPS), and parameter quantity are chosen. The results of ablation
experiments are shown in Table 2.

As can be seen from the data in Table 2, every step of improve-
ment is an effective improvement, that effectively improves the

                             Article

Figure 4. Process of the improved density-based spatial clustering
of applications with noise algorithm.
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Table 1. Industrial computer configuration.

Computer configuration                    Specific parameters

Operating system                                                    Windows 10
CPU                                                                        Intel e5-2683
Random access memory                                              64GB
GPU                                                                         GTX1080ti
CPU, central processing unit; GPU, graphics processing unit.

Table 2. Industrial computer configuration.

YOLOV5s                EfficientFormer                           SoftNMS                             AP                              FPS                      Param (M)

✔                                                                                                                                                  94.36%                                19                                   7.20
✔                                                  ✔                                                                                             97.21%                                33                                  10.22
✔                                                  ✔                                                    ✔                                     98.81%                                28                                  10.78
AP, average precision; FPS, frame per second.
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identification speed or precision of the network. The AP of EF-
YOLOV5s is 98.81%. Although the parameters increased by 3.58
M, the detection speed increased by 32% to 28 FPS.
EfficientFormer network structure effectively improves the detec-
tion effect of the network. And this module can effectively enhance
the feature extraction ability of backbone.

In order to verify the effectiveness of the method, we took the
feature extraction effect and precision of the improved model as
the basis for judgment, and conducted strict comparative experi-
ments. The experimental results were obtained as shown in
Supplementary Figure 3. Compared with three groups of experi-
ments in different environments, the improved model obviously
has a larger and more accurate feature extraction area, which
means that the improved model can bring better training effects
and higher training efficiency.

The soft-NMS algorithm is used in this study to help boost the
recognition success rate of obstructed apples, and the comparison
of recognition accuracy between NMS and soft-NMS algorithms
is shown in Figure 5. The unidentified apple fruit is represented
among them by the black spherical box.

In parallel, we carried out meticulous comparative studies in
three challenging circumstances as an extremely thorough
research project on apple-picking robots, as illustrated in Figure 6.
Apples in complex environments such as unbagging, bagging, and
nighttime were selected as the test objects, and the comparative
experiments of apple fruit detection were carried out by using
YOLOX-tiny, YOLOV5s, and EF-YOLOV5s detection networks.
Results for average precision are shown in Figure 7.

The average identification precision of different methods is
shown in Figure 7. The EF-YOLOV5 network can detect most
apples, but only a few small targets that are far away can’t.

Because the bagged apples are irregular in shape and the white
bags will reflect light, the precision of detection is obviously not
as good as that of the unpacked apples. At night, the precision is
worse than in the daytime because of the uneven illumination of
the light source and the reflection of the apple surface. EF-
YOLOV5s clearly outperforms the YOLOV5s and YOLOX-tiny
networks in terms of precision. Especially, EF-YOLOV5s has a
better detection effect on apples, which are seriously blocked.
Although, in actual recognition, small targets in the distance will
be unrecognizable, this does not affect the work of the picking
robot. When pick-up robots actually work, they don’t need to con-
sider small targets in the distance.

The comparison of precision between EF-YOLOV5s net-
works and other networks is shown in Figure 8. From the peak
value of the curve, it can be seen that the precision of EF-
YOLOV5s network is better than that of YOLOX-tiny and
YOLOV5s. From the rising speed of the curve, it can be seen that
EF-YOLOV5s is obviously faster than the other two networks,
which shows the advantage of the EF-YOLOV5s network, which
is that it is easy to train.

Although the parameters of the improved EF-YOLOV5s net-
work have increased, it has brought about a great improvement in
precision and FPS. The YOLOX-tiny network, as one of the most
effective lightweight networks at present, has better performance
than YOLOV5s. The improved network EF-YOLOV5s is better
than YOLOX-tiny in precision, recall, and FPS of detection.
Compared with other lightweight networks, EF-YOLOV5s can
accurately and quickly detect apples in complex environments
with higher precision and speed, making it more suitable for
deployment in apple-picking robots. Table 3 demonstrates how
this network differs significantly from other networks.
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Figure 5. Comparison of the recognition of overlapping apples using non maximum suppression and soft non maximum suppression algo-
rithm. a) Non maximum suppression; b) soft non maximum suppression.
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Table 3. Comparison of performance between the EF-YOLOV5s network and other networks.

Model                                  AP                       Precision                       Recall                        F1                  Param（M）                FPS

YOLOV5s                              94.36%                          94.85%                             92.32%                          0.93                              7.20                             19
EF-YOLOV5s                        98.81%                          98.95%                             96.45%                          0.98                             10.78                            28
YOLOX-tiny                          96.58%                          96.89%                             94.62%                          0.94                              5.03                             21
AP, average precision; FPS, frame per second.
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                             A

Figure 6. Comparative diagram of apple detection with different networks in different environments. a) Unbagged apples; b) bagged
apples;  B apples at night.

Figure 7. Comparison of average identification precision of different methods.
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Simulation verification of apple picking sequence
planning

According to the three-dimensional information of apple fruit
recognition, a schematic diagram of the apple spatial network is
established, as shown in Figure 9. Three methods, namely, picking
sequence planning based on the improved DBSCAN algorithm
(referred to as “proposed method” in the following table),
sequence planning, and random planning, were used to carry out
comparative experiments on apples in unbagged, night, and bag-
ging environments (Karche et al., 2022; Gangammanava et al.,
2021). Use Matlab to build 3D positions and make a schematic dia-
gram of the picking sequence. Given the orchard’s complex envi-
ronment, the experiment does not include any other obstacles
besides leaves and branches. Leaves are considered collision
obstacles, while branches are non-collision obstacles. It is assumed
that the robot arm moves at a speed of 100 mm/s according to the

                             Article

Figure 8. Comparison chart of the detectionprecision of different
networks.

Figure 9. Schematic diagram of apple positioning and spatial network construction. a) unbagged apples; b) apples at night; c) bagged
apples.

Table 4. Experimental comparison of different planning in complex environments.

Environment            Planning                        Path length/mm                      Total picking time/s                   Single fruit picking time/s

Unbagged                        Proposed                                      3262.35                                                 42.43                                                          3.86
                                        Sequential                                    3648.68                                                 48.95                                                          4.45
                                        Random                                        5624.95                                                 57.49                                                          5.23
Night                               Proposed                                      4562.30                                                 52.67                                                          4.79
                                        Sequential                                    4896.26                                                 60.45                                                          5.50
                                        Random                                        5849.35                                                 72.95                                                          6.63
Bagged                            Proposed                                      3195.46                                                 40.86                                                          3.71
                                        Sequential                                    3654.80                                                 46.25                                                          4.20
                                        Random                                        4815.49                                                 50.47                                                          4.59
Average                           Proposed                                      3673.37                                                 45.32                                                          4.12
                                        Sequential                                    4066.58                                                 51.89                                                          4.72
                                        Random                                        5429.93                                                 60.30                                                          5.48
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planned sequence to pick all the identified apples. The results of
different picking sequence planning methods in different environ-
ments are shown in Table 4. In the simulation experiments of night
and bagging, the success rate of picking in a night and bagging
environment is lower than that in an unbagging environment due
to the interference of night light and reflected light from white
bags. Compared with sequential and random planning, the pro-
posed method reduces the average picking time by 12.66 and 24.84
percentage points, respectively, and shortens the traversal path by
9.67 and 32.35 percentage points. These results show that, even for
apples in a complex environment, the picking efficiency of the
improved picking sequence planning method is obviously
improved compared with the other two methods, and the picking
time and path length are reduced.

Picking failure will occur in the experiment due to the branch
blocking. According to the findings, the improved picking
sequence planning may considerably enhance the picking efficien-
cy of the apple-picking robot and limit the possibility of collision
damage when the apple-picking robot performs multi-objective
apple picking.

Apple picking experiment
In order to verify the effectiveness of the picking plan pro-

posed in this study in actual apple picking, a four-degree-of-free-
dom single-arm apple-picking robot platform, as shown in Figure
10, is used for comparative experiments. Pick from different angles
and positions to ensure the difference between each picking exper-
iment. Limited by the growing and harvesting season and condi-
tions of apples, the robot picks simulated apples in the laboratory.
The experimental results obtained by using the improved
DBSCAN clustering algorithm are shown in Figure 11. The exper-
imental results of picking paths with different picking plans are
shown in Figure 12, and the experimental results of picking in dif-
ferent positions for 10 times in the laboratory environment are
shown in Figure 13.

In this study, the EF-YOLOV5s identification algorithm is
used to provide the spatial location information for detecting
apples, and Figure 11 shows the identified apple. Then, the
improved DBSCAN clustering algorithm is used to automatically
divide the apple into clusters with different densities, and then the
picking planning of each apple fruit is calculated by combining the

Gaussian weights of distance and significance level. By combining
Gauss weights with the improved DBSCAN clustering algorithms,
rational planning of the apple’s picking sequence was achieved,
significantly improving the picking efficiency. In a simulated envi-
ronment, the proposed planning method will be experimentally
compared with two other methods, as shown in Figure 12.

                             Article

Figure 10. Apple picking robot.

Figure 11. Apple detection and clustering diagram in laboratory environment. a) Apple detection; b) clustering diagram.

                                                              [Journal of Agricultural Engineering 2024; LV:1549]                                             [page 61]

Non
-co

mmerc
ial

 us
e o

nly



In the laboratory, three distinct planning methods were used to
carry out 10 groups of comparative experiments on picking
sequence, and the result is shown in Figure 13. 

During the actual experiment, sequential planning and random
planning do not take into account the circumstances where the
apple is covered up, which could lead to picking failure. However,
the planning proposed in this study fully considers the occlusion.
From the experimental results, the method proposed in this study
has indeed improved the average picking success rate, reaching
94.8%. Compared with the other two methods, the method pro-
posed in this study is superior to random planning in terms of aver-
age picking success rate and average picking time. Even though it
occasionally necessitates a longer picking path in order to boost
the picking success rate, the proposed method generally outper-
forms the other methods in terms of picking success rate and effi-
ciency. To sum up, the experiments show that the apple identifica-
tion network and picking planning method designed in this study
play a significant role in improving the efficiency and success rate
of agricultural apple-picking robots.

Conclusions
In order to solve the problem of low efficiency in apple picking

in complex environments, this study proposes an apple-picking
method combining target detection and picking sequence planning.
Firstly, the EF-YOLOV5s target detection network is used to
detect apples. Compared with the original YOLOV5s network, the
improved network has obviously enhanced the efficiency of detec-
tion, with the precision of detection increasing by 4.3% and the
speed increasing by 32%. Secondly, by introducing apple-picking
sequence planning based on the improved DBSCAN clustering
algorithm, this method effectively divides apples into clusters with
different densities and improves the efficiency of the robot.
Finally, the picking order of each apple is determined by combin-
ing the weights of Gaussian distance and significance level, which
avoids the repeated identification and processing of information in
the picking process and significantly improves the picking effi-
ciency. Overall, compared with sequential planning and random
planning, the success rate of the proposed planning has increased
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Figure 12. Schematic diagram of picking trajectory under the proposed, sequential and random planning. a) Proposed planning; a) sequen-
tial planning; c) random planning.

Figure 13. Comparative experiments on picking sequence. 
a) Average picking time of single apple; b) path length; c) picking
success rate.
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by 6.8% and 13.1%, respectively. In addition, the more targets that
are detected, the greater the advantages of EF-YOLOV5s identifi-
cation network. In order to accurately detect and increase harvest
efficiency in the actual environment, this method can successfully
address the issue of the significant quantity of information process-
ing and reprocessing that robots must deal with.
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Online supplementary material:

Figure S1. The pseudo-code in green is replaced with the one in red in soft non maximum suppression. We propose to revise the detection scores by scaling them as
a linear or Gaussian function of overlap.

Figure S2. K-distance diagram.

Figure S3. Feature extraction heat map distribution in different environments. a) Original images; b) YOLOV5s; c) EF-YOLOV5s.
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