
Abstract
This study proposes a navigation system for the headland

autonomous turning of a safflower picking robot. The proposed
system includes binocular cameras, differential satellites, and iner-
tial sensors. The method of extracting the headland boundary line
combining the hue, saturation, and value-fixed threshold segmen-
tation method and random sample consensus algorithm and plan-
ning the headland-turning trajectory of a robot based on the multi-

order Bezier curve are used as control methods. In addition, a
headland-turning tracking model of a safflower picking robot is
designed, and a path-tracking control algorithm is developed. A
field test verifies the performance of the designed headland-turn-
ing navigation system. The test results show that the accuracy of
the judgment result regarding the existence of a headland is higher
than 96%. In headland boundary detection, the angle deviation is
less than 1.5˚, and the depth value error is less than 50 mm. The
headland-turning path tracking test result shows that at a turning
speed of 0.5 km/h, the average lateral deviation is 37 mm, and the
turning time is 24.2 seconds. Compared to the 1 km/h, the turning
speed of 0.5 km/h provides a better trajectory tracking effect, but
the turning time is longer. The test results verify that this naviga-
tion system can accurately extract the headland boundary line and
can successfully realise the headland-turning path tracking of a
safflower picking robot. The results presented in this study can
provide a useful reference for the autonomous navigation of a
field robot.

Introduction
Safflower (Carthamus tinctorius L.) is an economic crop

widely used for medicinal materials, oil plants, dyes, and feed
(Mani et al., 2020). Multiple batches characterise the safflower
blooming, and the existence of different maturation stages of saf-
flower filaments and seeds in safflower fruit bulbs makes mecha-
nised harvesting challenging. Currently, the safflower picking pro-
cess is dominated by manual picking, facing the problems of large
labour demand, high labour intensity, high cost, and low efficien-
cy (Yun et al., 2016; Oyedeji et al., 2022). Using a safflower pick-
ing robot can effectively solve these problems, so improving the
precision and intelligence of the safflower harvesting operation is
of high significance to increase production efficiency and eco-
nomic benefits in the safflower industry.

Autonomous navigation is the basis for agricultural robots to
realise field operations (Guevara et al., 2020; Yin et al., 2020).
Field navigation of a safflower picking robot mainly includes
inter-row navigation, automatic obstacle avoidance in the field,
and automatic headland turning (Bulgakov et al., 2021). Due to
the high complexity, achieving an efficient automatic headland
turning has become crucial for a safflower robot to realise
autonomous navigation in the field (Sabelhaus et al., 2013; Jing et
al., 2021). A headland environment where a safflower picking
robot is located is dynamic and uncertain. In such an unstructured
headland environment, it is necessary to obtain a headland’s spa-
tial position information to realise a robot’s autonomous turning
(Shalal et al., 2015; Heiß et al., 2019). The headland boundary
line is a key parameter to describe the spatial position of a head-
land, and it is usually approximately linear in a short-distance
range (Wang et al., 2020). A safflower picking robot provides a
turning reference line for subsequent planning of a headland-turn-
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ing path by detecting the position of a headland boundary line.
Machine vision-based perception technology is an effective

way to extract a headland boundary line. A headland boundary line
can be obtained by segmenting and filtering a headland area image
and then performing the headland boundary fitting (Jeon et al.,
2021; Luo et al., 2022). Commonly used linear boundary extrac-
tion methods include Hough transform and the least squares
method (LSM). Although Hough transform can detect straight
lines in images effectively, its detection performance is limited by
several factors, including time, space, and imaging noise. The
LSM can rapidly extract the headland boundary line, but it is sen-
sitive to noise, and it is challenging to accurately extract the
boundary line in a noisy headland environment (Yin et al., 2018).
Random sample consensus (RANSAC) has great advantages over
the LSM, thus improving the computational efficiency and reliabil-
ity in noisy environments, and the robustness and accuracy of
boundary-line extraction (Zhou et al., 2021). He et al. (2022)
adopted a multi-boundary detection method based on the frame
correlation and RANSAC to detect farmland boundary lines and
end boundaries. The angle error of boundary detection of less than
2˚ was achieved, and key information for agricultural machinery
headland turning was provided. Turning path planning is the
premise for realising the successful headland turning of a safflower
picking robot (Ye et al., 2018; Zhang et al., 2022). The geometric
trajectories used for path planning include line segment arcs, β
splines, and Bezier curves (Ravankar et al., 2018). A Bezier curve
represents a continuous smooth curve with the characteristics of
continuous curvature, smooth motion, and simple control, and it
has been widely used in many applications, including mobile-robot
trajectory planning and mechanism motion planning (Duraklı and
Nabiyev, 2022). Another challenge in headland turning is motion
control because turning is often regarded as curve path tracking
(Han et al., 2019). The methods of curve path tracking include ret-
rospective predictive control, proportion integration differentiation
(PID) control, fuzzy control, sliding mode control, and many oth-
ers ( Huan et al., 2020; Huang et al., 2021) . The PID control has
been widely used due to its simplicity and robustness. Fuzzy PID
represents a combination of fuzzy logic control and conventional
PID, and it does not require establishing an accurate mathematical
model and updates parameters according to actual working condi-
tions (Abdelhakim and Abdelouahab, 2019). In addition, it has a
small overshoot, a fast response speed, and a short time to achieve
a stable state. Wang et al. (2018) proposed an algorithm for the
adaptive turning of tractors on a headland. This algorithm uses a
tractor’s sliding motion and turning rate to adjust parameters based
on the results of each turn. Test results showed that the average lat-
eral deviation of a tractor’s headland turning was less than 50 mm,
and the turning time consumption was low. Mao et al. (2022)
developed an autonomous robotic navigation system for orchard
harvesting with a dual master-slave mode, where the cloth simula-
tion filter (CSF) and RANSAC algorithms were used for naviga-
tion path construction. Also, a pure tracking algorithm was used to
track the navigation path. The test results showed that the position
deviations of the master and slave robots were less than 53 mm and
400 mm, respectively, which meets the requirements for position-
ing accuracy of an autonomous robot navigation system for dou-
ble-master orchard harvesting.

This study presents a headland-turning navigation system for a
safflower picking robot that combines the headland boundary line
extraction method, turning path planning based on the Bezier
curve, and the headland-turning path tracking control method. The
field test verifies the performance of the proposed headland-turn-
ing navigation system.

Materials and Methods

Navigation system hardware
A headland-turning navigation system of a safflower picking

robot includes three sensors, a set of differential drive devices, a
controller, and an electric control cabinet, as shown in Figure 1.
One of the sensors is the ZED2 binocular camera (Stereolabs, San
Francisco, CA, USA), which is used to obtain headland boundary
information. A binocular camera is installed in front of a robot on
the centre line of the robot at the height of 1.7 m above the ground
and an inclination of 65° to the ground. The second sensor is the
HWT905 Inertial Measurement Unit (IMU) (Shenzhen Witt
Intelligent Technology Co., Ltd., China), which is located in front
of the robot to obtain high-precision, high-frequency information
on the relative position and attitude of the robot through track esti-
mation (Gai et al., 2021). The last sensor is the P3DU high-preci-
sion differential global navigation satellite system (DGNSS) satel-
lite receiver (Shanghai Huace Navigation Technology Co., Ltd.,
China). This receiver is used to obtain signals from dual satellite
antennas and the B5UA-CHOWYA base station (Shanghai Huace
Navigation Technology Co., Ltd., China), which are then used to
obtain the heading angle, latitude, and longitude of the robot. Dual
satellite antennas are installed on the robot, one placed on the front,
and another is behind the robot; they are 1.5 m apart and located
1.7 m from the ground.

The differential drive device includes a servo motor, a driver,
a drive wheel, a reducer, and a transmission chain. The servo motor
drives the drive wheel to perform differential motion through the
reducer and transmission chain, realising the straightforward
movement and turning of the robot. The controller is an APQ-E8
industrial computer (Chengdu Apqi Technology Co., Ltd., China),
and it is installed in an electric control cabinet. The battery, satel-
lite receiver, wireless access point (AP) radio and power conver-
sion device are also installed in the electric control cabinet. The
robot can interact with the dispatching system in real-time through
the wireless AP radio, which is convenient for human-computer
interaction during navigation.

The technical characteristics of the main components of the
navigation system presented in Figure 1 are given in Table 1. All
sensors have been calibrated by the supplier and tested by the
authors. In addition, all sensors used in this study are following the
corresponding product standards.

The controller uses the Linux operating system, and its hard-
ware includes an Intel i7 processor, an 8-GB DDR4 memory, and
a 128-GB solid-state disk. The RS232 serial port on the controller
communicates with the satellite receiver; the USB 3.0 on the con-
troller communicates with the ZED camera; the controller commu-
nicates with the IMU and servo motor of the differential drive
through the controller area network bus (CAN Bus). Further, the
controller analyses and processes data collected by the satellite
receiver, ZED camera, and IMU in real time, perceives the robot
and headland data and plans the turning path. In addition, the dif-
ferential drive is controlled to track the headland-turning path so
that the safflower picking robot can autonomously turn according
to the headland information. The headland-turning control system
is presented in Figure 2. The working principle of the headland-
turning system is as follows. First, the satellite receiver, IMU, and
ZED cameras obtain satellite positioning information, vehicle
body attitude, and headland images. The controller processes the
acquired data to construct a turning path, and then the rotational
speed of the left and right driving wheels is obtained according to
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the tracking situation of the turning path. Next, the obtained speed
value is sent to the servo motor driver via the CAN bus to realise
the differential turning control of a safflower picking robot. The
wireless AP radio lets the controller interact with the dispatching
system in real-time.

Headland-turning control method
The schematic diagram of the field navigation path of a saf-

flower picking robot is shown in Figure 3. When a safflower pick-
ing robot reaches the turning start point, the inter-row navigation

program ends and the headland-turning program is triggered. After
the robot reaches the turning endpoint, the headland-turning pro-
gram is terminated, and the inter-row navigation program is exe-
cuted. In this way, the autonomous field navigation of a safflower-
picking robot is realised. This study primarily focuses on the head-
land turning of a safflower-picking robot. When a safflower pick-
ing robot reaches the turning start point, the headland point cloud
information is obtained by the camera. Then, the threshold seg-
mentation and RANSAC algorithm are employed to extract the
headland boundary line, generating the turning reference line. The
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Table 1. Technical characteristics of the main components of the navigation system.

Component                                 Performance                                                                                                    Value

Satellite receiver                                  RTK plane accuracy                                                                                              ±(10+1×10-6×d) mm
                                                             Speed accuracy                                                                                                               0.03 m/s
                                                             Yaw angle accuracy                                                                                                          (0.2/r)
                                                             Data refresh frequency                                                                                                      20 Hz
ZED2 camera                                      Field of view                                                                                                Max: 110°(H)×70°(V)×120°(D)
                                                             Depth accuracy                                                                                                                   <3%
                                                             Focal length                                                                                                                    2.12 mm
                                                             Pixel size                                                                                                                          2×2 μm
                                                             Resolution                                                                                                                     2688×1520
                                                             Maximum frame rate                                                                                                      100 FPS
IMU                                                     Acceleration range and accuracy                                                                                 ±6 g, 0.01 g
                                                             Angular velocity range and accuracy                                                                      2,000°/s, 0.05°/s
                                                             Data refreshing frequency                                                                                               200 Hz
d, linear distance between the positioning antenna and the base station expressed in km; r, linear distance between the two positioning antennas given in m; H, horizontal viewing angle; V,
vertical viewing angle; D, diagonal viewing angle; RTK, real time kinematic; IMU, inertial measurement unit. 

Figure 1. Safflower picking robot structure: 1) binocular camera; 2) inertial measurement unit; 3) satellite antenna; 4) satellite base station;
5) satellite receiver; 6) industrial computer; 7) servo motor; 8) drive wheel.
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turning feature points are obtained based on the turning reference
line, and the turning path is designed based on a Bezier curve.
Information on lateral deviation, angular deviation, and speed
information is obtained from the positioning data of the sensors,
and the fuzzy PID control algorithm is used to track the Bessel
turning path. When a safflower picking robot reaches the turning
endpoint along the Bezier turning path, the robot posture is adjust-

ed, the robot enters the inter-row along the ridge, and the inter-row
navigation program is executed.

The safflower planting mode includes both wide and narrow-
row drill planting types. The safflower row spacing l1 is 1 m, the
wide row distance l2 is 0.55 m, the narrow row distance is 0.45 m,
and the headland distance d3 is 4 m. The flowchart of a safflower
picking robot’s headland-turning process is shown in Figure 4.

                             Article

[page 358]                                           [Journal of Agricultural Engineering 2023; LIV:1539]                                                            

Figure 2. Headland-turning control system. IMU, inertial measurement unit.

Figure 3. Schematic diagram of the field navigation path of a safflower picking robot.
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Identification and positioning of headland boundaries
Before safflower picking robot turns to a headland, it needs to

judge whether there is a headland in its field of vision. Only when
a headland has been detected the process of headland boundary
identification and positioning is performed. The headland bound-
ary identification and positioning process mainly includes five
steps: threshold segmentation from a headland image, sharpening
filtering, boundary feature point extraction, boundary line fitting,
and headland depth value determination. The process of identify-
ing and positioning a headland boundary line is shown in Figure 5.
The left camera of the ZED2 binocular camera takes the original
image. Threshold segmentation is a process of image segmenting
into objects and backgrounds according to a preset threshold T; in
this process, selecting a suitable threshold value is crucial. In this
study, the hue, saturation, and value (HSV)-fixed threshold seg-
mentation method are employed to realise threshold-based image
segmentation. Compared with the RGB mode, the HSV model can
significantly reduce the influence of illumination and impurities on
the image segmentation result (Fu et al., 2020). In the HSV-based
methods, first, the original image of a headland is cross-sectioned,
the grey value of a headland pixel is analysed, and statistics obtains
the HSV component of a section line pixel. The value ranges of the
H, S, and V components are [40, 150], [30, 40], and [80, 150],
respectively. The threshold segmentation process is performed
based on the value ranges of the HSV components.

After the image threshold segmentation is conducted, feature
points are sharpened and filtered. In this study, the Laplacian
sharpening filter is used for filtering because this filter can segre-
gate areas of rapidly-changing pixel values. Using this filter, the
headland information can be highlighted, the blurred headland out-
line information can be cleared, and the headland recognition qual-
ity can be improved. After an image is sharpened and filtered, all
feature points are scanned, and two-dimensional coordinates of all

feature points are obtained. The RANSAC algorithm is used to
sample images multiple times randomly to establish a linear esti-
mation model and then to calculate the number of inliers contained
in the model. Multiple iterations are performed to obtain a linear
model with the most interior points representing the headland
boundary line. According to the two-dimensional coordinates of
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Figure 4. The flowchart of the headland-turning process.
RANSAC, random sample consensus; PID, proportion integration
differentiation.

Figure 5. The process of identifying and positioning a headland boundary line. RANSAC, random sample consensus; HSV, hue, satura-
tion, and value.
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the feature points on the headland boundary line and headland
depth map, the depth value d2 from the camera to the headland
boundary line is calculated, as shown in Figure 3.

The schematic diagram of headland positioning is shown in
Figure 6.

The headland depth map refers to an image where the distance
(depth) from the camera to each point in the headland scene is rep-
resented as a pixel value. The headland depth map is obtained
through stereo matching, using the left ZED2 camera data as a ref-
erence. Assume that the projection point of the camera on the
ground denotes the coordinate origin Ow; the direction perpendic-
ular to the outside of the robot platform is the Xw axis; the robot’s
forward direction is the Zw axis; the connection direction between
the coordinate origin and the camera is the Yw axis. Then, the con-
version formula between the camera coordinate system, and the
global coordinate system is given by Eq. 1:

(1)

where (Xw, Yw, Zw) denotes the coordinates of a pixel in the global
coordinate system; (Xc, Yc, Zc) are the coordinates of the pixel in
the camera coordinate system; θ is the rotation angle between the
camera coordinate system, and the global coordinate system; and h
is the translation distance from the camera coordinate system to the
global coordinate system in the vertical direction.

Through coordinate transformation, the depth value obtained
by the camera in the camera coordinate system is converted into a
distance (d2) from the camera to the headland in the global coordi-
nate system.
Random sample consensus boundary line fitting

The RANSAC linear fitting method is used to extract the head-

land boundary line. The RANSAC method differs from the least
squares method, which uses all sample data to estimate model
parameters. Namely, the RANSAC method samples data multiple
times randomly and then, also randomly, selects a few sample
points to estimate model parameters. The estimated model param-
eters are further used to divide the remaining sample points into
two categories: interior points that satisfy the mathematical model
and outer points that do not satisfy the mathematical model
(Ericson and Astrand, 2018). After multiple random sampling,
model parameters are obtained with a small error.

The RANSAC headland boundary line fitting steps are as fol-
lows. First, two points are randomly selected from the detected
headland boundary point cloud and connected to obtain a straight
line. Next, the slope of the straight line is estimated to decide
whether to keep it or not. Then, the distance threshold td is set, and
the distance from the remaining points to the straight line is calcu-
lated, which is further used to classify points into inner and outer
points. As such, points with a distance less than td are regarded as
inner points, and feature points whose distance is larger td are
regarded as outer points.

Further, all feature points are traversed, and the number of inte-
rior points in the model is determined. Afterward, the iteration
threshold K is set, and the above process is repeated K times.
Finally, the line corresponding to the model with the largest num-
ber of interior points is selected as the best headland boundary line.

The iteration threshold K is a crucial parameter of the fitting
process. If the value of K is too large, the above process becomes
too time-consuming; in contrast, if the value of K is too small, the
fitting effect is poor. According to the related literature (Zhou et
al., 2021), the more appropriate value of K is obtained by Eq. 2:

                                                         
(2)
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Figure 6. Schematic diagram of headland positioning.
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where α is the probability that the RANSAC algorithm obtains the
correct result, expressed in percent; λ is the probability of selecting
a point from data as an interior point, also expressed in percent; N
is the minimum number of feature points required to estimate
model transmission.

Theoretically, if the proportion of abnormal data points is less
than 50% of the total data points, the RANSAC algorithm can
achieve good results. Therefore, in this study, the value of λ is set
to 0.5; α is set to 0.99, and N has a value of two. The final iteration
threshold K is 16, the distance threshold td is eight, and the slope
range of the headland boundary line is -1, 1.

Bezier turning path planning
In this work, the turning trajectory of a safflower picking robot

is planned based on a multi-order Bezier curve, as shown in Figure
7. The turning path based on a Bezier curve can satisfy the conti-
nuity requirement of a turning path and reduce the computational
complexity of a controller (Backman et al., 2015). A Bezier curve
is defined by a set of control points connected in sequence to form
a polygon. The shape of a Bessel curve is changed by adjusting the
coordinates of control points so that the curve approximates the
polygon continuously (Li et al., 2019). For an n-order Bezier
curve, (n+1) control points (P0, P1, ..., Pn) should be determined.
The parametric equation of a Bezier curve is as follows (Eq. 3):

                                   
(3)

where Pi (i = 0, 1,..., n) denotes the coordinates of the ith control
point, and the polyline connecting points from P0 to Pn in sequence
constitute a control polygon of the Bezier curve.

The basis function Qi, n(t) is a Bernstein polynomial, which is
given by Eq. 4:

                                         
(4)

This paper used a third-order Bezier curve to generate a
smooth path. As mentioned before, for a third-order Bezier curve,
it is necessary to determine four control points (P0, P1, P2, P3),
where P0 is the turning start point, point P3 is the turning end point,
and points P1 and P2 are process control points whose coordinates
are defined by the turning reference line and turning span.

Headland path tracking control
The geometric illustration of the Bezier turning control is dis-

played in Figure 8, where EF is the planned partial Bezier path.
Assume that a differential drive robot makes a right turn at the
headland. The centre of the two driving wheels of the robot repre-
sents the positioning point. A collection of navigation points
describes a Bezier path, and the real-time information on the
robot’s position and angle is obtained by the DGNSS and inertial
navigation.

The path-tracking method of the turning controller is as fol-
lows. First, the navigation controller determines the closest point
to the robot on the planned path and calculates the radial deviation
δ. Then, the Euclidian distance between this point and the robot is
calculated. When a robot performs the right-turning path tracking,
if the robot is on the left side, then δ>0, but if the robot is on the
right side of the path, then δ<0. Next, the robot starts at point A and
the look-ahead point B is obtained by moving a constant number of
navigation points from point A along the planned path. Similarly,
point C is obtained by moving by the same number of navigation
points from point B. The forward direction of point B is the line
direction VB of BC, and the speed direction VA of the robot at point
A is mapped to point B as VA’; the angle between VA’ and VB rep-
resents the angular deviation θ. When the angular deviation is left
relative to the target heading, the heading angle is negative, and
θ<0; the heading angle is positive when the angular deviation is
right relative to the target heading, and θ>0. Finally, when the
robot turns a headland, the vehicle body path tracking control is
realised based on the speed difference of the driving wheels and
reducing the value of the look-ahead points δ and θ.

The robot path-tracking control is based on a combination of
incremental PID and fuzzy control. The control increment Δu(k) is
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Figure 7. Schematic diagram of a Bezier turning path. Figure 8. Bezier turning control process illustration.

Non
-co

mmerc
ial

 us
e o

nly



obtained using only the last three sampling values, and a good con-
trol effect can be achieved by weighting. Unlike positional PID,
incremental PID does not accumulate the integral term, so it will
not affect the system’s operation and control. Therefore, incremen-
tal PID achieves better control quality than positional PID (Tang et
al., 2020). The control quantity is obtained by Eq. 5:

   (5)

where e(k) is the control deviation at the k sampling time; KP is the
proportional coefficient; KI is the integral coefficient; and KD is the
differential coefficient.

The control increment Δu(k) can be calculated as follows (Eq. 6):

   
(6)

The input variables δ and θ and output variables KP, KI, and KD
are fuzzified. According to the position of the picking robot wheel
between the safflower rows, the value ranges of δ and θ are -100
mm -100 mm and -45°-45°, respectively. To simplify the calcula-
tion, values of lateral and angular deviations (i.e., δ and θ) are
divided into seven fuzzy subsets: negative big (NB), negative
medium (NM), negative small (NS), zero (ZO), positive small (PS),
positive medium (PM), and positive big (PB), and the correspond-
ing quantification level is expressed as follows (Eq. 7):

[−6, −4, −2, 0, 2, 4, 6] = [NB, NM, NS, ZO, PS, PM, PB]           (7)
The lateral and angular deviation quantization factors, Ka and

Kb, are 1/30 and 1/15, respectively. The actual value ranges of the
output variables KP, KI, and KD of the fuzzy controller are set to [-
5, 5], [-0.01, 0.01], and [-3, 3], respectively. Considering the real-
time and complexity of the control system, the navigation system
adopts a triangular membership function, and the parameter adap-
tation formula is given by (Garcia-Martinez et al., 2020) (Eq. 8):

                                                    

(8)

where KP0, KI0, and KD0 are the initial values of PID parameters,
and KP(k), KI(k), and KD(k) are the three outputs of the fuzzy con-
troller.

The fuzzy controller adopts the centre of gravity (COG)
method to defuzzify the fuzzy subsets (Sain and Mohan, 2021).
The defuzzification process uses a weighted average to obtain the
precise values of the three PID tuning parameters output after
defuzzification. The fuzzy PID controller adjusts ΔKP, ΔKI, and
ΔKD in real-time according to the headland path tracking position,
thereby achieving the adaptive tuning of KP, KI, and KD.

Results and Discussion

Headland identification and positioning test
The headland identification and positioning test was performed

from June 7 to 13, 2022, at the safflower plantation of Hongqi
Farm, Jimsar County, Changji City, Xinjiang, China. According to
the safflower crop management operation and general robot turn-
ing navigation requirements, the ZED camera’s installation height
was set to 1700±5 mm, and the pitch angle was 65±3˚. After the
safflower picking robot reached the turning point, it detected the
headland boundary line. Only when the headland boundary line
could be detected, and the detected headland boundary line could
ensure safe and reliable autonomous turning of the robot, the
detection of the headland boundary line was considered correct.
The resolution of all images was 1280×720 pixels, the weather was
clear during picture collection, and the time period was 9-11 a.m.
and 3-5 p.m. The headland boundary monitoring process is shown
in Figure 9.

The detection results of the headland boundary line are shown
in Table 2. The detection items included judgment on the headland
existence, and the headland boundary line detection was based on
the headland detection result.

As shown in Table 2, the accuracy rate of the judgment on the
headland existence was higher than 96%, and the detection accura-
cy of the headland boundary line was higher than 93%. The image
processing time by the Python-OpenCV regarding the headland
existence was less than 0.6 seconds, and the image processing time
for the headland boundary line detection was less than 1 second.
The angular deviation of the headland boundary line detection was
less than 1.5˚, and the depth error was lower than 50 mm. The test
results showed that the proposed algorithm could accurately judge
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Figure 9. Headland boundary monitoring process: a) with vegetation cover; b) without vegetation cover.
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whether there was a headland and could rapidly detect the head-
land boundary line necessary for the autonomous navigation of a
robot. The detected headland boundary line ensured that the robot
was within the turning reference line and could complete the turn-
ing operation safely and reliably.

Turning path tracking test
A headland-turning path tracking test was conducted at differ-

ent speeds to test the accuracy and robustness of headland-turning
path tracking. The test was performed from July 2 to 11, 2022, and
the test site was the safflower plantation of Hongqi Farm, Jimsar
County, Changji City, Xinjiang. The road in the safflower planta-
tion was flat, and the safflower picking robot was a span-row turn-
ing. The safflower row spacing was 1 m, the turning span was 2 m,
and the headland width was 3 m. The headland-turning path track-
ing test was conducted at 1 km/h and 0.5 km/h speeds. The head-
land-turning path-tracking process of a safflower picking robot is
presented in Figure 10. After the robot reached the turning point, it
monitored the headland boundary line to obtain the turning feature

points and used the third-order Bezier algorithm to create a Bezier
turning preset path. The robot tracked the turning path defined by
the preset path. The preset path and the actual position of the robot
are shown in Figure 11.

The values of the lateral deviation δ and angular deviation θ of
the robot along the headland-turning path at different speeds are
presented in Figure 11. When the safflower picking robot reached
the turning starting point at a speed of 1 km/h, the lateral deviation
was 26 mm, and the angular deviation was 1.2˚; however, at a
speed of 0.5 km/h, the lateral deviation was 17 mm, and the angu-
lar deviation was 0.8˚. This indicated that the transition from the
straight path to the headland-turning path was smooth at both
speeds. The numerical results obtained at different turning speeds
of the safflower picking robot are given in Table 3.

The field test results showed that when the turning speed of the
safflower picking robot was 1 km/h and the robot reached the turn-
ing end point, the lateral and angular deviations were 34 mm and
2.5˚, respectively. However, at the turning speed of 0.5 km/h, when
the robot reached the turning end point, the lateral and angular
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Figure 10. Turning path tracking process. DGNSS, differential global navigation satellite system.

Table 2. The detection results of the headland boundary line.

Parameter                                                                                                                      Vegetation covered              Non-vegetation covered 
                                                                                                                                                headland                                  headland

Judgment result on the headland existence            Number of images                                                           200                                                   200
                                                                                Single image processing time (s)                                   0.54                                                  0.53
                                                                                Accuracy (%)                                                                   98                                                     96
Headland boundary line detection                          Number of images                                                           196                                                   192
                                                                                Single image processing time (s)                                   0.81                                                  0.94
                                                                                Accuracy (%)                                                                   96                                                     93
                                                                                Angular deviation (˚)                                                       1.1                                                    1.3
                                                                                Depth value error (mm)                                                   37                                                     48
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deviations were 18 mm and 1.3˚, respectively. Therefore, for the
turning speed of the safflower picking robot of 1 km/h and 0.5
km/h, the headland-turning task could be successfully completed.
Compared to the 1 km/h, the turning speed of 0.5 km/h had smaller
maximum and average lateral deviations and a better trajectory
tracking effect, but the turning time was longer. The test results
show that the proposed incremental fuzzy PID automatic turning
control system had high tracking accuracy and good robustness
and could meet the field headland-turning requirements of a saf-
flower picking robot. 

Conclusions
This paper presents the navigation system that can meet the

headland-turning requirements of a safflower picking robot. The
proposed system can realise headland boundary line extraction,
headland-turning path planning, and turning path tracking of a saf-
flower picking robot. This navigation system can also realise
human-computer interaction in the machine monitoring process.
Using the proposed system, the reliability and adaptability of the
headland-turning process of a safflower picking robot are
improved, which can provide a valuable reference for the headland
turning of a field operation robot.

The headland identification and positioning test verifies the
proposed system. The image processing time of headland bound-
ary line detection is less than 1 second, the angular deviation of
headland boundary line detection is less than 1.5˚; the depth value

error is lower than 50 mm. The test results also show that the pro-
posed system can accurately judge whether there is a headland and
can rapidly detect the headland boundary line, which is then used
for the autonomous navigation of a robot. The detected headland
boundary line can ensure that the robot is within the turning refer-
ence line, and then the turn-around operation can be successfully
completed safely and reliably.

According to the turning path tracking test results, the safflow-
er picking robot can complete the headland-turning task effectively
at the turning speeds of 1 km/h and 0.5 km/h. At the turning speed
of 0.5 km/h, the average lateral deviation is 37 mm; the turning
time is 24.2 seconds. After the robot reaches the turning end point,
the lateral and angular deviations are 18 mm and 1.3˚, respectively.
The proposed headland-turning control system has high tracking
accuracy and good robustness and can meet the field headland-
turning requirements of a safflower picking robot.

The challenges in the autonomous turning control of safflower
picking agricultural robots are designing a feasible navigation path
and developing adaptive control technology. A control algorithm
needs to adapt to dynamic changes in soil conditions to ensure sta-
ble control performance. The main research direction in optimisa-
tion of the headland-turning control of agricultural robots is to
reduce turning time, turning path, and power consumption of the
headland-turning process while improving the headland-turning
efficiency.
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