
Abstract
Deep convolutional neural network (DCNN) has recently

made significant strides in the classification and recognition of
rice leaf disease. The majority of classification models perform
disease image recognitions using collocation patterns including
pooling layers, convolutional layers, and fully connected layers,
followed by repeating this structure to complete depth increase.
However, the key information of the lesion area is locally limited.
That is to say, in the case of only performing feature extraction
according to the above-mentioned model, redundant and low-cor-
relation image feature information with the lesion area will be
received, resulting in low accuracy of the model. For improve-
ment of the network structure and accuracy promotion, here we
proposed a double-branch DCNN (DBDCNN) model with a con-
volutional block attention module (CBAM). The results show that
the accuracy of the classic models VGG-16, ResNet-50,

ResNet50+CBAM, MobileNet-V2, GoogLeNet, EfficientNet-B1
and Inception-V2 is lower than the accuracy of the model in this
paper (98.73%). Collectively, the DBDCNN model here we pro-
posed might be a better choice for classification and identification
of rice leaf diseases in the future, based on its novel identification
strategy for crop disease diagnosis.

Introduction
Rice is one of the most important food crops in the world, and

its yield and quality are directly related to global food supply and
livelihoods. Especially in China, rice is already an essential food
crop, and its planting area and total output rank second in the
world (Chakraborty and Newton, 2011; Ray et al., 2012; Huang et
al., 2016; Savary et al., 2019). However, rice is vulnerable to dis-
eases during growth and development, among which leaf diseases
(such as Bacterial blight, Blast, Brown spot and Tungro)
(Skamnioti and Gurr, 2009; Valent and Khang, 2010; Sundaram et
al., 2014; Savary et al., 2019) are one of the main diseases of rice.
According to statistics, due to the impact of these rice diseases, the
annual rice yield usually decreases by 10-15% (Peng et al., 2009),
and it will also cause certain damage to the surrounding soil envi-
ronment. Therefore, it is urgent to develop an efficient and accu-
rate method for rice leaf disease identification.

At present, there have been some researches on rice leaf dis-
ease identification methods, but most of them are based on tradi-
tional manual detection methods, which have problems such as
low efficiency, unstable results and high misdiagnosis rate. In
addition, manual diagnostic methods are particularly difficult to
implement for some difficult-to-distinguish disease types.
Therefore, it has extremely important theoretical and practical sig-
nificance to develop an automatic identification system that can
accurately identify rice leaf disease types.

This research aims to develop a rice leaf disease recognition
system based on computer vision (CV) and deep learning technol-
ogy (DLT) to solve the problems of low efficiency and high mis-
diagnosis rate of current manual diagnosis. Specifically, this paper
will collect a large number of rice leaf images and combine them
with deep learning algorithms to train an efficient and accurate
disease identification model to realize automatic identification and
classification of different types of rice leaf diseases. The research
results are expected to provide a more reliable and efficient tech-
nical means for rice disease monitoring and control, which will
help improve the production efficiency and quality of rice and pro-
mote the sustainable development of food production.

Currently, due to the rapid development of CV, digital image
processing technology (Barbedo and Garcia, 2013) and DLT, a
large number of traditional machine learning algorithms have
been used to identify disease types in rice and other crops. For
example, Nandhini and Bhavani (2020) first extracted color and
shape features from rice diseased leaves and subsequently used
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traditional machine learning algorithms such as Support vector
machine (SVM), Decision tree, and K-nearest neighbor to classify
the extracted features, and their experiment results demonstrated
that the SVM-based classification was the best. Zhang and Zhang
(2010) used three SVMs with different kernel functions [including
Radial basis function (RBF), polynomial function, as well as
Sigmoid kernel function] for classification and identification of
cucumber leaf diseases, and their experimental results indicated
that SVM-based RBF kernel function had the highest recognition
rate. Panchal et al. (2019) initially segmented the diseased areas of
plant leaves using K-Means clustering and HSV color space, fol-
lowed by extracting features of diseased areas according to the
grey-level co-occurrence matrix, and then identifying the disease
species based on random forest. However, when the above
machine learning algorithm was adopted for crop pest and disease
image classification, the feature extractor should be at first set up
manually, in addition, many other limited difficulties (e.g., limited
data processing power, etc.) were also encountered, which nega-
tively affect the running capacity of the model and thereby the
classification accuracy. On the other hand, due to the continuous
and rapid development of machine learning technology, deep
learning has attracted increased attention in crop pest and disease
identification field. To date, numerous researchers have conducted
extensive in-depth studies involved in crop pests and diseases
identifications using deep neural networks [convolutional neural
networks (CNN) particularly] and corresponding optimization
algorithms. For example, Jiang et al. (2020) integrated SVM with
CNN to establish a disease recognition model, using CNN for
image features extraction of rice leaf diseases, and SVM for dis-
eases classification and prediction. The results indicated that the
average accuracy of this model could reach 96.8%, and the classi-
fication effect was more satisfactory. Deb et al. (2021) first intro-
duced the impact of rice diseases on agricultural production and
the limitations of traditional detection methods, and then proposed
the possibility of using artificial intelligence technology for early
diagnosis. At the same time, the performance of 5 different CNN
models (namely Inception-V3, VGG-16, AlexNet, MobileNet V2
and ResNet-18) on the rice leaf disease image dataset is introduced
in detail. The authors noted that the Inception-V3 model performed
best in terms of accuracy, reaching 96.23%. Deb et al. (2022) pro-
posed a new CNN model LS-Net to solve the problem of rose plant
leaf segmentation. The authors pointed out that traditional methods
based on CNN have difficulties in processing images with multiple
overlapping leaves and complex backgrounds, and cannot produce
high accuracy, so the LS-Net network model is proposed. At the
same time, it is compared with 4 existing CNN segmentation mod-
els (i.e., DeepLab V3+, Seg Net, Fast-FCN with pyramid pooling
module and U-Net). Experimental results show that the proposed
model has a better segmentation effect. Chen et al. (2020) first
investigated the transfer learning of deep CNNs, and then proposed
a VGGNet-based INC-VGGN model. The model is pre-trained on
ImageNet and Inception modules to identify plant leaf disease
types. Compared with other state-of-the-art techniques (DenseNet-
201, ResNet-50, Inception V3 and VGGNet-19), our proposed
method achieves substantial performance improvement. Pandian et
al. (2022) proposed a 5-layer CNN model based on data augmen-
tation and hyperparameter optimization techniques to identify
plant leaf disease images. Among them, image enhancement tech-
niques include generative adversarial networks, neural style trans-
fer, principal component analysis, color enhancement, and location
enhancement. In addition, hyperparameters are optimized by ran-
dom search techniques. At the same time, the proposed model was

compared with advanced methods such as VGG16, Inception-v3,
and ResNet-50. The experimental results show that the average
accuracy of the proposed model on the test set can reach 98.41%,
which is better than other methods. Kaur et al. (2022) Based on
InceptionNet, ResNet V2 and transfer learning, a new CNN model
(i.e., the modified InceptionResNet-V2 model) was proposed and
used to identify diseases in tomato leaf images. The model was
trained and tested on public datasets Plantvillage and PlantDoc as
well as custom datasets, and the final recognition accuracy rate
was 98.92%. The experimental results show that the model has a
good effect on the identification of tomato leaf diseases. Omer et
al. (2022) proposed a tuned CNN model (both 1-CNN and 2-CNN
implementations) and used it to identify healthy and diseased
cucumber leaves. The recognition process is divided into three
steps, namely data augmentation, feature extraction and classifica-
tion. Among them, data augmentation is used to expand the
dataset, while CNN is used for feature extraction and classifica-
tion. The experimental results on the custom data set show that the
proposed model has the highest accuracy rate, which is better than
the accuracy rate of the comparison models (such as Inception-V3,
ResNet-50 and AlexNet). Zhao et al. (2021) combined an attention
module with a deep CNN to propose a recognition system model
(SE-ResNet50) for diagnosing tomato leaf diseases. Specifically,
the proposed network model mainly consists of a residual block
and an attention module, capable of complex feature extraction and
classification for various diseases. The results of a large number of
comparative experiments on the tomato leaf disease dataset show
that the average accuracy of the proposed model is 96.81%, which
is higher than the comparison models (GoogleNet, ResNet-101,
Xception and VGG-19). Ghosal and Sarkar (2020) adopted a
migration learning approach to fine-tune a pre-trained model
(VGG-16) and subsequently applied it on a rice leaf disease dataset
with a small sample size, and ultimately achieving an accuracy of
92.46%. Bharali et al. (2019) proposed a PDDNN network system
(7 conv layers+2 fc layers) for crop-disease identification and
obtained an accuracy of 86% on a given dataset. Subetha et al.
(2021) used the deep learning algorithms ResNet-50 and VGG-19
for predictive classification of apple leaf disease datasets in
Kaggle, respectively. A comparison analysis results showed that
the former ResNet-50 had a higher prediction accuracy, with an
overall accuracy of 87.7%. Sethy et al. (2020) first extracted the
depth features of rice leaf disease region using 11 classical CNNs
(such as VGG-16, VGG-19, GoogLeNet, etc.) separately, and then
used SVM as a classifier to classify the features. The results sug-
gested that the combination of ResNet-50 with SVM achieved the
highest accuracy, while GoogLeNet combined with SVM led to the
worst classification result. These experiments have explored and
tested how to choose the best network model for depth features
extractions when SVM is adopted as a classifier. Waheed et al.
(2020) further proposed an optimized DenseNet network system
and simultaneously applied it with other CNN models (including
VGG-19, XceptionNet, NasNet and EfficientNet-B0) for maize
leaf disease dataset, respectively. Data showed that the optimized
lightweight network DenseNet achieved the highest accuracy, with
a far-batter prediction accuracy than other comparison controls.
Rahman et al. (2020) designed a network model called Simple
CNN with fewer parameters based on a novel training method (i.e.,
a two-stage training method) induced from fine-tuning. They
demonstrated that the model achieved 93.30% accuracy in rice
pests and diseases identification, outperforming the existing
MobileNet-V2, NasNetMobile, SqueezeNet-V1.1 and VGG-16.
Zeng and Li (2020) proposed a Self-attentive CNN model combin-
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ing self-attentive (SA) and CNN, where CNN was adopted for
extracting global features of images while SA was used for obtain-
ing local features of crop disease regions. Based on the predictive
classification of maize leaf diseases according to the natural envi-
ronment crop disease dataset (AES-CD9214) and the public
dataset (MK-D2), obtained accuracies were 95.33% and 98.0%
respectively, outperforming the current-existed classical network
models. This suggests that neural network with an attention mod-
ule is far better able to concentrate on most key regions within
images thereby significantly and effectively promoting classifica-
tion accuracy. Liu et al. (2018) removed some original fully con-
nected layers and supplemented some pooling layers based on
AlexNet, introducing the GoogLeNet Inception structure to ulti-
mately develop a Deep CNN (DCNN), in which the optimization
of model parameters was performed using Numerical Algorithm
Group algorithm. AlexNet, GoogLeNet, VGG-16, and ResNet-20
were all adopted as comparison control models in the classification
and recognition of apple leaf disease dataset. The results demon-
strated that recognition accuracy could reach 97.62%, which was
more significantly higher than those detected from other control
models. Zhang et al. (2019) designed a global pooled dilation
CNN system by combining the dilation convolutional layer and
global pooling. By doing so, it is capable of aggregating multi-
scale contextual information and promoting the recognition rate.
AlexNet, DCNN (Khan et al., 2018), a probabilistic neural net-
work (Shi et al., 2015) were once incorporated as comparison con-
trol models to identify cucumber leaf disease dataset in the exper-
imental stage, consequently, the proposed model achieved the
highest accuracy (94.65%).

As we all know, the attention mechanism is an image-process-
ing technique widely used in the field of deep learning. It mainly
has the following advantages: i) it helps the neural network auto-
matically focus on important information in the input data, thereby
improving the performance of tasks such as classification or
regression; ii) it can adapt to different features in the input data, so
it can be flexibly applied to different types of tasks and datasets;
iii) it helps researchers understand the behavior and decision-mak-
ing of neural networks by providing visualization results.

Now we move on to CBAM, an attention mechanism module
for convolutional neural networks. Compared with the general
attention mechanism, its advantages are the following: i) based on
the attention mechanism, a channel and spatial attention mecha-
nism is introduced, which can simultaneously pay attention to the
channel and spatial information in the input data, and realize adap-
tive feature selection and fusion without introducing additional
parameters; ii) the parameters of the model are effectively reduced,
and the calculation efficiency and generalization ability of the
model are improved; iii) good performance has been achieved in
multiple vision tasks, demonstrating the potential of the CBAM
model in areas such as image classification, object detection, and
image segmentation.

The relationship between CBAM and DCNN can be interpret-
ed as the former being a submodule or plug-in of the latter, which
can be embedded into different layers of DCNN to improve the
performance of the network. For example, CBAM can be naturally
inserted into deep models such as ResNet, VGG, Inception, etc.,
and will not have a major impact on their overall structure. In addi-
tion, the structure of DCNN is usually composed of multiple con-
volutional layers and pooling layers, so as to gradually extract
higher-level features to realize the classification, recognition or
other tasks of input data. If combined with the advantages of
CBAM, it can better help the network to pay attention to the impor-

tant information in the input data, and further improve the expres-
sive ability of features and the accuracy of the model. In conclu-
sion, CBAM is an attention mechanism module that can be embed-
ded into DCNN, which can adaptively focus on important informa-
tion in input data and further improve the performance and robust-
ness of DCNN. Because of the close relationship between CBAM
and DCNN, they can cooperate with each other to better achieve
deep learning tasks.

Through the above discussion and analysis, this study proposes
a new method for identifying rice leaf diseases, which is to intro-
duce the dual-branch DCNN identification model of CBAM. We
mainly focused on the following three aspects: i) we developed
and proposed a novel double-branch DCNN (DBDCNN) based on
residual network and verified the plausibility of its improvements
in three aspects. The experimental results suggested that it could
obtain high accuracy in extracting depth features of key regions
and classification, implying practical significance for classification
and recognition of rice disease images; ii) the effects of CBAM
and secondary screening depth features on recognition perfor-
mance were explored and discussed based on our experimental
results compared with different models using the method proposed
in this paper; iii) multiple sets of experimental results indicated
that our proposed DBDCNN method presented with high accuracy
of recognition and strong robustness. Compared with other deep
learning models (ResNet-50, MobileNet-V2, VGG-16,
ResNet50+CBAM, GoogLeNet, EfficientNet-B1, and Inception-
V2), our model performed better on the rice leaf disease dataset.

Pre-requisite knowledge
Convolutional block attention module

CBAM (Chen et al., 2017; Woo et al., 2018) has been pro-
posed as a lightweight attention mechanism that focuses not only
on the attention information on the feature map channel, but also
on the large amount of attention information inside the channel,
hence effectively combining both channel and spatial dimensions.
Compared with SENet (Hu et al., 2020), the Spatial Attention
Module (SAM) or Channel Attention Module (CAM) alone, was
more capable of emphasizing meaningful features in both channel
and spatial dimensions, pointing out what and where to pay atten-
tion to in order to obtain more reliable and comprehensive infor-
mation (Yu et al., 2020). CBAM successively integrated the spatial
attention module SAM as well as the channel attention module
CAM. In CAM, feature maps were initially subjected to global
maximum and average pooling respectively, followed by feeding
the pooling results into another double-layer fully connected neu-
ral network. Then output features were subjected to element-wise
summation-based operations and sigmoid activation operations,
and ultimately channel attention features Mc(F) were obtained. The
flow of this module can be seen in Equation (1), where ,
denote the features after global average and maximum pooling,
respectively, W0, and W1 denote weight parameters in the neural
network. s represents the ultimate sigmoid activation function. In
SAM, the output feature map from CAM was also subjected to the
above two pooling operations. Then the two pooled features were
stitched together for input into a convolutional layer for feature
dimensionality reduction. The same sigmoid activation operation
was subsequently performed to obtain spatial attention features
Ms(F). Equation (2) embodies the detailed process of SAM. f indi-
cates the convolution operation using a 7×7 convolution kernel,
and [ ] is the channel-based splicing operation. Finally, the final
feature map (i.e., the output feature map after CBAM) was
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obtained by multiplying this vector with the input feature map.

                                      
(1)

                                      
(2)

Derivation of the network structure of the proposed model
During the construction of DBDCNN, the rationality of this

network structure was verified according to three aspects as fol-
lowing: i) the rationality of CBAM location introduction; ii) the
rationality of CBAM number introduction; iii) the rationality of
dual branch path parallelization.

Verify the rationality of the convolutional block attention
module insertion position

Four locations were selected as insertion points for CBAM in
the network structure (Figure 1). After Conv1, Conv2, Conv3 and
Conv4, these locations were denoted as L1, L2, L3 and L4, respec-
tively. Meanwhile, classification recognition of disease images
under the condition of inserting CBAM at different positions was
also tested. According to Table 1, classification accuracy obtained
by inserting CBAM after L2, i.e., Conv2, was 0.9447, significantly
much higher than those detected from the other three locations.
Therefore, the attention module CBAM at L2 was inserted in order
to get more feature information of key areas more often and faster
to improve the classification and recognition of disease images.
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Figure 1. Network structure of the proposed double-branch deep convolutional neural network model.
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Validate the reasonableness of the quantity introduced by
convolutional block attention module

According to the previous description, the best insertion posi-
tion of CBAM was located at L2. Therefore, we further introduced
different numbers of CBAMs to analyze the variation of their clas-
sification accuracy. Here the number of introductions was set to 1,
2, and 3, where the case of number 2 was subsequently divided into
two types of introductions, i.e., series introduction and parallel
introduction (Figure 2). According to Table 2, when the number of
CBAM was 1, the classification accuracy was 0.9482, higher than
other numbers. This was because by adding a CBAM, global fea-
ture information about the lesion region could be better extracted
from the depth features. If too many attention modules were insert-
ed, weakness of the input global feature information and the depth
feature extraction of the focus region might be affected or
reversed, leading to an eventual degradation of overall classifica-
tion accuracy. Moreover, an increase in the number of introduc-
tions might cause computational overburden in computers, as well
as memory wastage and prolonging the training time, hence was
not a wise choice for the experiment. Accordingly, more attention
modules inserted in the network might not only necessarily facili-
tate the improvement of the experimental results, but might also be
counterproductive. Therefore, the most optimal choice should be
made only according to the experimental equipment and network
structure.

Verify the rationality of parallelization of double-branch paths
Based on the original ResNet-50 network structure, here we

introduced another new path for depth feature extraction. The left
branch path in the Secondary screening depth feature part was
illustrated in Figure 1. To filter out weakly correlated feature infor-
mation and obtain more significant local depth feature information,

the branch first performs maximum pooling on the input feature
map and then acts on four successive convolutional layers. The
results showed that a dual-branch path was significantly and much
better than a single path in deep feature extraction and classifica-
tion. However, the introduction of new feature extraction path sig-
nificantly increased the number of network parameters, making
more time spent on training than the original structure. According
to Table 3, although the newly proposed method increased the
parameter layers and expanded parameter numbers, the classifica-
tion accuracy of this model was constructively improved and
thereby classification task could be efficiently completed.

Materials and Methods
In this study, we developed a dual-branch DCNN model and

applied it to a rice leaf disease dataset for automatic identification
and classification of leaf diseases. The overall workflow of our
proposed model is illustrated in Figure 3. The process was roughly
divided into four parts: i) data pre-processing and dataset division;
ii) data augmentation; iii) construction and training of DBDCNN;
iv) implementation of disease image classification.

Data pre-processing and dataset division
5932 rice leaf disease images were collected from the Kaggle

dataset (https://www.kaggle.com/minhhuy2810/rice-diseases-
image-dataset, https://www.kaggle.com/vbookshelf/rice-leaf-
diseases) as images in this dataset, and these images with different
labels were used to train the proposed model. In Figure 4, each
type of rice leaf disease image sample is shown, and all disease
images in the dataset are divided into four categories: i) Bacterial
blight (including 1584 images); ii) Blast (including 1440 images);

                             Article

                                                              [Journal of Agricultural Engineering 2024; LV:1544]                                           [page 167]

Table 1. Classification accuracy obtained by inserting convolutional block attention module at different positions.

Insert position                            L1                                        L2                                   L3                                                       L4

Classification accuracy                    0.9158                                       0.9447                                  0.9402                                                        0.9273

Table 2. Classification accuracy corresponds to different numbers of convolutional block attention module at L2.

Number of CBAM introduction                 One                    Connecting                           Connecting                           Connecting
                                                                                                   two in series                       two in parallel                     three in series

Classification accuracy                                           0.9482                           0.9376                                          0.9425                                          0.9284
CBAM, convolutional block attention module.

Figure 2. Schematic diagram of convolutional block attention module’s parallel access method in the network.
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iii) Brown spot (including 1600 images); iv) Tungro (including
1308 images). Firstly, pre-processing operations such as check-
weighing on an acquired original dataset were conducted to
remove duplicate and unrecognizable images. Secondly, since
images in the dataset were of different sizes, a resize operation was
performed to make all images into an acceptable 224×224 uniform
size for network input. Then the processed dataset was divided into
two parts, namely training set and test set respectively, with a dis-
tributed ratio of 8:2.

Data augmentation
To make the network model and training process run smooth-

ly and fast, images in both test and training sets should be nor-
malized. Since the number of images was not too large in the
training set to meet the requirements of deep neural networks,
data augmentations (e.g., vertical flip, horizontal flip, rotation
90°, rotation 270°, and Gaussian noise) were conducted on the
training set, and the augmentation process was detailed in
https://github.com/ aleju/imgaug. 

The data distributions of the test set as well as the enhanced
training set were shown in Table 4. Obviously, image data could

significantly improve the accuracy of the training process after
augmentation.

Construction and training of double-branch deep
convolutional neural network

The network structure of our proposed DBDCNN model is
indicated in Figure 1. In DBDCNN, the main network structure of
ResNet-50 was used, which at the same time was optimized and
improved. Specifically, the optimization and improvement of the
original Resnet-50 network structure in this article reflected in the
introduction of the attention module CBAM and another deep con-
volutional extraction path, thereby forming a DBDCNN model
proposed in this article. Where Conv1, MaxPool and Avgpool were
set to the same parameter values as in ResNet-50, while Conv6 to
Conv9 were four consecutive convolutional layers with 3×3 con-
volutional kernels (s=1). As for Conv2 to Conv5, they contain a
large number of Bottleneck1 and Bottleneck2 structures, which are
called bottleneck structures. Through Figure 5, we can clearly
know the internal structure of Bottleneck1 and Bottleneck2. 

In Bottleneck2, the 1×1 convolutional layer is used to reduce
the dimension of the input data (that is, reduce the number of input
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Table 3. Performance analysis of single and double-feature extraction paths.

Type                                                                               Single path                                                    Double branch path

Classification accuracy                                                                   0.9347                                                                               0.9495
Number of layers added                                                                      -                                                                                        4
Number of participants added (in millions)                                       -                                                                                    0.3882

Table 4. The detailed distribution of this dataset.

                                                          Number of                                        Number of                      Number of                     Number of
                                                      original images                               images after data              images used            augmented training
                                                                                                                   deduplication                     for testing                         images

Bacterial blight                                                1584                                                          1393                                       303                                      5450
Blast                                                                 1440                                                          1107                                       264                                      4215
Brown spot                                                      1600                                                          1321                                       305                                      4215
Tungro                                                             1308                                                          1308                                       261                                      5235

Figure 3. Flow chart of rice leaf disease classification model.
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channels), the 3×3 convolutional layer is used to capture the spatial
characteristics of the data (that is, perform feature extraction), and
the final 1×1 convolutional layer is used to restore the dimension-
ality of the output data (i.e., the number of recovered output chan-
nels). In Bottleneck1, only the last 1×1 convolutional layer on the
left increases the number of channels of the input data, while the
first two convolutional layers do not have any processing on the
number of channels. Similarly, the 1×1 convolutional layer on the

right also increases the number of channels of the input data by the
same magnitude. It can be seen from this that when using the
Bottleneck2 structure, the number of input and output channels of
the data does not change, but when using the Bottleneck1 struc-
ture, the number of output channels is not equal to the number of
input channels (specifically, the former is 4 times the latter). At the
same time, in the above two Bottleneck structures, the activation
function we use is the Sigmoid Linear Unit (SiLU) (Elfwing et al.,
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Figure 4. Four types of rice leaf disease image samples in this dataset (the images in this data set are all from the Kaggle dataset): 
(a) Bacterial blight, (b) Blast, (c) Brown spot, (d) Tungro.

Figure 5. Schematic diagram of the structures of Bottleneck1 and Bottleneck2. Among them, S represents stride, C represents the number
of channels, SiLU represents the activation function, 1×1 and 3×3 both represent the size of the convolution kernel, and BN represents the
Batch Normalization layer. SiLU, Sigmoid Linear Unit.
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2018), and there is a Batch normalization (BN) (Ioffe and Szegedy,
2015) operation before it. The detailed calculation process can be
clearly known from Figure 5. In addition, for the use of activation
functions, it was still Relu in Conv1 and Relu and sigmoid in
CBAM. In this paper, using the BN operation helps normalize the
data, avoiding unstable network performance caused by too large
data before performing ReLU or SiLU. In addition, the relevant
parameters of each layer of the model are shown in Figure 6.
Among them, F-E, F-C, F-F, and C-P represent feature extraction,
feature compression, feature fusion, and classification prediction,
respectively. And Fil, K-S, S, P, Act, P-S, B-S, I-F, O-F respective-
ly represent filter, kernel size, stride, padding, activation, pool size,
batch size, in-features and out-features. And “Conv2-B1-L1”
means the first convolutional layer on the left side of the
Bottleneck1 structure in Conv2, “Conv2-B1-R1” means the first
convolutional layer on the right side of the Bottleneck1 structure in
Conv2, “Conv2- B21-L1” indicates the first convolutional layer on
the left in the first Bottleneck2 structure in Conv2 and “Conv2-

B22-L1” indicates the first convolutional layer on the left in the
second Bottleneck2 structure in Conv2. Other descriptions have
similar meanings. As can be seen from the table, except for various
pooling layers, our parameter layer has a total of 62 layers, namely
58 convolutional layers and 4 fully connected layers. Among them,
the attention mechanism CBAM contributes a convolutional layer
and 2 fully connected layers.

Once the network layer is built, we can train this model using
disease images in the training set. Parameter values of the weights
corresponding to each epoch online were saved, and the optimal
one in the PTH file was stored.

Implementation of disease image classification
At the end of training, all optimal weight parameter values in

PTH files were loaded and the classification of the disease images
in the test set was started. The process of disease image classifica-
tion and recognition using the proposed model could be divided
into four stages, as indicated in the details below.
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Figure 6. Released parameters of double-branch deep convolutional neural network model.
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Stage 1: global feature extraction. First, original feature map of
224×224×3 was input into the network, and the 56×56×256 feature
map was output under the action of Conv1, MaxPool and Conv2.
The feature information acquired at this time was the global fea-
ture information on disease image, rather than effective area. To
locate the lesion area more precisely and to obtain more informa-
tion on local focus features, attention mechanism and deep feature
screening should be implemented subsequently.

Stage 2: initial extraction of local depth feature. The global
feature information obtained above was input into CBAM. After
going through CAM and SAM, feature information on key areas of
the disease image was subsequently obtained, while redundant or
irrelevant feature information was removed. Meanwhile, although
the initial extraction of image depth features was completed, it was
necessary for another feature filtering as feature information pre-
sented with little relevance to the specific lesion area.

Stage 3: secondary screening depth feature. The output feature
map obtained from CBAM was used for depth feature re-extrac-
tion to filter out less relevant depth features and subsequently
removed, which was implemented as a deep convolution operation
based on a double branch path. As indicated in Figure 1, a convo-
lutional block in ResNet-50 for deep feature extraction was used in
the right path, followed by an average pooling and Flatten opera-
tion to obtain a feature vector. On the other hand, MaxPool was
performed on the input feature map in the left path, followed by
convolutional layers used for overlap and Flatten expansion, which
also ends up with a feature vector. 

Stage 4: depth feature classification. The two obtained feature
vectors were fused in a Concat (Dettmers et al., 2018) manner.
Integrated feature information was subsequently fed into two con-
secutive fully connected layers with Softmax for classification and
recognition.

Results
Experimental platform and evaluation indicators

Our proposed classification model was implemented based on
the deep learning framework pytorch. And because the configura-
tion of the laptop is not enough to support the efficient and stable
operation of the experiment, we debug and run the code on Google
Colaboratory to ensure that the experiment is completed quickly
and stably. Finally, to evaluate the performance of different mod-
els, we selected 4 image classification evaluation metrics (Zeng et
al., 2022), including Accuracy, Precision, Recall and F1-Score.
And formulas (3) to (6) give the calculation methods of these indi-
cators, where TP, TN, FP and FN represent true positive, true neg-
ative, false positive and false negative, respectively.

                                       
(3)

                                       
(4)

                                       
(5)

                                       
(6)

Details of the training process
Before training the model in this paper, we first set the training

parameters. The specific training parameter values are shown in
Table 5. In this table, except that Optimizer and Min-Max learning
rate have multiple values, the rest of the parameter values are
determined. During the training process, we randomly combined
different hyperparameter values, and a total of 6 parameter value
combinations can be obtained. Based on these 6 combinations, we
conducted 6 independent trainings on the model in this paper and
the comparison model, and recorded the train loss and val loss
obtained by each model in each training in the images shown in the
Appendix. At the same time, the time spent by different models in
each training process is recorded in Figure 7. The purpose of this
is to use each training time as an indicator for evaluating model
performance, which is convenient for comparing performance dif-
ferences between different models.

Experimental results
After the model in this paper completes 6 independent train-

ings, we compared and analyzed these results, and finally selected
the optimal combination of stochastic gradient descent and
0.00001-0.001, and recorded the corresponding optimal train loss
and val loss in Figure 8. Next, load the weight parameter file corre-
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Table 5. The training parameters of the proposed model.

Hyperparameter                                         Value

Dataset                                   Rice leaf disease dataset (from Kaggle dataset)
Image size                                                            224×224
Min-max learning rate           0.0001-0.01, 0.00001-0.001, 0.000001-0.0001
Optimizer                                                           SGD, Adam
Batch size                                                                   8
Epochs                                                                      200
Momentum                                                               0.9
Weight decay                                                         0.0005
Num-workers                                                             4
Learning rate decay type                                          cos

Figure 7. Comparison of the training time of different models in
the 6 independent training processes, and the statistics are made in
minutes.
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sponding to the above combination into the network model to iden-
tify and classify the disease images on the test set. When the disease
images were input into this network for testing, output feature maps
were obtained and shown in Figure 9. Due to the large number of
output channels in the network, the number of output feature maps
is too large, which will make the size of each output feature map
distributed on an image smaller, and it is difficult to carefully
observe the feature information expressed by the feature map. In
order to illustrate the feature information extracted by the network
model from the input image, we only show the output feature maps
of the Conv1 layer. The results indicated that as the depth deepens,
extracted feature information becomes more concentrated and the
depth feature information on key regions was much richer. At the
end of the test, the Confusion Matrix obtained was presented in
Figure 10, suggesting that the two disease images labeled Bacterial
blight were incorrectly identified as Brown spot disease type.

Similarly, for the disease images of type Blast, a total of 8 were mis-
classified as Bacterial blight and 1 was misclassified as Brown spot.
For Brown spot and Tungro, there were respectively 2 and 1 disease
images incorrectly identified as Blast and Bacterial blight.
However, in terms of the effect presented by confusion matrix, the
misclassified disease images account for only a small fraction of the
number of test samples, and the overall classification effect was still
quite satisfactory. In addition, the above evaluation metrics calcu-
lated based on this matrix were indicated in Figure 11, demonstrat-
ing that Tungro obtained 1 for all three metrics. The lowest
Precision and Recall values were detected in Bacterial blight and
Blast, respectively, and both were 0.97. The remaining disease
types were evaluated with index values ranging from 0.98 to 1. In
addition, the proposed model also achieved ideal recognition
results, with an accuracy rate as high as 98.73% (Table 6).
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Figure 8. The optimal train loss and val loss curves of different models during the training process, where the values of the training param-
eters are from Table 5.

Figure 9. Example of output feature maps of Conv1.
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Figure 10. The confusion matrix of the model of this article.

Figure 11. Different evaluation metrics for the proposed model in this study.

Table 6. Performance comparison of different models.

Model                         Layers                Model description              Precision                 Recall                  F1-score               Accuracy (%)

Proposed model                   62                         58conv+ 4fc layers                       0.99                           0.99                           0.99                              98.73
VGG-16                               16                         13conv+ 3fc layers                       0.85                           0.83                           0.84                              82.97
ResNet-50                            49                             49conv layers                            0.91                           0.91                           0.91                              91.09
MobileNet-V2                      17                             17conv layers                            0.95                           0.94                           0.94                              94.35
ResNet50+CBAM               56                         51conv+ 5fc layers                       0.96                           0.95                           0.95                              95.23
Inception-V2                        23                         22conv+ 1fc layers                       0.97                           0.95                           0.96                              97.04
EfficientNet-B1                    25                         24conv+ 1fc layers                       0.95                           0.96                           0.95                              96.27
GoogLeNet                          23                         22conv+ 1fc layers                       0.95                           0.94                           0.94                              94.83
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Comparative experiments
Comparative experiments were performed using seven classi-

fication models, VGG-16, ResNet-50, ResNet50+CBAM,
MobileNet-V2, GoogLeNet, EfficientNet-B1 and Inception-V2.
ResNet50+CBAM is to add CBAM directly to the backbone struc-
ture of ResNet-50, and the rest of the network structure remains
unchanged. In the comparison experiment, in order to ensure the
consistency of the experimental conditions, not only the experi-
ment was carried out on the same device, but also the values of the
training hyperparameters were selected in Table 5. At the same
time, these comparison models also have the same approach as the
model in this paper. That is, after completing 6 independent train-
ings, the obtained results are compared and analyzed, and then a
set of optimal weight parameter files are saved and reloaded into
the network to realize the identification and classification of the
disease images in the test set. In addition, the optimal train loss and
val loss of each comparison model are also recorded in Figure 8.
In this way, we tested the accuracy of different models and other
evaluation index values (here each index is the average value), see
Table 6 for details.

Discussion
Based on the deep residual network (He et al., 2016), this study

developed and proposed a new DBDCNN network system for the
recognition and classification of rice leaf disease images. This
paper conducts comparative experiments and analyzes on VGG-
16, ResNet-50, ResNet50+CBAM, MobileNet-V2, GoogLeNet,
EfficientNet-B1, Inception-V2 and DBDCNN models. The num-
ber of layers (especially the parameter layer), model description,
average values of the three evaluation metrics, and accuracy of
these models are shown in Table 6. Among them, the accuracy rate
of this model in this image classification task is 98.73%, which is
significantly higher than that of VGG-16 (82.97%), ResNet-50
(91.09%), MobileNet-V2 (94.35%), ResNet50+CBAM (95.23%),
GoogLeNet (94.83%), EfficientNet-B1 (96.27%) and Inception-
V2 (97.04%) accuracy rates. Since the VGG-16 model has fewer
parameter layers and insufficient depth, the extracted image fea-
ture information is not significant and rich, making the accuracy
and other index values of the classification stage far inferior to
other comparative models. Due to the introduction of a linear bot-
tleneck, inverted residuals, and the use of average pooling instead
of fully connected layers in MobileNet-V2, the obtained accuracy
is significantly higher, although overall much lower than the clas-
sification results observed in this study. For ResNet-50,
ResNet50+CBAM, and our proposed model, the latter two intro-
duce CBAM compared to ResNet-50, thereby leading to a gap in
the feature information of key regions in extracted images, and
consequently an inferior accuracy compared to the latter two.
Compound scaling allows the EfficientNet-B1 model to better bal-
ance width, depth, and resolution under limited computing
resources. At the same time, the Mobile Inverted BottleNeck Conv
structure also improves the computational efficiency of the model.
Combining these two factors, we naturally know that the
EfficientNet-B1 model can achieve good accuracy in this classifi-
cation task, which is better than most of the comparison models.
Since the GoogLeNet and Inception-V2 models both use the net-
work architecture based on the Inception module, this architecture
has better feature extraction and expression capabilities, and can
more accurately identify and classify disease images, resulting in
higher classification accuracy. However, compared with the for-

mer, the latter has improved in terms of model structure and train-
ing skills. Specifically, the latter has a deeper network structure
than the former, uses more Inception modules, and can capture
more complex features. Second, it introduces some new features
and techniques, such as batch normalization, factorized convolu-
tion, etc., which help to improve the efficiency and accuracy of the
model. Finally, Inception-V2 also uses new training techniques,
such as Dropout, data enhancement, etc., which can alleviate the
problem of overfitting and improve the generalization ability and
robustness of the model. So, it achieves higher accuracy than the
former on the test set. The ideal recognition effect of the model in
this paper mainly depends on the dual-path deep feature extraction
of the key lesion area, and then the fusion of the respective
obtained features, and finally the disease classification. The exper-
imental results show that adding the attention module (CBAM) to
the network structure can greatly improve the performance of the
model, strengthen the ability of the model to extract deep features
and obtain more key information in the image.

Conclusions
In conclusion, here we proposed a novel model (i.e., DBDC-

NN) for four rice leaf diseases (i.e., Bacterial blight, Blast, Brown
spot and Tungro) classification. The main body network structure
of ResNet-50 was utilized for introduction of module CBAM and
the operation of secondary screening depth features on top of it.
The model was divided into four stages when performing classifi-
cation recognition, namely Global feature extraction, Initial extrac-
tion of local depth feature, Secondary screening depth feature, and
Depth feature classification respectively. Compared with the clas-
sical models (such as VGG-16, ResNet-50, ResNet50+CBAM,
MobileNet-V2, GoogLeNet, EfficientNet-B1 and Inception-V2),
our newly proposed DBDCNN method is able to extract much
more accurate depth feature information of key regions within the
image after the first three stages mentioned above, making it pos-
sible to achieve 98.73% accuracy during the final classification
stage, and was proved better compared with other comparative
models. Besides, the model’s other classification assessment met-
rics are significantly higher than comparative models.

The advantages of this study are mainly reflected in the fact
that we used a large-scale rice leaf disease data set, which includes
a variety of representative disease types, so that the proposed
model has high accuracy and generalization performance. In addi-
tion, by introducing an efficient feature extraction module
(CBAM), we can automatically extract key features from rice leaf
disease images, providing more powerful support for the subse-
quent feature classification stage. However, limitations and defi-
ciencies also exist at any time, the specific situation is as follows:
i) there is a certain imbalance between the number of disease
images of different categories in the data set, which has a certain
impact on the training and testing of the model; ii) the model and
identification method in this paper also have poor scalability, and
it is difficult to directly apply to the disease classification tasks of
other crops; iii) the proposed model is complex and requires high
computing resources and training time, which will limit its feasi-
bility in practical applications.

With the continuous development of the field of deep learning,
we can conduct more in-depth research from many aspects in the
future to further improve this research. For example, in terms of
data augmentation, we can use more complex enhancement tech-
niques (such as stretching and zooming, etc.). In addition, you can
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also try transfer learning technology to transfer existing models
and knowledge to rice leaf disease classification tasks to improve
the generalization performance and scalability of the model. It can
also integrate various modal information such as image, voice,
video, etc., so as to improve the accuracy and robustness of rice
leaf disease classification. These future research trends are worth
exploring and deepening.
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Appendix

Figure 1. The change graph of the loss value of the proposed model.

Figure 2. The change graph of the loss value of VGG-16 model.

Figure 3. The change graph of the loss value of ResNet-50 model.

Figure 4. The change graph of the loss value of MobileNet-V2 model.

Figure 5. The change graph of the loss value of ResNet50+CBAM model.

Figure 6. The change graph of the loss value of Inception-V2 model.
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