
Abstract
Anthropogenic activities have adverse impacts on productive

lands around coastal zones due to rapid developments. Assessment
of land use and land cover (LULC) changes provide a better
understanding of the process for conservation of such vulnerable
ecosystems. Alanya is one of the most popular tourism hotspots on
the Mediterranean coast of Turkey, and even though the city faced
severe LULC changes after the mid-80s due to tourism-related
investments, limited number of studies has been conducted in the
area The study aimed to determine short-term and long-term
LULC changes and effects of residential development process on
agricultural lands using six Landsat imageries acquired between
1984 and 2017, and presented the first attempt of future simulation
in the area. Average annual conversions (AAC) (ha) were calculat-
ed to assess magnitudes of annual changes in six different periods.
AACs were used to calculate area demands for LULC2030 and
LULC2050, whereby annual conversions from different periods
were multiplied by the number of years between 2017, 2030 and
2050 for each scenario. Finally, optimistic and pessimistic scenar-
ios for agricultural lands are simulated using a future land use sim-
ulation model. Accordingly, agricultural lands decreased from
53.9% to 31.4% by 22.5% in 33 years and are predicted to change

between 19.50% and 24.63% for 2030, 1.07% and 14.10% for
2050, based on pessimistic and optimistic scenarios, respectively.

Introduction
Coastal zones are one of the most precise areas that usually

face rapid and severe changes, due to pressure of extraordinary
population, particularly in warm seasons. Mostly, expeditious res-
idential development (RD) results in environmental degradation
and land fragmentation in these areas. Investigation of the changes
related to RD process is necessary for the maintenance of ecosys-
tem functionality and sustainability of vulnerable ecosystems in
such rapidly changing locations (Yaghobi et al., 2019).
Assessment of land use and land cover (LULC) change, a global
and continuous trend, known to be an important indicator of such
activities since it is predominantly shaped by growing population,
economic activities, and political decisions.

As it was mentioned by Roy and Roy (2010), land use term
consists of physical or biological cover of the Earth’s surface that
includes artificial structures, bare soils, water and vegetative cov-
ers (Ellis 2007), whereas land use presents the management strate-
gies that humans impose on a certain site that involves social and
economic, and thus, has a complicated aspect. Conversion from
different LULC types to built-up areas has diverse effects on the
Earth’s surface. For instance, heavy anthropogenic activities pre-
sent a common threat to the maintenance of vegetation, especially
productive agricultural lands (Leu, 2019), in response to tourism-
related socioeconomic development since the construction of
roads, airports, and other travel opportunities enhance the accessi-
bility of an area, and it accelerates LULC changes in many touris-
tic locations (Zope et al., 2015). As cited by Modica et al. (2012),
the Mediterranean region is facing ecosystem loss and fragmenta-
tion against urbanization trends (EEA, 2011). Inappropriate and
uncontrolled conversions into impermeable structures usually pre-
sent environmental threats including: flooding, landslide, erosion
or urban heat island (UHI) effects, due to increased concrete sur-
faces. Furthermore, unbalanced alternations triggered by RD neg-
atively contribute to climate change at different scales, which may
cumulatively impair biodiversity, and hydrology in further steps.
From another point of view, multidirectional changes may occur
simultaneously in a certain area, and vegetation areas can be
increased although urban areas seem expensed (Pandey et al.,
2018). On the other hand, insufficiency of appropriate space for
development causes reclamation of land from sea, as was men-
tioned in China (Sengupta et al., 2019). Therefore, the evaluation
of LULC changes has a key role in better understanding human
impacts on the environment (Modica et al., 2012; Lodato et al.,
2023), whereby multi-temporal change detection presents a basis
to understand human-environment interactions (Statuto et al.,
2019), and help to collect quantitative information for increasing
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planning efficiency while conserving fragile ecosystems. 
Remote sensing technologies have long been used to determine

LULC changes at local, regional and global scales. Using remotely
sensed data enables analyzing the interactions between population
dynamics and LULC changes (Mahmoud and Divigalpitiya, 2019),
and availability of cost-free imageries such as Landsat series,
which collects data all over the world over 50 years, has increased
the number of studies in different regions of the world.
Understanding past LULC trends enables forecasting of further
replacements, whereby simulation models provide a visual mani-
festation of possible conditions. Forecasting future conditions
assists planners and policymakers in avoiding substantial amounts
of productive land or natural vegetation losses against dynamic RD
trends (Sakieh et al., 2015), and became an essential tool for main-
tenance of resources. Different methods have been used for future
LULC simulation in recent years within different regions of the
world, as well as Turkey. For instance, land change modeler (Leta
et al., 2021), cellular automata-artificial neural network (CA-
ANN) and multilayer perception (MLP) (Amgoth et al., 2023),
CA-Markov model (Hind et al., 2022), MLP-ANN (Çevik-Değerli
and Çetin, 2022), Dyna-CLUE (Aydın and Eker, 2022), and future
land use simulation (FLUS) (Çağlıyan and Dağlı, 2022) were used
identify the changes in LULC types such as agricultural lands. The
present study focused on the identification of past and future agri-
cultural land changes around the main residential site of Alanya
City, a popular international tourist location on the Mediterranean
coast, Turkey. The area is important not only for tourism but also
for agricultural activities due to suitable soil and climatic condi-
tions. The city has been subject to severe alternations after the
early 1980s due to an increase in tourism-induced projects, and
simultaneously, main income source shifted from the agricultural
sector to tourism. Rapid LULC changes have occurred against the
shifts due to the appeal of new touristic destinations. However, a
limited number of studies conducted around the city to determine
changes with different purposes (Sönmez et al., 2016; Özüpekçe,
2020; İşler and Aslan, 2021; Inalpulat and Genç, 2021), and multi-
temporal transitions and potential future LULC conditions have
not been studied in the area.

The main objectives of the study were to determine short-term
and long-term impacts of RD on surrounded agricultural lands, to
predict future status according to different conversion scenarios,
and to simulate optimistic and pessimistic situations for agricultur-
al lands for manifesting future patterns (LULC2030 and LULC2050)
using FLUS model. The scenarios were obtained from average
annual conversions (AAC) that occurred in different periods to
answer the following questions: i) How was the past LULC change
trends in different periods between 1984 and 2017?; ii) Which
periods resulted in the lowest and the highest losses in agricultural
lands?; iii) What would the LULC pattern be in 2030 and 2050
years if the past trends with minimum and maximum agricultural
changes occurred in different periods may eventuate similarly in
the future?

Materials and Methods
Study area

Alanya is one of the 20 municipals of Antalya Province with
typical Mediterranean climate and vegetation characteristics, and
the city center is located at 36° 32′ 37″ N - 31° 59′ 59″ E. Due to
the existence of sandy beaches, historical and natural places, the
city has become a tourist hotspot within the last decades. The study

was conducted around the city center that covers the twelve central
neighborhoods, which compose the main residential zone at the
coastal part of Alanya with a survey area of approximately 3880 ha
(Figure 1, Copernicus, 2018). The specified area was selected due
to ecological sensitivity, where rapid LULC changes continuously
proceed and agricultural lands are expected to be faced with severe
and irreversible changes in the near future against human-induced
factors. On the other hand, the ecological zone around Alanya
Castle is assumed to remain the same in the future due to its natural
and cultural heritage, whereas the General Directorate for
Protection of Natural Assets has announced the area as a protected
zone since eight endemic plants have been reported in the area
(MEUCC, 2018). Therefore, the specified zone is denoted as the
restricted zone in the present study and covers an area of approxi-
mately 140 ha.

Image classification and accuracy assessment
Multi-temporal Landsat imageries of Thematic Mapper (TM)

(1984, 1990, 1998, 2003, and 2010) and Operational Land Imager
(OLI) sensors (2017) with 30 m resolution and path/row number of
177/35, which have been radiometrically corrected and georefer-
enced, were freely downloaded from United States Geological
Survey Earth Explorer website. The COVID-19 pandemic has
impacted environmental processes, as well as human activities in
many areas. The restrictions on human activities were reported to
have improved environmental quality and reduced degradation
(Ghosh et al., 2020), and the process may lead to relative increases
in especially natural vegetation areas. On the other hand, some of
agricultural lands were preferably abandoned or insufficiently pro-
cessed in many areas of Turkey (Ceylan and Ozkan, 2020; Dogan
and Dogan, 2020), while some of the barren lands decided to be
used for agricultural purposes with the aid of financial supports to
increase yields of strategic products (Uysal and Veziroglu, 2020).
Preliminary results of ongoing studies have demonstrated there is
a strong link between reduced agricultural activities and LULC
change due to the pandemic limitations. In fact, the difficulties
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Figure 1. Location of study area, restricted zone, and Corine Land
Cover (Copernicus, 2018).

Non
-co

mmerc
ial

 us
e o

nly



sourced from the limitations have resulted in an abandonment of
agricultural lands, which led to the growing of natural vegetation
types such as weeds or shrubs in the fields instead of agricultural
products. This situation significantly altered the spectral signature
in comparison with the previous status of the abandoned pixels,
and thus, seemed to have the potential to reach misleading results
and overestimations of N class areas for future predictions.
Conversely, the conversion of barren lands into agricultural fields
as a result of supports may cause an overestimation of future A-
class areas and an underestimation of natural vegetation areas.
Thence, the period after 2020 has not been involved in the context
of the study to prevent misinterpretations for future predictions,
while 2018-2020 could not be considered due to intense cloud con-
ditions. Imageries with less than 10% cloud cover and acquired
within mid-summer were selected to ensure the similarity in illu-
mination conditions and vegetation pattern, and one image was
used to delineate the LULC map of each year. A total of six bands
(6-b) covering the visible, near-infrared, and shortwave infrared
bands from each TM and OLI imageries were used in the study.
The selected bands were stacked to obtain 6-b imageries. The 6-b
imageries were clipped based on the study area boundaries. Pixel-
based supervised classification maximum likelihood algorithm
was adopted for the classification process, which was declared to
give satisfactory results for Landsat-based LULC change analysis
(Vijay et al., 2016). A classification scheme was composed includ-
ing four main LULC classes, namely; agricultural land (A), natural
vegetation (N), water surface (W), and residential area/bare soil
(R-B). The A class covered all types of cultivated fields or
orchards. The N class included forest tree species, bushes, shrubs,
meadows, pastures, and grasslands. The W class represented
coastal water lines and streams. Lastly, the R-B class comprised
artificial surfaces like buildings, roads, harbors, and bare areas
such as sandy beaches at the coastal line, and rocky hills. Previous
studies have revealed that a separate consideration of residential
areas and bare soil classes usually led to misclassifications in areas
with similar terrain properties and LULC types using imageries
with moderate resolutions like Landsat (Inalpulat and Genç, 2016;
Inalpulat and Genç, 2017; Awange et al., 2018; Shi et al., 2019),
whereby natural areas were underestimated due to their relatively
small coverages of beaches, together with fragmented and dis-
persed structures of particularly rocky areas (Inalpulat and Genç,
2021). Thence, the classes are combined due to their spectral sim-
ilarities for more precise identification of the change magnitudes.
Similarly, meadows and pastures are known to be very rare in the
area, and it is difficult to discriminate them from natural vegetation
cover, especially in dry season (Xie et al., 2019), and classified
within the same class of N to overcome this situation. Alam et al.
(2020) has mentioned that land use designates the human activities
on land that generally cannot be directly observable for satellite

imagery (Lo, 1986), and land cover refers to the vegetation and
artificial constructions on the land surface (Burley 1961), which is
directly visible. The definitions of ‘land use’ and ‘land cover’
terms, on the other hand, vary within different studies in the liter-
ature (Nedd et al., 2021), and must be defines considering the spe-
cific purposes. The terms ‘land use’ and ‘land cover’ denoted to be
two of the key observers of the Earth’s surface and answer the
questions of “What is it for?” and “What is it?, respectively
(Duhamel, 2012), as it is cited by Nedd et al. (2021). Land use
term answers the question of what is it for since it is referred to
how humans exploit the land cover for such as, agricultural or res-
idential purposes (Lambin et al., 2000). In the present study, the
main research questions are dependent on “What was it in the
past?, and “What may it be in the future?”, which designate the sta-
tus of the land cover.

The validation process, which refers to the agreement of clas-
sified pixels and reference data representing the actual status, has
a key role in LULC studies. Overall accuracy (%) and kappa statis-
tics, the two main well-known indicators, were assessed by con-
trolling a total of 200 stratified random points from each LULC
map with a minimum of 10 points per class through the Google
Earth application and ground information (Table 1). Kappa values
over threshold of 0.75 are denoted to represent good classifications
(Bharatkar and Patel, 2013). Classification and accuracy processes
were conducted in Erdas Imagine software.

Land use and land cover change detection
The change analysis was conducted in six periods including

the changes thst occurred in short-term periods between
LULC1984-LULC1990, LULC1990-LULC1998, LULC1998-LULC2003,
LULC2003-LULC2010, and LULC2010-LULC2017; and long-term
period between initial and final years of the study (LULC1984-
LULC2017). AAC was calculated for each period, which was used
for future pixel demand predictions of each scenario in further
steps, to conduct a systematic change analysis by standardizing the
past trend comparisons (1). Transformations between LULC class-
es were determined in hectares (ha) and percentages (%), and
changes from each LULC class to another were calculated. With
respect to the concept of the study, which promotes the identifica-
tion of RD effects on other LULC classes, the R-B coverages of
each year were subset to highlight conversions (ha) from the pre-
vious year’s LULC class to R-B area for each period.

                                                                                         (Eq. 1)

where, LULCPost.R-B area represents posterior year’s R-B area (ha),
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Table 1. Number of control points for accuracy assessments.

Class/year            LULC1984             LULC1990                      LULC1998                 LULC2003                    LULC2010                   LULC2017

N                                       64                              63                                        53                                  51                                     46                                     34
A                                      104                             95                                        84                                  80                                     68                                     59
W                                      10                              10                                        10                                  10                                     10                                     10
R-B                                   22                              31                                        53                                  59                                     78                                     97
TOTAL                            200                            200                                      200                                200                                   200                                   200
LULC, land use and land cover; N, natural vegetation; A, agricultural land; W, water surface; R-B, residential area/bare soil.
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LULCPrev. LULC class area represents previous years LULC class area
(ha) (equals to the amount that converted to R-B class in posterior
year), and (tPost.-tPrev.) represents the time differences between pos-
terior and previous years for all periods.

Scenario generation for LULC2030 and LULC2050
Area (ha) demands for LULC2030 and LULC2050 classes were

calculated by extrapolating the past conversion trends depending
on AACs for the generation of different scenarios. Accordingly,
future LULC class areas of different scenarios were predicted by
multiplying AACs of all classes in each period with number of
years between 2017 and 2030, and between 2017 and 2050. In this
process, the areas of classes within the restricted zone were main-
tained in the future, which means that even if the class area calcu-
lation reaches zero, it would be equal to the restricted part (ha) of
LULC2017 class area. The procedure to calculate the future class
areas (ca) is given in the equation below (2). Among these scenar-
ios, the optimistic scenario with minimum agricultural land loss
(ha) and pessimistic scenario with maximum agricultural land loss
were identified for simulation process. Figure 2 represents the sce-
nario generation steps.

                                                                                          

                                                                                         (Eq. 2)

where, ca is class area (ha); ca2017 is 2017 ca (ha) of the same
class; tsimulation is simulated year of 2030 or 2050; (tsimulation-t2017)
represents the number of years between 2017 and 2030 or 2017
and 2050; capredicted is predicted ca (ha) of same class for 2030 or
2050; and carestricted is the restricted ca (ha) of the same class.

Simulation of optimistic and pessimistic scenarios 
The LULC patterns of optimistic and pessimistic scenarios for

LULC2030 and LULC2050 were simulated based on LULC2017 using
ancillary data relating to driving forces via the model of FLUS. In
this case, the considered driving forces were elevation, slope and
proximity to roads, which were related to LULC classes in ANN step
of simulation process. Different models were considered in the train-
ing step and the appropriate model with minimum error was select-
ed. Even though different data were also included in the initial steps,
such as aspect, land use capability, distance to sea and soil proper-
ties, consideration of these data increased the error rates, and thus,
excluded from the probability of occurrences (PoO) estimation.
Using the FLUS model, the PoOs were obtained by integrated ANN
model together with available driving forces of LULC change, and
the simulations were conducted through CA model, predicted LULC
class area demands, obtained probability of occurrence, in respect to
restricted area, and primarily determined conversion costs, which
presents the difficulty degree for transformation of current LULC
type to another (Zhang et al., 2021). Publicly available FLUS model
was downloaded from the Geographical Simulation and
Optimization System portal, and used to create simulation maps by
distributing a predicted number of pixels within the study area as
described by Liu et al. (2017) (Figure 3). Therefore, class area
demands (ha) were converted into a required number of pixels to be
used in simulation software considering 30×30 m size of an individ-
ual pixel. ALOS digital elevation data with 30 m spatial resolution
was freely downloaded from the Japan Aerospace Exploration
Agency website to obtain elevation and slope maps with the same
spatial resolution (30 m). ArcGIS (10.3) software was used to create
a slope from ALOS digital elevation data. Accordingly, it was seen
that the elevation values are ranged from the sea level (0 m) to 467
m, while the slope valued between 0 and 282% in the study area. The
major and crossroads were drawn in a Geographic Information
System (GIS) environment using base maps provided by ArcGIS
software, and proximity to road map was composed using the same
software tools with 30 m pixel size to be coherent with spatial reso-
lution of Landsat, elevation, and slope data. Moreover, since the
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Figure 2. Implemented steps in scenario generation and selection of optimistic/pessimistic scenarios for simulation of N (natural vegeta-
tion), A (agricultural land), W (water surface) and R-B (residential area/bare soil) classes.
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model simulates future LULC patterns by assessing the initial status
of a pixel together with neighborhood effects and transition rules
dependent on the pixel value directly instead of a set of different
suitability ranges for each dataset, none of the ancillary data was
classified into different subgroups of different elevation, slope or
distance ranges. Finally, accuracy of simulations was tested by sim-
ulating the 2017 year (LULC2017simulation) using actual pixel numbers
of LULC2017 as pixel demand, depending on LULC2010 and same
ancillary data. Indices of kappa, and figure of merit (FoM), which
describe the overlapping rate of actual and predicted change (%),
were assessed reliability of LULC2017simulation. Similar to other sim-
ulation studies (Guo et al., 2021; Yang et al., 2022; Mamitimin et al.,
2023), the accuracy was acknowledged to be valid for all future sim-
ulations since there is no future-displaying data for verification.

Results
Identification of land use and land cover changes
and average annual conversions

LULC maps were composed and results of accuracy assess-
ments revealed that overall accuracies for LULC maps ranged
between 85-91%, while overall and individual kappa values were
over 0.80. Furthermore, user’s accuracies of individual classes of
each LULC map, which represents how classified pixels are coher-
ent with the actual status, ranged between 81.0% and 94.5%. The
latest LULC status of the study area (LULC2017) is used for deter-
mining the extent of R-B coverage, and for the simulation of future
LULC in the study (Figure 4). Accordingly, R-B class covered the
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majority (50.75%) with 1968.57 ha survey area in 2017, and it was
followed by A (31.47%) and N (17.73%) whereas water surfaces
covered a small part of the area (0.05%). In addition, areas of the
restricted part are found to cover 92.48 ha of N (2.38%) and 4.20
ha of A (0.12%) classes, that should remain unchanged in the sce-
nario-based future simulations. Class area coverages (%) obtained
from all past LULC maps are given in Figure 5. It was seen that R-
B coverage increased from 10.6% to 50.75% during 33 years
between 1984 and 2017. Bare soil areas of R-B class cover the
rocky hills around the Alanya Castle, and also the sandy beaches at
the coastal line. The coverages of rocky hills and beaches have not
changed over time in the area due to their own characteristic situ-
ations, and changes in R-B class known to be arised from the alter-
nations in residential developments within the specified study area.
Inventory records of natural areas have shown that approximately
115 ha natural areas of R-B class such as rocky hills or beaches are
located within the study (AMM, 2022), revealing that 71.37%,
82.35%, 89.3% 90.44%, 92.68%, and 94.15% of R-B class were
covered by artificial surfaces in studied years, respectively.
Despite the increments in residential areas, the coverage of A class
decreased by 22.5% within 33 years, as a result of rapid RD. The
agricultural lands exhibited a continuous decrease trend in time,
whereas the amounts of decrease were varied between periods. In
the initial year, the A coverage was 53.9%, and progressively
reduced to 48.9% in 1990, to 43.6% in 1998, to 41.9% in 2003, to
35.0% in 2010, and to 31.4% in 2017. Likewise, coverage of N
class was obviously reduced from 33.2% to 17.7% against RD,
simultaneously. The total decrease in A class cover (22.5%) was
higher than the decrease in N class (15.5%). 

Depending on the change analysis it was found that the conver-
sions between LULC classes were negligible and mostly sourced
from misclassification of individual pixels, except the actual con-
versions to R-B class. The negligible conversions occurred in more
fragmented and small-sized coverages of neighbor classes that
exhibit mixed spectral characteristics. Therefore, the AACs from
LULC classes to R-B class were considered to predict future
demands to prevent the underestimating of RD effects on other
LULC classes. The gains of R-B class from other classes can be
seen visually in Figure 6 according to the periods. The conversion
amounts from all LULC classes to R-B together with AAC (ha) are
given in Table 1. Findings have uncovered that the total R-B zone
reached 1968.57 ha in 2017 while it was 322.38 ha in 1984, desig-
nating that the city has grown by 511% within 33 years. There

were significant conversions from A to R-B class in all periods. In
the 1st period, annually 35.63 ha of A class were served as the main
source for new R-B areas. The gains from N for RD process were
calculated as 9.60 ha, annually in the same period. The annual
gains of R-B from A class were slightly reduced in the 2nd period
(31.68 ha), while N losses reached to 24.82 ha year-1. The 3rd peri-
od presented a more controlled RD process since the gains from A
class were observably reduced to 20.42 ha per year. In the same
period, annual N losses against RD process were decreased to
approximately 12.0 ha. However, annually 35.74 ha of A areas
have lost against increasing R-B class areas in the 4th period,
whereas the annual losses in N class were considerably lower
(13.26 ha) than A class. On the other hand, the N class losses
(25.06 ha) in the 5th period seemed more drastic than the other peri-
ods in addition to serious agricultural loss (30.71 ha). A rapid
increase in R-B class around the main residential site has resulted
in considerable losses of N class, as well as A, during the study
years. Consideration of the long-term changes between 1984 and
2017 revealed that, annually 17.71 ha N, and 31.35 ha A class areas
were lost due to RD activities in the past 33 years. Accordingly,
even though the maximum RD rate was obtained from the 2nd peri-
od, the maximum gain of R-B areas from A class was eventuated
in the 4th period with AAC of 35.74 ha. Furthermore, the minimum
conversion from A to R-B class was found in the 3rd period where-
as the AAC was 20.42 ha.

Scenario-scenario-based predictions for 2030 and 2050
The predicted class areas (ha, and %) for LULC2030 and

LULC2050 according to different AAC-based RD scenarios can be
seen in Table 2. Findings revealed that the future area coverage of
R-B class is expected to be varied from 61.66% to 69.73% in 2030
and 78.37% to 93.09% in 2050 based on these scenarios. Minimum
R-B coverage was obtained from the 3rd scenario, while the maxi-
mum coverage was calculated from the 2nd one. Meanwhile, cov-
erage of A class was estimated to be ranged between 19.50% and
24.63% in 2030, and between 1.07% and 14.10% in 2050 years.
The maximum and minimum amounts of maintained A class have
predicted from the 3rd and the 4th scenarios respectively. Thence,
the scenario with minimum A loss is referred as ‘optimistic sce-
nario’, while the scenario with maximum A loss is named as ‘pes-
simistic scenario’ in the study. It was seen that A class coverage is
predicted to be decreased by 29.27% between 1984 and 2030, and
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Figure 4. LULC2017 and area coverages (%) of N (natural vegeta-
tion), A (agricultural lands), W (water surface), and R-B (residen-
tial area/bare soil) classes.

Figure 5. Temporal changes in land use and land cover class areas
(%) of N (natural vegetation), A (agricultural land), W (water sur-
face), and R-B (residential area/bare soil). LULC, land use and
land cover.
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39.8% of initial agricultural land is expected to be lost until 2050
within the specified area in respect to the optimistic scenario for
conservation of agricultural lands. In comparison with optimistic
scenario, the foreseen decrease of A class area was 34.4 (%)
between 1984 and 2017, and a decrease of 52.83% from 1984 to
2050 is predicted to occur depending on the pessimistic scenario
with the highest annual A class loss rate. Furthermore, the 3rd sce-
nario seems also promising not only for the conservation of A
areas, but also N class coverage with 7.53%. Conversely, although
the 1st scenario leads to a higher N area, it can be clearly seen that
coverage of A class significantly reduces until 2050, as well as the
4th scenario. As another remarkable result, predicted loss of N class
was more than the existent N areas in 2nd and 5th scenarios.
However, with respect to the restricted zone, possible R-B area is

considered to be equal to the difference between predicted R-B and
restricted part of N class (92.48 ha) for the 2050 year. It was
assumed that the R-B area may continue to expand on the areas
that were not involved within study area boundaries, if the simula-
tion procedures were implemented for these scenarios. 

The expected changes in class areas (%) from 2017 to 2030
and from 2017 to 2050 year are progressively given in Figure 7, as
the differences in percent coverage (%) of class areas between
given years. The changes in coverage area of R-B class were val-
ued between 10.91% and 18.98% in the first simulation period of
2017-2030. The R-B coverage change estimated to range between
27.62% and 42.34% considering the years between 2017 and final
simulation of 2050. The differences between coverages of A class
area (%) were ranged between 6.84% and 11.97% within the sim-
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Table 2. Conversion amounts (ha, %) and average annual conversions (ha) of each land use and land cover class to R-B class in periods.

                                    LULC class LULC1984 class to LULC1990 R-B                                          AAC (ha)
                                                                                             (ha)                                             (%)

1st period                          N                                                            57.60                                                  9.59                                                   9.60
(1984 & 1990)                 A                                                           213.75                                                35.62                                                 35.63
short-term                         W                                                            6.39                                                   1.02                                                   1.07
                                         R-B                                                       322.38                                                53.72                                                 46.29
                                         TOTAL                                                 600.12                                               100.00                                                     
                                    LULC class LULC1990 class to LULC1998 R-B                                           AAC (ha)
                                                                                             (ha)                                             (%)

2nd period                          N                                                           198.52                                                18.77                                                 24.82
(1990 & 1998)                  A                                                           253.46                                                23.97                                                 31.68
short-term                         W                                                            5.31                                                   0.51                                                   0.66
                                         R-B                                                       600.12                                                56.75                                                 57.16
                                         TOTAL                                                1057.41                                              100.00                                                     
                                    LULC class LULC1998 class to LULC2003 R-B                                         AAC (ha)
                                                                                             (ha)                                             (%)

3rd period                          N                                                            59.93                                                  4.89                                                  11.99
(1998 & 2003)                  A                                                           102.09                                                 8.34                                                  20.42
short-term                         W                                                            4.75                                                   0.39                                                   0.95
                                         R-B                                                      1057.41                                               86.38                                                 33.35
                                         TOTAL                                                1224.18                                              100.00                                                     
                                    LULC class LULC2003 class to LULC2010 R-B                                         AAC (ha)
                                                                                             (ha)                                             (%)                                                

4th period                          N                                                            92.84                                                  5.90                                                  13.26
(2003 & 2010)                  A                                                           250.20                                                15.91                                                 35.74
short-term                         W                                                            5.53                                                   0.35                                                   0.79
                                         R-B                                                      1224.18                                               77.84                                                 49.80
                                         TOTAL                                                1572.75                                              100.00                                                     
                                    LULC class LULC2010 class to LULC2017 R-B                                          AAC (ha)
                                                                                             (ha)                                             (%)                                                

5th period                          N                                                           175.45                                                 8.91                                          25.065th period
(2010 & 2017)                  A                                                           214.96                                                10.92                                                 30.71
short-term                         W                                                            5.41                                                   0.28                                                   0.77
                                         R-B                                                      1572.75                                               79.89                                                 56.55
                                         TOTAL                                                1968.57                                              100.00                                                     
                                    LULC class LULC1984 class to LULC2017 R-B                                         AAC (ha)
                                                                                             (ha)                                             (%)                                                

6th period                          N                                                           584.34                                                29.68                                                 17.71
(1984 & 2017)                  A                                                          1034.46                                               52.55                                                 31.35
long-term                          W                                                           27.39                                                  1.39                                                   0.83
                                         R-B                                                       322.38                                                16.38                                                 49.88
                                         TOTAL                                                1968.57                                              100.00                                                     
LULC, land use and land cover; AAC, average annual conversions; R-B, residential area/bare soil; N, natural vegetation; A, agricultural land; W, water surface.
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Figure 7. Changes in N (natural vegetation), A (agricultural land), W (water surface), and R-B (residential area/bare soil) class areas (%)
in respect to different scenarios (a) 1st scenario; (b) 2nd scenario; (c) 3rd scenario; (d) 4th scenario; (e) 5th scenario; (f) 6th scenario.

Figure 6. Progressive transformations from previous year’s N (natural vegetation), A (agricultural land), and W (water surface) classes to
posterior year’s R-B (residential area/bare soil) class.
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ulation period of 2017 and 2030, dependent on optimistic and pes-
simistic scenario predictions, while the differences predicted to
reach 17.37% and 30.40% at the end of 33 year period between
2017 and 2050. No matter which scenario may be approached,
gained amounts (ha) from A to R-B class were higher than from N,
as evidence for agricultural lands that are serving as the major
source for new residential areas in all periods (Table 3).

Simulations of optimistic and pessimistic scenarios
for agricultural lands

Prior to simulation of future status, the reliability of a simula-
tion process was verified by assessing the coherency between
LULC2017 and LULC2017simulation. Accordingly, both kappa and
FoM vales were over 0.70, indicating that the simulation is within
the reliable thresholds. The pixel demands of the 3rd and 4th scenar-
ios were simulated to present the possible distributions of the pre-
dicted number of pixels for LULC classes in the future (Figure 8).
Depending on Figure 8, which shows the optimistic scenario for
2030 and 2050, it was seen that a considerable part of the agricul-
tural lands is predicted to be conserved in the area. As it can also
visually seen from Figure 8a-b, if more controlled and environ-
ment-friendly annual conversions eventuate in the near future, as it
occurred between 1998 and 2003 years, the excessive losses in
both agricultural lands and vegetative cover can be prevented in
the specified area. On the other hand, it can be seen that there are
remarkable differences even in the first simulation year, when
Figure 8c is investigated. Moreover, almost all agricultural lands
would convert to residential-related surface in 2050 (Figure 8d) if
RD may eventuate annually identical to the 4th period, which cov-
ers the years between 2003 and 2010. Additionally, since the opti-
mistic and pessimistic scenarios for A class were not obtained from
the 2nd and 5th scenarios, all the pixel demands were within the

changeable amount of pixel numbers in the study area, which
means that all demands were distributed with the aid of restricted
zone in the simulation step.

Discussion
The determination of LULC change has become essential for

many research areas as well as city planning studies (Abbas et al.,
2021), since inappropriate and uncontrolled conversions from all
kinds of vegetative covers to impervious surfaces may present sig-
nificant issues for the residents in a certain area. On the other hand,
productive usage of geo-data depends on reliability (Rwanga and
Ndambuki, 2017). Findings have demonstrated that produced
LULC maps were reliable since overall classifications, user accu-
racies, and kappa values were over the threshold value of 0.75
(Bharatkar and Patel, 2013). Depending on these past maps, it was
seen that rapid RD trends eventuated in all periods. The dominant
LULC class was comprised of agricultural lands in 1984, owing
the majority of the study area while the residential area became the
dominant class after 2003 by converting fertile lands to impervious
surfaces. A similar situation was mentioned in the wider area of
Alanya city, where the residential-related class was reported to
have expanded 3 times between 1984 and 2018, and reached
almost 2600 ha which was initially 650 ha (Özüpekçe, 2020).
Several factors can play a role in such transformations from agri-
cultural lands, natural vegetation cover to residential class includ-
ing, economic development, developments in infrastructure,
uncontrolled growth of urban population or migration, and rapid
urban expansion, which may lead to scarcity in natural resources in
the area (Fu and Weng, 2018). Many researchers agreed on the idea
of tourism investments as the major responsibility for serious
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Table 3. Scenario-based predictions for land use and land cover class areas (ha, %) in 2030 and 2050 years.

Scenario                                           LULC Class                 LULC2030 (ha)             LULC2030 (%)       LULC2050 (ha)      LULC2050 (%)

1st scenario                                                N                                                 562.80                                 14.51                          370.80                          9.56
                                                                  A                                                 757.82                                 19.54                           45.32                           1.17
                                                                  W                                                  0.00                                    0.00                             0.00                            0.00
                                                                  R-B                                            2558.57                                65.96                         3463.07                        89.27
2nd scenario                                               N                                                 365.01                                  9.41                            92.48                           2.38
                                                                  A                                                 809.07                                 20.86                          175.42                          4.52
                                                                  W                                                  0.00                                    0.00                             0.00                            0.00
                                                                  R-B                                            2705.11                                69.73                         3611.28                        93.09
3rd scenario                                               N                                                 531.78                                 13.71                          292.06                          7.53
                                                                  A                                                 955.51                                 24.63                          547.15                         14.10
                                                                  W                                                  0.00                                    0.00                             0.00                            0.00
                                                                  R-B                                            2391.89                                61.66                         3039.97                        78.37
4th scenario                                                N                                                 515.18                                 13.28                          249.93                          6.44
                                                                  A                                                 756.28                                 19.50                           41.43                           1.07
                                                                  W                                                  0.00                                    0.00                             0.00                            0.00
                                                                  R-B                                            2607.71                                67.22                         3587.83                        92.49
5th scenario                                                N                                                 361.76                                  9.33                            92.48                           2.38
                                                                  A                                                 821.73                                 21.18                          207.56                          5.35
                                                                  W                                                  0.00                                    0.00                             0.00                            0.00
                                                                  R-B                                            2695.69                                69.49                         3579.14                        92.27
6th scenario                                                N                                                 457.41                                 11.79                          103.26                          2.66
                                                                  A                                                 813.43                                 20.97                          186.48                          4.81
                                                                  W                                                  0.00                                    0.00                             0.00                            0.00
                                                                  R-B                                            2608.35                                67.24                         3589.44                        92.53
Total class areas from each scenario       3879.18                                       100.00                               3879.18                        100.00
LULC, land use and land cover; N, natural vegetation; A, agricultural land; W, water surface; R-B, residential area/bare soil.
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reductions in A and N areas after the 1980s in the Mediterranean
Region. The depletion of vegetative areas together with increased
residential areas affects the ecosystem services, health and thermal
conditions of the city in the further steps (Kafy et al., 2021).
Concurrently, Alanya city centre were declared to be vulnerable
against threat of flooding (Gökçe et al., 2018), while past RD pro-
cess and loss from permeable surfaces like agricultural fields to R-
B class seemed probable to be strongly linked with this vulnerabil-
ity status. In fact, the study conducted in Gazipasa, the Eastern
neighbor of Alanya, has revealed that residential area has expanded
by approximately 80% between 2013 and 2019, and the situation
is expected to increase the peak flood value and flood volume by
10.1 m3sec-1 and 18%, respectively (Mehr and Akdeğirmen, 2021).
Another environmental issue has been reported to be the increased
UHI effect as a result of high building density (Gökçe et al., 2018),
since extinction of agricultural fields in the rural-urban fringe may
arguably lead to the increase of surface temperature due to increase
of concrete structures and decrease of cooling effects of both veg-
etative cover and depleted irrigation practices against agricultural
loss. Therefore, Alanya city is one of the most precise areas within
the central Mediterranean region due to ongoing RD trends, and
depletion of such resources would be inevitable in the area unless
more environment-friendly development strategies are adopted in
the near future. 

On the other hand, the amounts of LULC conversions seemed
strongly relevant to different numbers of years within periods,
which means that the lowest RD between two successive LULC
maps was found for the periods with narrower time intervals due
to lack of cloud-free imageries, and may lead to difficulties in
interpretation of the change magnitudes. Seasonal and phenologi-
cal effects can be captured only if the LULC maps of the same sea-
son can be generated, whereby they present a great challenge due
to cloud contamination (Lu et al., 2019), and methods for accurate
interpretation of these unsystematically captured changes are cru-
cial. Researchers implement different methods for eliminating
these problems, such as spatiotemporal data fusion operations. In
the present study, the situation was overcome by calculation of
AACs (ha) for each period to standardize the change comparison
process for identifying the annual impacts of RD in different peri-
ods. In addition, the AAC may provide a better understanding of
the change trends even within equal time intervals since the growth
rates may differ instantaneously depending on unforeseen events
such as political decisions or natural events within a certain period.
According to past changes and estimations from AAC scenarios,
the drastic decreases in agricultural lands around the residential
zone are predicted to continue in the future. Although the predic-
tion of future areas provides valuable information and basis, it is
not individually sufficient for demonstrating the severity of the
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Figure 8. Simulations for N (natural vegetation), A (agricultural land), W (water surface), R-B (residential area/bare soil) classes. 
(a) Optimistic scenario LULC2030; (b) optimistic scenario LULC2050; (c) pessimistic scenario LULC2030; (d) pessimistic scenario
LULC2050.
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changes and highlighting the importance of appropriate manage-
ment strategies, since the distribution of predicted numbers of pix-
els is a more significant indicator of vulnerability in a certain area.
Various models were developed for simulation of future LULC sta-
tuses including equations, statistics, Markov and cellular models as
it is cited by Baig et al. (2022). The models have benefits and
drawbacks while hybridizing of prediction models may help to
overcome the weakness of each other. For instance, CA-Markov
model is acknowledged to be one of the most frequently used mod-
els and reported to produce reliable results, whereby such models
can be used with multi-criteria AHP method (Omar et al., 2014),
multiple linear regression (Seto et al., 2011), logistic regression
(Hamdy et al., 2016), and ANN (Grekousis et al., 2013) for includ-
ing triggers of LULC changes, as it is cited by Mohamed and
Worku (2020). The FLUS model is reported to be one of the widely
used simulation models in different areas of interest, especially in
terms of constructed areas, whereas the research on agricultural
lands is denoted to be lacking (Xiang et al., 2022). In addition to
the lack of agriculture-related studies in the literature, the model
was selected since it has improvements over traditional cellular
automata allocation models. For instance, the simulation model is
based on the recent LULC pattern instead of the changes that
occurred between two terms that allow predicting the future at the
same time interval, and thus, preventing the accumulated errors
sourcing from the disagreements of two-term LULC maps.
Depending on the causal links between past LULC and recent
LULC statuses, class area demands and probable distributions
reported to be computed for simulating future patterns in respect to
different scenarios (Noszczyk, 2019; Zhu et al., 2023). At this
point, the study believed to provide reliable simulations since the
verification results were confidential for LULC2017simulation, even
though many factors such as socioeconomic indicators could not
be evaluated due to a lack of available data. The produced simula-
tion maps exhibit precious manifestations of the possible opti-
mistic and pessimistic statuses for agricultural lands, and have
enabled interpretation of the most probable areas for future RD,
which presented information on the severity of process in different
parts of the study area. In comparison with a significant decrease
in agricultural lands, RD is predicted to continue and increase in all
directions, even in hilly areas, particularly after 2030. Comparable
outcomes were noted in the literature (Inalpulat and Genç, 2017;
Yatoo et al., 2020), whereby, agricultural land areas have been pre-
dicted to be decreased against residential area expansion in differ-
ent areas of the world, and as a general result, natural ecosystems,
as well as biodiversity losses declared to be more fragile since the
process continues. Moreover, RD on hilly areas due to increased
accommodation needs has resulted in adverse environmental con-
sequences in different touristic locations (Vijay et al., 2016; Dey et
al., 2018; Mehr and Akdeğirmen, 2021), and preventions should be
carefully stated in the area of interest before the consequences
occur. Hence, being the first simulation study in Alanya city, the
results are believed to provide valuable information for researchers
and planners by indicating the necessity for more controlled and
well-planned approaches to avoid severe transformations.

As another important point of view, the underlying reasons or
triggers of ongoing trends should also be considered for preventing
from the undesirable effects of ongoing RD trends in the near
future. Researchers emphasized that increasing tourism activities
rather than other socioeconomic factors overwhelmingly prompt
rapid LULC changes in various coastal areas. Extinction of agri-
culture lands may reduce yielding potentials and interruption in
agriculture-related economic sectors (Martellozzo et al., 2018).
Specifically, agricultural activities were known to be the main

income source in the Mediterranean region before the tourism
boom. Increasing demand for tourism-related needs resulted in loss
of agricultural lands, whereby farmers with less incoming profits
have preferred to quit agricultural activities, sold their arable fields
instead of cultivating them. Therefore, convention and valorization
of agricultural uses in the area seem significant. As a suggestion
for conserving agricultural lands, consideration of urban agricul-
ture possibilities may present an alternative approach which is get-
ting wider in developed countries, and may help to overcome some
environmental, socioeconomic and sociocultural problems by
reducing ecological footprints by preventing undesired levels of
urban expansion (Yenigül, 2016). Investigating feasibility of
small-scaled agri-tourism in the current agricultural areas may also
be a supportive tool, that embraces various benefits in different
aspects, and knows to be accelerating local economic situations
while protecting the agricultural activities within the residential
development zone (Akşit-Aşık, 2016). 

In brief, agriculture became one of the priority initiatives for
planners and decision-makers as the food demand increases espe-
cially in still-developing countries and the importance of forecast-
ing future conditions has become a significant procedure (Radwan,
2019). Thus, the study may serve as a basis for researchers, not
only by being the first simulation study in the area, but also by rep-
resenting more than one probable future condition in the simula-
tion step. However, there were some limitations while conducting
the research, and they were mainly related to data availability.
Especially socio-economic driving factors could not be assessed
due to lack of desired level data. In addition, the LULC types were
combined to reduce spectral similarities between some classes,
sourced from relatively low-resolution of Landsat datasets, and
complex structure of the surface properties. Thence, the perfor-
mance of the analysis method was tested on a small scale within
the context of the study, since the main alternations eventuate
around main residential zone of the city.

Conclusions
Mediterranean landscapes are significant areas particularly in

land use types, whereby LULC changes eventuate against interac-
tions of anthropic activities and natural events. Forecasting the
future status is vital in such areas for maintenance of valuable
ecosystems. Rapid RD trends seemed eventuated in continuously
developing urban-rural fringe zone of Alanya city, in South-
Central Mediterranean coast of Turkey. As the most remarkable
result, agricultural lands served as the main source for the new res-
idential-related structures in all periods. Also, it was seen that con-
sideration of short-term changes became a powerful predictor
since using only long-term changes concluded to result in misesti-
mating of future LULC status due to fluctuating changes in RD
rates in the area. The AAC method found to be practical for com-
parison of change rates and prediction of future demands in similar
studies. In addition, simulation of alternative scenarios provided
manifestation of multiple possible consequences for researchers,
planners or decision makers in the local authorities. More con-
trolled future growth is recommended in the area to reach environ-
mental-friendly and sustainable conditions while avoiding from
adverse consequences before irreversible effects became occur. On
the other hand, there were some limitations in the study. First,
intense cloud cover comprised a limitation for selection of years
due to relatively low temporal resolution of Landsat imageries
with 16 days of revisit interval of Landsat TM, while COVID-19
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presented the secondary limitation due to the extraordinary stabil-
ity in many activities in the area. In order to overcome these issues,
the dates between 2018 and 2022 have not been considered within
the context of the study. Moreover, a study is currently ongoing in
pilot hotspots within Aegean-Mediterranean coast to determine the
COVID-19 effects on agriculture using different remotely sensed
imageries with higher resolutions. In conclusion, being the first
simulation attempt in the specified area, the study has stated the
drastic changes through optimistic and pessimistic situations for
agricultural lands for 2030 and 2050 years, and has great potential
to provide useful information on future LULC changes.
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