
Abstract
Traditional techniques for estimating the weight of clusters in a

winery, generally consist of manually counting the variety of clus-
ters per vine, and scaling by means of the entire variety of vines.
This method can be arduous, and costly, and its accuracy depends
on the scale of the sample. To overcome these problems, hybrid
approaches of computer vision, deep learning (DL), and machine
learning (ML) based vineyard yield prediction systems are pro-
posed. Self-prepared datasets are used for comparative analysis of
2D and 3D yield prediction systems for vineyards. DL-based
approach for segmentation operation on an RGB-D image dataset
created with the D435I camera is used along with the ML-based
weight prediction technique of grape clusters present in the single
image using these datasets. A comparative analysis of the DL-based

Keras regression model and various ML-based regression models
for the weight prediction task is taken into account, and finally, a
prediction model is proposed to estimate the yield of the entire vine-
yard. The analysis shows improved performance with the 3D vine-
yard yield prediction system compared to the 2D vineyard yield pre-
diction system with grape cluster segmentation pixel accuracy up to
94.81% and yield prediction accuracy up to 99.58%.

Introduction
The world population is predicted to be 10 billion by the year

2050 which is 35% of today’s population (FAO, 2009). The
requirement for food will increase by 70% with respect to current
food requirements (Ranganathan et al., 2018). Currently, as per
the rapid growth of urbanization, there will be huge decrements in
land available for farming. As per reports, India will be the most
populated country by 2050 (FAO, 2009; Ranganathan et al., 2018)
and currently, it is already holding behind in population per food
production ratio. There are reasons behind this situation, like lack
of knowledge and awareness, uneducated farmers, unpredictable
weather conditions, and use of traditional harvesting techniques.
The best way to secure the food production ratio of the entire
world is precision farming (Abdul Hakkim et al., 2016). The use
of advanced tools and techniques for different stages of farming
can improve food production rapidly. Many countries are adapting
to the precision agriculture culture to prevent soil quality degrada-
tion, reduce the use of chemical applications for crop production,
improve the quantity and quality of crops, and reduce production
costs. One of the excellent natural sources of essential vitamins,
minerals and fibers is fruit (Khan et al., 2020). Fruit farming has
more economic advantages than vegetable farming. It also pro-
vides the essentials to agro-based industries like storage, preserva-
tion, packaging, transportation, marking of fresh fruit (Khan et al.,
2020) and processing fruit to manufacture various products like
cosmetics, eatable products, drinks, etc. Therefore, fruit farming is
one of the most important and long-standing traditions in most of
the countries. 

Fruit harvesting is the core of fruit farming, so to make it auto-
mated, various researchers have proposed their studies in this
domain. In the yield, prediction of any fruit detection and counting
is the primary need. Some traditional approaches like thresholding
(Fernandez-Maloigne et al., 1993), morphological operations
(Baeten et al., 2008), circle Hough Transform (Grasso et al.,
1996), filtering (Ceres et al., 1998), edge detection (Ceres et al.,
1998), etc., were used for fruit detection purpose. There are so
many special methods available to extract the region of interest
(ROI), which is nothing but fruit from the total image. An easy
technique for determining the weight of the proposed fruit is to
calculate the area of the fruit in the image and relate it to the real
size of the fruit. While this estimation is desired to be automated,
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a training and validating platform that demonstrates the applicabil-
ity with accuracy is necessary. Artificial Intelligence (AI) is a huge
domain that includes Machine Learning (ML) field into it. Various
ML-based algorithms (Wang et al., 2017; Liu and Whitty, 2015)
like Support Vector Machine (SVM), K-Nearest Neighbor (KNN),
and K-Mean Clustering (K-mean) are used for the fruit classifica-
tion task. Advanced image-capturing techniques have been utilized
in various research to get information from fruit images. These
images make the fruit detection task much easier. Currently, Deep
Learning (DL), which is a sub-domain of ML, is very popular for
object detection applications. For fruit detection task, various DL
models like Convolutional Neural Network (CNN) (Chen et al.,
2017; Habaragamuwa et al., 2018), Field Control Node (Liu et al.,
2018), Visual Geometry Group-16 (VGG16) (Liu et al., 2020;
Arad et al., 2019; Altaheri et al., 2019; Marani et al., 2020), Faster
Region-based Convolutional Neural Network (RCNN) (Lee et al.,
2020; Stein et al., 2019), Mask RCNN (MRCNN) (Lee et al.,
2020; Ni et al., 2020; Santos et al., 2020; Zhang et al., 2022),
ResNet (Kang et al., 2019), YOLO-versions (Tang et al., 2020;
Tang et al., 2023; Zhou et al., 2022) are implemented. Among all
available DL-based fruit detection models, MRCNN with ResNet-
101 and YOLO versions provide extremely good results (Barbole
et al., 2021).

In fruit production businesses, grapes are considered a cash
crop. Grapes are used for multiple purposes like fresh eating, for
making wines, raisins, jams, jelly, vinegar, etc. To determine the
sales and profits between merchants and farmers, farmers first
need to get an idea about their total production. Fruit detection and
segmentation, as well as counting, are the fundamental processes
in any automated yield estimating system. In the case of grapes,
they are multi-fruit and have high variance in their shapes and
sizes. So, counting clusters will not provide the accurate yield of
vineyard. This suggests that the prediction of an accurate agricul-
tural yield for vineyards is one of the tough issues in precision agri-
culture. Yield prediction traditional methods for grapes are depen-
dent on manual approaches which are less efficient, less accurate
and time-consuming. To produce an accurate automated yield pre-
diction system, intelligent grape cluster acquisition needs to be
performed. Since the crop yield prediction model is based on dif-
ferent variables, which include light conditions, weather, soil, soft-
ware of fertilizer, and seed range, it necessitates the creation and
use of many different datasets. 

Few algorithms and techniques are available for grape cluster
detection, segmentation and yield estimation but those are not suit-
able for real-time applications due to shaded regions under a
canopy, different illuminance, different color shades of clusters
and in-differential occlusions from backgrounds. Liu and Whitty
(2015) used a SVM classifier with 88% accuracy supported by
color and texture information of grape images for detecting the
clusters out of entire images. Nuske et al. (2011) applied a berry
detection approach using radial symmetry transform for yield pre-
diction of vineyard with a 3-11% error rate. Luo et al. (2016)
adapted an Ada-Boost-based framework for grape cluster detection
with 96.5% accuracy. Along with the main classifier, the authors
also used thresholding and morphological operations for noise
removal from the outputs to make them more desirable (Luo et al.,
2016). Luo et al. (2018) proposed a K-mean clustering-based seg-
mentation algorithm which is capable of separating the overlap-
ping grape bunches with 88% accuracy. Badeka et al. (2019) uti-
lized KNN classification techniques for the segmentation of red
and white grapes with tore local binary patterns related to color and
texture properties of images. Badeka et al. (2019) achieved seg-
mentation accuracies up to 94% for red grapes and 83% for white

grapes. Cecotti et al. (2020) experimented transfer learning
approach on 11 pre-trained CNN-based models like VGG versions,
GoogLeNet, ResNet50, etc., for red and white grapes segmenta-
tion, and finally concluded that ResNet architecture gives promis-
ing results that are up to 99% as compared to others. Santos et al.
(2020) compared Masked Recurrent CNN (MRCNN), YOLOv2
and YOLOv3 for grape cluster segmentation application on
Embrapa Wine Grape Instant Segmentation Dataset with MRCNN
having superior F1-score up to 89%. According to Marani et al.
(2020), VGG16 model gives the best performance of 80.58% accu-
racy when compared with AlexNet, GoogLeNet, and VGG19.
According to Barbole et al. (2021), a comparative study of various
DL models like MRCNN, Yolov3, and U-Net for grape cluster
detection and models have been trained to get segmented images
as output. Among all these models, U-Net performs better for
grape cluster segmentation tasks. Zhang et al. (2022) proposed a
real-time red grape cluster detection algorithm with the help of
YOLOv5s, which is claimed to be fast and accurate in complex
natural scenes.

Most of the references (Liu and Whitty, 2015; Nuske et al.,
2011; Luo et al., 2016; Badeka et al., 2019; Cecotti et al., 2020;
Zhang et al., 2022; California Historical Society collection, 2012)
have considered red grapes for grape cluster detection, segmenta-
tion and yield estimation applications. However, these techniques
are only suitable for red grape cluster detection and weight predic-
tion. Worldwide red grape production is higher compared to that of
white grapes but in countries like India, most of the vineyards have
white grapes, where the red grape datasets fail. It can be observed
that very few vineyard datasets are available, especially on white
grapes, for future research. Hence, there is a need to create more
vineyard datasets with white grape clusters. In some studies
(Barbole et al., 2021; Santos et al., 2020), the authors presented a
grape cluster dataset for the segmentation of grape clusters from
complex environments. But only the last rows of vines are consid-
ered so that there will be less confusion with the background vines
and clusters. Vines with limited grape clusters are taken into con-
sideration, and pruning is also done to remove leaf occlusion on
clusters. In the case of Indian vineyards, there are a large number
of clusters per vine. So, this approach in all the above-mentioned
references is suitable only for vineyards with small and limited
clusters, not in the Indian scenario. By considering all the draw-
backs of current techniques, the development of an RGB-D grape
cluster dataset is performed in this proposed work which consists
of RGB images as well as depth images of grape clusters. A whole
new approach to grape cluster weight prediction (2D and 3D) and
their comparative studies are presented in this paper. The proposed
approach is the combination of DL for segmentation tasks and ML
for regression-based weight prediction of cluster tasks.

Materials and Methods
Materials

GrapesNet (Barbole et al., 2023) dataset from Mendeley data
is used in the proposed work. This dataset consists of a total of
11,000+ images of grape clusters from Indian vineyards.
GrapesNet includes four different types of sub-dataset and all of
them are considered for the proposed work. The GrapesNet
(Barbole et al., 2023) contains the RGB and depth images, as
shown in Table 1.

The dataset considered in the proposed work contains grape
cluster images with a natural background as well as an artificial
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background, which makes it the best choice for the proposed
research. The technique of transfer learning has been adapted in
the proposed work. In GrapesNet (Barbole et al., 2023) dataset,
each image includes various objects inside it as a background like
leaves, branches, wires, poles and so many others like soil, old
leaves, grass, drip irrigation pipes, etc. (Figure 1). To increase the
number of images in the dataset, Barbole et al. (2023) have already
performed data augmentation on the original datasets.

When real-time application is the goal, the model has to be
trained and tested on several datasets. In the proposed work,
GrapesNet dataset has been used to fulfill this need. To create and
develop a more generalized model, real background is studied
along with that various factors affecting image acquisition have
been taken into consideration in GrapesNet dataset. In the used
dataset (Figure 2), images are taken at different daytime slots to
cover illuminance effects, with different camera angles and with
different blockages like leaves, branches and other bunches
(Barbole et al., 2023).

Methods
This work consists of two sections, the upper section is a 2D

vineyard yield prediction system and the lower section is a 3D
vineyard yield prediction (Figure 3). A comparative study of two
sections has been considered in this proposed work. For both 2D
and 3D vineyard yield prediction systems, there are two main
stages which are grape cluster segmentation and weight prediction

of cluster. Hybrid approach for yield prediction of vineyard has
been proposed with a DL-based model for grape cluster segmenta-
tion and DL, ML-based model for weight prediction of clusters. In
2D systems, RGB images and their masks are given as input to the
modified U-Net (Barbole et al., 2021) grape cluster segmentation
model, while for 3D systems, RGB images undergo the new pro-
posed process of unwanted region removal from images using
depth information of corresponding images, called pre-masking
process. These pre-masked RGB images along their masks are
given as inputs. Segmented outputs are given separately to the two
weight prediction approaches: DL-based approach and ML-based
approach. In the DL-based approach, keras regression model
(Barbole et al., 2022) has been implemented which accepts seg-
mented output from the modified U-Net, weight (kg) per image
and average distance (cm) between camera and clusters from the
images. With only 3 inputs, keras regression model will predict
weight of grape clusters per image. In ML-based approaches,
regression models like Linear Regressor (LR), Ridge Regressor
(RR), Bayesian Ridge Regressor, Decision Tree Regressor (DTR)
and Random Forest Regressor (RFR) are used to predict the weight
of clusters. For these ML-based models, some estimated feature
vectors from segmented images are used as inputs and, as a result,
each model predicts the weight of grape clusters per image.
Finally, by combining all the models together, a comparative study
of 2D and 3D vineyard yield prediction systems is performed in
order to conclude the results.

                             Article

Table 1. GrapesNet (Barbole et al., 2023) dataset for proposed model training and testing.

Dataset                 Image types Total images                  Image resolution
                                                                             RGB                           Depth                                     RGB                                Depth

1                                        RGB                                       4305                                     -                                           500p×500p                                     -
2                                        RGB                                       2960                                     -                                           500p×500p                                     -
3                                RGB & Depth                               1696                                   424                                        500p×500p                            424p×240p
4                                RGB & Depth                               2100                                   350                                        500p×500p                            424p×240p
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Figure 1. Object samples included in images in GrapesNet (Barbole et al., 2023) dataset. 1st row indicates the grape cluster with color
variation, and the remaining rows indicate objects from the background like leaves, branches, wires, poles, and others.
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Grape cluster segmentation model
The dataset consists of RGB and RGB-D images of vineyards.

The first task in this proposed approach is to separate the grape
clusters from the background. Here, the modified U-Net is used to
perform the grape cluster segmentation task. In the modified U-
Net, the depth of the U shape has been increased by adding two

additional layers: one in the encryption section and another in the
decryption section. In the encryption section, some locality fea-
tures are sacrificed to obtain higher-level features that aid in object
detection. The output of the first layer is up-sampled using an addi-
tional up-sampling layer to preserve locality features in the image.
Similarly, in the decryption section, object features are compro-

                             Article

Figure 2. Diversities in GrapesNet (Barbole et al., 2023) dataset. 1st, 2nd and 3rd rows indicate diversities due to different light conditions
(shelter, sidelight, back-light), different camera angles (front, elevated, dropped) and different occlusions (leaves, branches, other grape
clusters) respectively.

Figure 3. Core diagram of the proposed vineyard yield prediction systems. Upper part: a 2D yield prediction system; bottom part: a 3D
yield prediction system.
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mised to retain the location information of the same object within
the image. An extra down-sampling layer is introduced just before
the output layer in the decryption section. This layer takes two
inputs: one from the previous layer and another from a skip con-
nection through an additional up-sampling layer. By including this
additional down-sampling layer, object features are preserved in
the image. These two additional layers enhance the model’s perfor-
mance compared to the original U-net model. Since high-resolu-
tion images are provided as input, improved results are achieved
(Barbole et al., 2021). For this task, both 2D and 3D models are
trained on Dataset 2 with single grape clusters per image, and
through transfer learning, the same trained models are again
trained on a dataset with multiple grape clusters per image.

2D grape cluster segmentation model
Dataset 2 contains RGB images of a single grape cluster per

image. Masks of each image in dataset 2 are generated with the
help of masking tools. RGB images and their masks are given as
input to the modified U-Net model (Barbole et al., 2021). In this
model, the depth of U of the original U-Net model has been
increased by adding an additional up-sampling layer at the input
side and a down-sampling layer at the output end. An increase in
the resolution has magnified the features and shown improvement
in the output segmentation results. The modified U-Net segmenta-
tion model gives the binary images as an output, which are seg-
mented output images with separated grape clusters in white color
and background in black color (Figure 4). These segmented images
are given as input to the next 2D weight prediction model. The
same trained segmentation model is trained on dataset 1 with mul-
tiple grape clusters per image and tested on dataset 3, which con-
tains slot-wise images of vineyards.

3D grape cluster segmentation model
As per 2D grape cluster segmentation outputs, it is observed

that: i) unwanted grape clusters from the background and other
vines are also getting segmented, which is undesirable; ii) the
training process of the grape cluster segmentation model is time-
consuming as the data size is larger. This may strongly degrade the
output results and lead to a complex time system. To solve that,
depth information obtained through a depth camera can be used to

mask the unwanted pixels that do not satisfy the distance require-
ment. This facilitates the masking of clusters that give rise to ambi-
guity during DL-based segmentation. There are two possible meth-
ods for unwanted region masking: using a generated depth image
or utilizing raw distance information captured during image acqui-
sition. The latter approach, involving raw distance units, is consid-
ered the most effective method for masking regions that do not
meet the requirements for DL-based segmentation. The process of
removing unwanted regions from the images using raw informa-
tion of the respective images is called as “pre-masking process”.

RGB images are multiplied with raw images to generate pre-
masked images. For masking unwanted regions from the image,
there is a requirement of two thresholds: the low threshold value
(TL) and the high threshold value (TH). Pre-masking consists of
three main blocks: the TL-TH range decider, the TL value decider,
and the TH value decider. Masks of RGB images and raw images
are given as input to the TL-TH range decider, which will find out
minimum (min.) and maximum (max.) lower/upper threshold val-
ues given as TLmin, TLmax, THmin and THmax. TLmin and TLmax val-
ues are given to the TL value decider block where TH= THmax.
Similarly, THmin and THmax values are given to the TH value
decider block where TL= TLmin. TL value decider and TH value
decider will finally find out that TL and TH values are based on
some mathematical calculations.

Low threshold-high threshold range decider
The aim of this block is to come up with appropriate TL-TH

values for pre-masking without affecting the ROI, which are the
masks of those images. So, masks are taken as input along with
raw images.

RGB masks will be converted into binary masks, which means
they will have values only of 0 or 1 (Figure 5). Raw images consist
of depth values of each pixel present in the entire RGB image. To
find the depth information for ROIs, all binary masks are multi-
plied with the corresponding raw images. As an output, new
depth/raw images of masks are estimated. From each new raw
image, min. TL and TH values as well as max. TL and TH values
are extracted in the TL and TH columns. The range of TL-TH is
estimated as:

                             Article

Figure 4. 2D grape cluster segmentation model.
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TLmin = min (TL)                                                              (Eq. 1) 

TLmax = max (TL)                                                             (Eq. 2)

THmin = min (TH)                                                              (Eq. 3)

THmax = max (TH)                                                             (Eq. 4)

Low threshold value decider
RGB masks and their corresponding raw images are given as

inputs to the TL value decider (Figure 6). TH is kept constant with
a TH=TH (max) value, and the TL is varied from TL (min) to TL
(max), which are nothing but 169 and 548 respectively. X1 is the

original RGB mask and X2 is an estimated RGB mask. The param-
eter estimation block takes the average of the intersection over
union (IOU) scores, and the average of the exception scores of the
X1 and X2 which are mathematically expressed as:

Average IOU score =                                (Eq. 5)

Average exception score =                        (Eq. 6) 

                             Article

Figure 6. Block diagram of TL value decider where TL varies from 169 to 548 and TH is taken as maximum value of TH that is TH(max).
TL is the lower value of threshold and TH is the higher value of threshold. X1 is the RGB mask and X2 is an estimated mask, and both
are given to parameter extraction and estimation block which produces a table containing TL, TH, average intersection over union and
average exception. TH, high threshold; TL, low threshold; IOU, intersection over union.

Figure 5. Low threshold-high threshold range decider. TL is the lower value of threshold and TH is the higher value of threshold.
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For finding the TL value, let us assume that x is the TL value,
y1 is the average exception score, and y2 is the average IOU score.
So, to find the mathematical relationship of x with y1 and y2, poly-
nomial regression is performed. The degree with the min. mean
squared error (MSE) is selected as the final degree of the polyno-
mial equation. For the TL value, degree =11. So, equation for y1
and y2 in terms of x becomes:

   
(Eq. 7)

   
(Eq. 8)              

Here b1, b2 ... b11 are the slope coefficients, b0 is intercept (con-
stant term) and C1, C2 are the model’s error terms, which are esti-
mated from the polynomial curve of polynomial regressions. So,
after putting the values of the slope coefficients, intercept, value of
y1=0 in equation (7), and x will be estimated. Similarly, by putting
the value of slope coefficients, intercept, and estimated value of x
from equation (7) in equation (8), the value of y2 will be estimated.
The max. TL value with a 100% average IOU score and a 0% aver-
age exception score is the final TL value of TL value decider block.

High threshold value decider
RGB masks and their corresponding raw images are given as

inputs to the TH value decider (Figure 7). TL is kept constant with
TL=TL (min) value, and TH is reduced from TL (max) to 2000. X1
is the original RGB mask and X2 is an estimated RGB mask. The
parameter estimation block takes the average of IOU scores and
the average of exception scores of the X1 and X2, which are math-
ematically expressed in equations (5) and (6) respectively.

As original masks are created manually, there is some accept-

able human error in the exception score, which is considered as σ
and expressed as:

                                                        
(Eq. 9)

where X1 = original RGB masks, X1’ = revised RGB masks, N =
total number of images.

After solving equation (9), the estimated value of σ = 3.611.
Similar to the TL value decider, for finding the TH value, let us
assume that x is the TH-value, y1 is average exception score, and
y2 is average IOU score. To find the mathematical relation of the
x with the y1 and y2, polynomial regression is performed. The
degree with the min. MSE is selected as the final degree of poly-
nomial equations. For the TH value, degree =5. So, the equation
for the y1 and y2 in terms of the x becomes:

ì
(Eq. 10)

 
(Eq. 11)

Here b1, b2 ... b5 are the slope coefficients,  is intercept (con-
stant term) and C1, C2 are the model’s error terms, which are esti-
mated from the polynomial curve of polynomial regressions. After
putting the values of slope coefficients, intercept, and the value of
the y1=σ in equation (10), x will be estimated. Similarly, by
putting the values of the slope coefficients, intercept, and estimated
value of x from equation (10) in equation (11), the value of the y2
will be estimated.

                             Article
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Figure 7. Block diagram of the TH value decider where TH varies from range 3988 to 2000 and TL is a fixed value that is 169. TL is the
lower value of threshold and TH is the higher value of threshold. X1 is the RGB mask and X2 is an estimated mask, and both are given
to parameter extraction and estimation block which produces a table containing TL, TH, average intersection over union and average
exception. TH, high threshold; TL, low threshold; IOU, intersection over union.
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Figure 8 shows the original RGB image and its pre-masked
image with TL and TH thresholding ranges. In the 3D grape cluster
segmentation, instead of giving the original RGB image to the pro-
posed segmentation model, pre-masked images with unwanted
regions of the image removal are given to the proposed segmenta-
tion model (Figure 9). The addition of a pre-masking block to the
proposed model has shown an interesting improvement in the final
segmentation results.

Weight prediction model
As mentioned above, Dataset 2 is created with a single grape

cluster per image and with fixed distances. The image of the same
grape cluster is taken from seven different distances, and mean-
while, height, width, and weight of the same cluster were noted. So
here, segmented output images of dataset 2 are given to the 2D
weight prediction model. The pixel area of the ROI, which is the
grape cluster area of that image is calculated. As mentioned, the
segmented image contains only black and white pixels, where
white pixels indicate the grape clusters and black pixels indicate
the background. Here, the white pixel area is the ROI. Using the
appropriate command in Python, the ROI of all images has been
estimated. Both 2D and 3D weight prediction models are trained
with trainable parameters extracted from the images. For compar-

ison purposes, the segmented images from the above segmentation
model are given to the ML and DL-based weight prediction model
(Barbole et al., 2022). Keras regression model (Barbole et al.,
2022) is used as a DL-based weight prediction of vineyard. Keras
regression model (Barbole et al., 2022) is trained and tested with
segmented output from grape cluster segmentation model with
additional input of weight (kg) for each image. For ML-based sys-
tems, the pixel area of each segmented image is estimated, which
is also ROI. This pixel area of each cluster will be added to a .csv
file, which also contains the actual height and width of correspond-
ing clusters. After that, the entire dataset is divided into four parts:
i) X_train: training features; ii) y_train: training labels; iii) X_test:
testing features; iv) y_test: testing labels. In our case, 90% of the
total dataset is used for training purposes and the remaining 10%
is used for testing purposes. The ML regression model is trained
with the single grape cluster per image dataset, and predictions for
the test dataset are made. Finally, on the segmented output of mul-
tiple grape clusters per image dataset, the same models are
retrained and tested to get the weight of grape clusters per image.
The major difference between prediction and classification is that
prediction gives any numeric value as output, whereas classifica-
tion gives the class to which an object belongs. In our case, the area
of interest is predicting the weight of the grape clusters by consid-

                             Article

Figure 8. Pre-masking output. a) Original RGB image; b) pre-masked RGB image.

Figure 9. 3D grape cluster segmentation model.
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ering other parameters. So, ML regression models are best suited
for performing the desired task. Based on the literature survey, five
ML models and their comparative studies are considered for the
analysis. These considered techniques are as follows: i) LR; ii) RR;
iii) BRR; iv) DTR; v) RFR. To design this model, Python language
is preferred. In Python, there is a Sci-kit Learn library which con-
tains all the ML models.

2D weight prediction model
As mentioned above, pre-trained weight prediction models for

single grape clusters per image are trained on segmented output
images of dataset 1. All ML-based 2D weight prediction models
are trained with images taken from an average distance of 75cm,
with height (cm), width (cm), and pixel area as trainable parame-
ters. These trained models are again trained for segmented output
from the modified U-Net for multiple grape clusters per image. A
list of feature vectors inside the .csv file is mentioned in Table 2.
Here average height (cm) and average width (cm) are estimated by
taking the average of the heights and widths of all images in
dataset 2. Finally, these trained 2D weight prediction models are
tested on dataset 3, where the weights of grape clusters present in
each image were noted as a ground truth.

3D weight prediction model
As mentioned above, pre-trained weight prediction models for

single grape clusters per image are trained on segmented output
images of dataset 1. All ML-based 3D weight prediction models
are trained first on dataset 2, which has a single grape cluster per
image and a variety of distances. For training the weight prediction
models, a .csv file containing the various features has been consid-
ered related to the cluster images (Table 3).

Along with height (cm), width (cm), average distance (cm),
and pixel area, for each image, some more estimated features like
min. depth, max. depth, and standard deviation are also examined
as trainable parameters. By analyzing dataset 2, the average height
and width of each cluster in the image have been estimated. For

min. and max. depth estimation, first multiplying RGB image with
the raw image is taken, and then by using max. and min. functions
in the Numpy library, min. depth and max. depth are estimated. In
a similar way, with .std () and .mean () functions in Numpy, stan-
dard deviation and average distance (cm) are estimated. Finally, all
trained 3D weight prediction models are tested on dataset 3, where
weights of the grape clusters present in each image were noted as
a ground truth. As mentioned earlier, dataset 3 is created by select-
ing specific areas of vineyard that are 10.219 m2. Once all trained
ML and DL-based weight prediction models are tested on dataset
3, the weights of grape clusters in each image are estimated.
Finally, it is given to a yield prediction model, which predicts the
yield from the yields of the specified areas.

Evaluation parameters
Model evaluation is the main task to determine how reliably

any model performs. By providing some important performance
parameters, it makes the model more presentable to the audience.
In this section, performance evaluation parameters of all models of
yield prediction systems are mentioned.

Grape cluster segmentation model
According to some literature surveys (Marani et al., 2020;

Santos et al., 2020; Tang et al., 2020; Tang et al., 2023; Wang et
al., 2017; Zhang et al., 2022), the best performance evaluation
parameters for segmentation task are Pixel Accuracy (PA) and
mean IOU (mIOU). Details of these parameters are given below.

Pixel accuracy
For the segmentation task, the accuracy of correctly classified

pixels will be the performance evaluation parameter.
Mathematically, it is expressed as: 

                      
(Eq. 12)
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Table 2. 2D trainable feature parameters estimated for each image in the dataset.

Parameter                                                                                      Information                                                                              Type

Average height (cm)                                              Estimated height of the grape cluster, measured in centimeters                                               Numeric
Average width (cm)                                               Estimated width of the grape cluster, measured in centimeters                                               Numeric
Pixel area                                                   Pixel count obtained from segmented images, which is the region of interest                                   Numeric
Average distance (cm)                             Actual distance of the grape cluster from the camera, measured in centimeters.                                 Numeric
Weight (kg)                                                                    The actual weight of the grape cluster, in kilograms.                                                       Numeric

Table 3. 3D trainable feature parameters estimated for each image in the dataset

Parameter                                                                                      Information                                                                              Type

Average height (cm)                                             Estimated height of the grape cluster, measured in centimeters                                               Numeric
Average width(cm)                                                Estimated width of the grape cluster, measured in centimeters                                               Numeric
Pixel count (area)                                      Pixel count obtained from segmented images, which is the region of interest                                   Numeric
Min. depth                                        The minimum value of depth obtained from depth information from the D435I Camera.                          Numeric
Max. depth                                       The maximum value of depth obtained from depth information from the D435I Camera.                         Numeric
Standard deviation                                               Standard deviation of the .raw files of the corresponding images                                             Numeric
Average distance (cm)                             Actual distance of the grape cluster from the camera, measured in centimeters                                  Numeric
Weight (kg)                                                                    The actual weight of the grape cluster, in kilograms                                                       Numeric
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Higher PA leads to better model performance and makes a
more suitable model for real-time applications.

Mean intersection over union
IOU is estimated by dividing the overlapping pixel area

between the actual mask and the predicted mask by the combined
pixel area of the actual and predicted mask. An average of IOU for
each image is nothing but mIOU, which is mathematically
expressed as:

                 
(Eq. 13)

where N is the total number of images tested. This value ranges
from 0 to 1 and the model that provides a value closer to 1 is con-
sidered the best model for segmentation task.

Weight prediction model
There are so many performance evaluation metrics present, but

very few are suitable to be used for regression problems. Three
performance metrics in this study are given below.

R-squared score
In regression models, the R-square value, also known as the

coefficient of determination, is a statistical measure that represents
the proportion of the total variation in the dependent variable that
can be explained by the independent variables in the model.

The R-square value ranges between 0 and 1, where:
• An R-square value of 0 indicates that the independent variables

in the model cannot explain any of the variations in the depen-
dent variable.

• An R-square value of 1 indicates that the independent variables
in the model can perfectly explain all of the variations in the
dependent variable.

Mean squared error
MSE is a common metric used to evaluate the performance of

regression models. MSE measures the average squared difference
between the predicted values and the actual values of the depen-
dent variable in a regression model. By squaring the differences, it

penalizes larger errors more heavily, providing a measure of the
overall model accuracy. A lower MSE value indicates better per-
formance, as it means the model’s predicted values are closer to the
actual values.

Root mean squared error
Root MSE (RMSE) is a popular metric used to evaluate the

performance of regression models. RMSE is derived from the
MSE and provides a measure of the average magnitude of the
errors between the predicted and actual values of the dependent
variable in a regression model. Similar to MSE, a lower RMSE
value indicates better model performance, as it signifies smaller
errors between the predicted and actual values.

Vineyard yield error
To evaluate the performance of the yield prediction model, the

error between actual yield and predicted yield is considered. The
lower the error value, the better will be the model performance. It
is simply the difference between actual vineyard weight (kg) and
predicted vineyard weight (kg).

Results and Discussion
The result analysis of all the 2D and 3D models included in

yield prediction systems is discussed in this section. The results of
the pre-masking on dataset include total images, image resolution
and dataset size (Table 4). Here, the original dataset contains 424
images, with each image having a resolution of 424p×240p. The
size of the original dataset was 86.063 MB, and after the pre-mask-
ing operation, it was reduced to 71.38 MB.

All the 2D and 3D grape cluster segmentation models are
trained on a GPU system with 403 RGB images as the training
dataset and 412,845 trainable parameters (Table 5). Specifically,
for 500 epochs, the 3D model achieved an accuracy of up to
92.02% and a c of up to 81.69%. The time complexity for this
model was approximately 558 minutes. Similarly, for 1000 epochs,
the 3D model demonstrated even better results, with an accuracy
of up to 94.81% and an excellent mIOU of up to 86.13%. The time
complexity for this model was 1293 minutes. As per comparative
results of all the 2D DL- and ML-based grape cluster weight pre-
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Table 4. Results of the pre-masking on dataset which includes total images, image resolution and dataset size.

Model                                            Total images                                  Image resolution                                                  Dataset size

Original dataset                                               424                                                      424p×240p                                                                  86.063 MB
Pre-masked dataset                                         424                                                      424p×240p                                                                   71.38 MB
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Table 5. Comparative results of grape cluster segmentation models by hyper parameter (number of epochs) tuning and in terms of per-
formance evaluation parameters like time complexity, pixel accuracy and mean intersection over union.                     

Model                                                     Number of           Training                Trainable                  Time                        PA              mIOU
                                                                  epochs               dataset               parameters          complexity                 (%)              (%)

2D grape cluster segmentation model                   500                          403                          412,845                       692m                         88.50                80.21
                                                                               1000                         403                          412,845                      1476m                        90.23                81.95
3D grape cluster segmentation model                   500                          403                          412,845                       558m                         92.02                83.69
                                                                               1000                         403                          412,845                      1293m                        94.81                86.13
PA, pixel accuracy; mIOU, mean intersection over union.

Non
-co

mmerc
ial

 us
e o

nly



diction regression models (Table 6), the decision tree regression
model and the random forest regression model are performing
much better, as they give 100.0 and 99.9311 R2-scores respective-
ly, for the train dataset, and 68.6723 and 70.2908 R2-scores respec-
tively, for the test dataset. LR model has the highest MSE and the
RMSE which is up to 0.0298 and 0.0298 respectively, for the train
dataset, and with the test dataset, 0.2078 for both the models. DTR
and RFR models are performing better, with the lowest MSE val-
ues up to 0.0 and 0.00027 respectively, for the train dataset, and for
the test dataset, they are 0.1768 and 0.1677 respectively. Similarly,
the RMSE values of the DTR and RFR models are lower, up to 0.0
and 0.01645 respectively, for the train dataset, and 0.4205 and
0.4045 respectively, for the test dataset.

Similar to the results of 2D weight prediction models, from
comparative results of all the 3D DL- and ML-based grape cluster
weight prediction models (Table 7), it can be stated that the deci-
sion tree regression model and the random forest regression model

are performing better, as it gives 100.0 and 99.9311 R2-scores,
respectively for the train dataset, and 68.0075 and 71.6766 R2-
scores respectively for the test dataset. DTR and RFR models are
performing better, with lower MSE values up to 0.0 and 0.00061
respectively, for the train dataset, and for the test dataset, it is
0.1806 and 0.1599 respectively. Similarly, the RMSE values of the
DTR and the RFR models are lower, up to 0.0 and 0.02477 respec-
tively, for the train dataset, and 0.4250 and 0.3999 respectively, for
test dataset.

In the average weight of three slots using all the 2D, 3D DL-
and ML-based weight prediction models (Table 8), it can be
observed that LR and the RR models perform better, with accuracy
values up to 97.1654%, for both the models with a 2D dataset, and
99.3356% and 99.3350% respectively, for a 3D dataset. From this
table, it can be said that the average weight of three slots is esti-
mated very well with 3D weight prediction models rather than 2D
weight prediction models. From a table of comparative results of
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Table 6. Comparative results of all the 2D deep learning- and machine learning-based grape cluster weight prediction regression models
and in terms of performance evaluation parameters like R2_score, mean squared error and root mean squared error.

Approach        Model                                                     R2_score (%)          MSE               RMSE
                                                                                                          Train             Test                Train            Test               Train           Test

DL-based              2D Keras regression model (Barbole et al., 2022)           98.67               48.17                  0.050             0.9811               0.0704           0.9905
ML-based             LR                                                                                       92.42               63.20                0.02982          0.2078               0.1726           0.4558
                             RR                                                                                      92.42               63.20                0.02982          0.2078               0.1726           0.4558
                             BRR                                                                                    92.42               63.20                0.02982          0.2078               0.1726           0.4558
                             DTR                                                                                    100.0               68.67                    0.0               0.1768                  0.0              0.4205
                             RFR                                                                                    99.93               70.29                0.00027          0.1677              0.01645          0.4095
MSE, mean squared error; RMSE, root mean squared error; DL, deep learning; ML, machine learning; LR, Linear Regressor; RR, Ridge Regressor; BRR, Bayesian Ridge Regressor; 
DTR, Decision Tree Regressor; RFR, Random Forest Regressor.

Table 7. Comparative results of all the 3D deep learning- and machine learning-based grape cluster weight prediction regression models
and in terms of performance evaluation parameters like R2_score, mean squared error and root mean squared error.

Approach       Model                                                     R2_score (%)         MSE               RMSE
                                                                                                          Train             Test                Train            Test               Train           Test

DL-based            3D Keras regression model (Barbole et al., 2022)             99.22               51.13                 0.0031           0.8420               0.0555           0.9176
ML-based           LR                                                                                        92.48               66.59                0.02958          0.1886               0.1719           0.4343
                            RR                                                                                        92.84               66.59                0.02813          0.1886               0.1677           0.4343
                            BRR                                                                                     93.01               63.95                0.02778          0.2035               0.1666           0.4512
                            DTR                                                                                     100.0               68.01                    0.0               0.1806                  0.0              0.4250
                            RFR                                                                                     99.84               71.68                0.00061          0.1599              0.02477          0.3999
MSE, mean squared error; RMSE, root mean squared error; DL, deep learning; ML, machine learning; LR, Linear Regressor; RR, Ridge Regressor; BRR, Bayesian Ridge Regressor; DTR,
Decision Tree Regressor; RFR, Random Forest Regressor.

Table 8. Average weight of three slots using all the 2D, 3D deep learning- and machine learning-based weight prediction models by relat-
ing actual weight (kg) for grape clusters in each slot with predicted weight (kg) for the same respective slots with performance evaluation
factors like accuracy and error.

Approach    Weight prediction model                              Actual weight Predicted weight (kg) Error  Accuracy (%)
                                                                                                       (kg)                           2D         3D             2D           3D           2D           3D

DL-based         Keras regression model (Barbole et al., 2022)              33.8824                        29.6363   30.2967        4.2461      3.5857      87.4681     89.4172
ML-based         LR                                                                                   33.8824                        32.9220   33.6573        0.9604      0.2251      97.1654     99.3356
                         RR                                                                                   33.8824                        32.9220   33.6571        0.9604      0.2253      97.1654     99.3350
                         BRR                                                                                33.8824                        32.9220   33.0522        0.9604      0.8302      97.1654     97.5497
                         DTR                                                                                33.8824                        32.4046   32.4333        1.4778      1.4491      95.6384     95.7231
                         RFR                                                                                 33.8824                        32.1783   32.2354        1.7041      1.6470      94.9705     95.1390
DL, deep learning; ML, machine learning; LR, Linear Regressor; RR, Ridge Regressor; BRR, Bayesian Ridge Regressor; DTR, Decision Tree Regressor; RFR, Random Forest Regressor.
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DL-based and all ML-based yield prediction models (Table 9), one
can say that the 3D LR and RR models are giving the best results
with the highest accuracy value, compared to other models, which
are up to 99.58% for both the models.

Conclusions
The correct weight prediction of grape clusters using automa-

tion is the need of the time. The image processing-based approach
with least complexity is a challenging task. The important factor
that affects the prediction performance is the distance variation
during the capture of images using the camera. The image-to-
image distance variation and keeping track of these changes using
a manual approach are not practical. The depth information
obtained from the use of a depth camera is the best possible solu-
tion for general applications. Depth information from a depth cam-
era is used in this paper to predict the weight of the grape clusters.
The regression task is performed by using a calibration approach
with single cluster images taken at different distances. The known
distance, their respective depth information of ROI, standard devi-
ation, and pixel count from segmented images have relationships,
which are regulated by considering L1 and L2 parameters in
regression models. R2_score greater than 0.5 is considered a good
score, which indicates that 50% of the dependent variable variance
is explained by the model. From this, it can be stated that all mod-
els considered in the proposed work are performing well, and all of
them have an R2_score greater than 60% for train and test datasets.
The weight prediction with the 3D DTR and the 3D RFR gives bet-
ter output compared to the other 2D and 3D ML-based weight pre-
diction models, but when slot-wise average weight prediction is
considered, the 3D LR and the 3D RR models perform better.
Some parameter tuning also affects the results of ML models in
positive ways. The maximum error of ±1% is seen while predicting
the weight of the clusters. At the final task of vineyard yield pre-
diction, again the 3D LR and the 3D RR models give the best
results with minimum error values compared to other models
which are up to 55.6905 kg and 55.7426 kg. The accuracies of 3D
LR and RR models are up to 99.58% for both, which is remark-
able. From all the comparative analyses of 2D and 3D yield predic-
tion systems, it can be concluded that 3D yield prediction gives
superior results with additional parameters estimated from the
depth information.

Limitations and future scopes
In the proposed research, we have created a vineyard dataset

for only one type of grape (sonaka) due to lack of time. By follow-
ing the steps and methodology used in this proposal for creating a
vineyard dataset, future researchers can create more datasets on a
variety of grape types in India.

Moreover, while training a DL-based model, it needs images
and their masks as inputs. This masking is done manually, which is
a very hectic and time-consuming process. So future researchers
should work on automated masking techniques for vineyard
images.

Finally, the currently trained segmentation model is trained
only for a single type of grape (sonaka), so by training the same
model using the concept of transfer learning for multiple grape
varieties, it can become more versatile and suitable for real-time
scenarios.
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