
Abstract
Remote and proximal sensing platforms at the service of pre-

cision olive growing are bringing new development possibilities
to the sector. A proximal sensing platform is close to the vegeta-
tion, while a remote sensing platform, such as unmanned aerial
vehicle (UAV), is more distant but has the advantage of rapidity to
investigate plots. The study aims to compare multispectral and
hyperspectral data acquired with remote and proximal sensing
platforms. The comparison between the two sensors aims at
understanding the different responses their use can provide on a
crop, such as olive trees having a complex canopy. The multispec-
tral data were acquired with a DJI multispectral camera mounted
on the UAV Phantom 4. Hyperspectral acquisitions were carried
out with a FieldSpec® HandHeld 2™ Spectroradiometer in the
canopy portions exposed to South, East, West, and North. The
multispectral images were processed with Geographic
Information System software to extrapolate spectral information
for each cardinal direction’s exposure. The three main Vegetation
indices were used: normalized difference vegetation index
(NDVI), normalized difference red-edge index (NDRE), and mod-
ified soil adjusted vegetation index (MSAVI). Multispectral data

could describe the total variability of the whole plot differentiating
each single plant status. Hyperspectral data were able to describe
vegetation conditions more accurately; they appeared to be related
to the cardinal exposure. MSAVI, NDVI, and NDRE showed cor-
relation r =0.63**, 0.69**, and 0.74**, respectively, between mul-
tispectral and hyperspectral data. South and West exposures
showed the best correlations with both platforms.

Introduction
Since the early 2000s, the agricultural sector has been under-

going a significant change in crop management, becoming
increasingly precise and aiming at differentiating agricultural
practices (irrigation, tillage, etc.) according to the variability of the
field (Lal, 2015; Marin et al., 2021; Zhang et al., 2002). Precision
farming uses different technologies capable of acquiring spatially
variable information about the vegetation condition of the crops
(Roma and Catania, 2022). For these purposes, many sensor types
can be used, such as multispectral and hyperspectral cameras
(Avola et al., 2019; Deng et al., 2018; Jensen, 2009; Pagliai et al.,
2022). Multispectral cameras can acquire a low number of spectral
bands, each with a bandwidth between 10 and 40 nm.
Hyperspectral cameras can acquire more comprehensive wave-
length ranges with few nanometres of spectral resolution (Lu et
al., 2020).

Spectral data are an important source of information for iden-
tifying crop status and can be processed in different ways (Lu et
al., 2020). Hyperspectral data are enjoying great success given the
various possible applications (Benelli et al., 2020). Hyperspectral
information can be processed to calculate vegetation indices (VI)
(Xie et al., 2014; Xue and Su, 2017) that can provide different
information depending on the bands used and the equations
involved. In olive growing, the most widely used indices are nor-
malized difference vegetation index (NDVI), normalized differ-
ence red-edge index (NDRE), and modified soil adjusted vegeta-
tion index (MSAVI). NDVI and NDRE are classified as ratio VI,
while MSAVI is classified as an orthogonal index (Dorigo et al.,
2007) based on their relation with the biomass, leaf area index
(LAI), plant conditions and soil characteristics. Therefore, they
can discriminate soil and non-pure pixels differently, as well as the
resulting spectral information (Er-Rami et al., 2021; Xue and Su,
2017). NDVI is the most widely used ratio index in olive growing
and many other crops, defined by Rouse et al. (1974). It measures
vegetation conditions using the highest absorption and reflectance
regions of chlorophyll and is helpful in characterising canopy
growth or vigour (Xue and Su, 2017). Its main limitation is due to
the high sensitivity of background factors, such as shade, canopy
and soil brightness. NDRE has a high differentiating capacity on
vigorous vegetation compared to stressed vegetation (Maccioni et
al., 2001). This is due to the use of the RedEdge band (at about
740 nm ±10) that is highly reactive to vegetation conditions. Its
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main limitation is the high sensitivity of background factors, such
as shade, brightness of vegetation canopies, and presence of weeds
and soil. MSAVI has a high capacity of discriminating the vegeta-
tion from the ground; it was defined by (Qi et al., 1994).

The multispectral data are significantly more used than hyper-
spectral in olive orchards. The multispectral application concerns
the assessment of plant health (Álamo et al., 2012; Zhang et al.,
2021). Indeed, in the olive orchard, the multispectral image was
used to apply fertilisers (López-Granados et al., 2004; Van Evert et
al., 2017) to obtain the biophysical characteristic of the trees (Sola-
Guirado et al., 2017; Solano et al., 2019), to manage irrigation
(Ben-Gal et al., 2009; Berni et al., 2009; Sghaier et al., 2022;
Vanella et al., 2021) and pruning (Jiménez-Brenes et al., 2017) and
to build yield prediction models (Stateras and Kalivas, 2020).

In olive orchards, biometric information and LAI parameter
were determined using hyperspectral images from remote sensing
platforms such as the Quickbird satellite and the compact airborne
spectrographic imager, obtaining good coefficients of determina-
tion (Gómez et al., 2011). Other applications of hyperspectral data
concerned the nutritional status determination for nitrogen (N) and
potassium (K) elements (Gómez-Casero et al., 2007). Good results
have been obtained from aircraft and hyperspectral data to investi-
gate water status (Sepulcre-Cantó et al., 2005, 2006), yield and
fruit quality (Sepulcre-Cantó et al., 2007). 

However, few studies have tried to compare multispectral and
hyperspectral data in agriculture. For instance, Mariotto et al.
(2013) compared Hyperion hyperspectral imagery to Landsat mul-
tispectral imagery for the estimation of crop productivity and the
classification of crop types. The authors reported better results
using hyperspectral imagery than using Landsat imagery. Previous
studies have also demonstrated the superior performance of hyper-
spectral over multispectral images in monitoring vegetation prop-
erties, such as estimating leaf area index (Lee et al., 2004), dis-
criminating crop types (Nigam et al., 2019), retrieving crop
biomass (Marshall and Thenkabail, 2015), and assessing leaf nitro-
gen content (Sun et al., 2017). Multispectral cameras are increas-

ingly associated with remote acquisition platforms such as
Unmanned aerial vehicle (UAV). In contrast, spectroradiometers
are used with proximal platforms because hyperspectral sensors
have a higher sensitivity to noise in the signal acquisition that
could compromise the final result (Transon et al., 2018). Despite
this, few studies compared multispectral and hyperspectral data
acquired from two platforms without the same point of view
(POV) and viewing angle. This can result in different spectral
information about the crop. The study aimed to apply remote and
proximal sensors to describe the canopy condition of an olive
growing through different VI. The comparison between the two
sensors was carried out to understand the different responses their
use can provide on a crop such as olive trees, having a complex
canopy made up of sprouts with both assurgent and procumbent
growth typical of the vase shape growing system. A UAV was used
for remote sensing through a multispectral camera, while a hand-
held spectroradiometer was used for proximal sensing with a
hyperspectral camera. In particular, the goal was to verify whether
multispectral images acquired from a remote UAV platform at 50
m above ground level and hyperspectral data acquired from proxi-
mal platforms can describe the same vegetation conditions of olive
trees using three different VI.

Materials and Methods

Study area
The field test is located in Calatafimi-Segesta (Trapani, Italy)

with coordinates Lat 37°51’48.21 “N; Long 12°57’15.17 “E
(World Geodetic Coordinate System 1984; Figure 1). According to
Koppen-Geiger’s classification, the area’s climate is Csa
(Mediterranean hot summer climates; Kottek et al., 2006).
Climatic data recorded from 1985 to 2011 showed a mean annual
air temperature ranging from 16.1 to 18.6°C and a mean annual
precipitation ranging from 440 to 495 mm (Sicilian agrometeoro-
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Figure 1. a) Plot study area; b) Experimental site location.
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logical information service). The soil moisture regime is xeric, the
border with the aridic one, and the thermic temperature regime.

The experiment was carried out in 2021 in an olive orchard
cultivated according to the ordinary management practices of the
area without irrigation. 

The field has an area of 5860 m2, with a flat surface topogra-
phy. The soil presents a low percentage of coarse fragments on
most of the surface. According to the United States Department of
Agriculture classification, the soil belongs to the Franco-Sandy-
Argillaceous granulometric class. The olive grove was planted in
2002 with cv. Cerasuola, a single cultivar typical of the area and at
the time of the experimentation. The olive grove is trained in a vase
shape, with a vertical trunk about 0.90 m high from the ground and
with three-four main branches. The layout of the plant is 5.00´5.50
m. It is a typical farming system for the olive tree defined as “tra-
ditional”. During the experimental season, all plants were in pro-
duction (on-year). The plant had a traditional trelling system with
a layout of 5.0´5.5 m, and the total number of trees considered in
the tests was 211. Twenty-four plants were randomly selected for
the multispectral and hyperspectral acquisition. The direction of
the rows is NE-SW at an angle of 60° to the North.

Instrumentation used
Multispectral data acquisition was performed using a

Phantom4 Multispectral drone (DJI, Shenzhen, China), a high-pre-
cision drone with a seamlessly integrated multispectral imaging
system. The multispectral camera has six 1/2.9” CMOS sensors: an
RGB sensor for visible light imaging and five monochrome sen-
sors for multispectral imaging with a final resolution of 2.08 MP.
The monochromatic bands are Blue (B), Green (G), Red (R), Red-
Edge (RE), and Near infrared (NIR), respectively, with the follow-
ing central wavelengths: 450 nm, 560 nm, 650 nm, 730 nm, and
840 nm. The bandwidth sensitivity for R, G, B, and RE bands are
±16 nm and ±26 nm for the NIR band. The lens has a 62.7° field
of view (FOV), a 5.74 mm focal length, and an aperture of f/2.2.
The maximum final image size is 1600×1300 pixels.

The UAV was equipped with four rotors (quadcopter) with a
rotary wing capable of autonomously flying over the predeter-
mined route. It had a solar irradiance sensor on the top, allowing it
to obtain pre-calibrated images. In addition, it was able to fix the
exact position of the images using the exchangeable image file

data information of each image. The positioning system consisted
of a multi-frequency global navigation satellite system (GNSS)
capable of receiving and decoding signals from the satellites con-
stellation NAVSTAR (GPS), GLONASS, BeiDou and Galileo,
respectively, in the bands L1/L2, L1/L2, B1/B2, and E1/E5 with
real time kinematic (RTK) correction (accuracy <2 cm).

The FieldSpec® HandHeld 2™ Spectroradiometer (HHS) was
used to acquire hyperspectral data. The HHS is a handheld spectro-
radiometer that makes fast, accurate, non-destructive, non-contact
measurements, operating in the spectral range from 325 to 1075
nm, with ±1 nm accuracy and a spectral resolution <3 nm at 700
nm and a radiometric resolution at 16 bits. A square section and
25° FOV determine the geometric resolution of the acquisition
area. It acquires high signal-to-noise ratio spectra in less than one
second using a low light dispersion grating, an integrated shutter,
DriftLock dark current compensation and second-order filtering.
In addition, the HHS has a colour LCD display, built-in computing
capability, large internal data memory (2,000 measurements), laser
pointer and GNSS input compatibility.

Flight scheduling and multispectral data acquisition
A remote UAV platform with a multispectral camera was used

to obtain multispectral data. The flight mission was planned using
DJI GS Pro software to set the flight parameters (height, speed,
direction, etc.) and the acquisition parameters of the cameras
(sequence of shots, front and lateral overlapping, etc.). In order to
minimise disturbing elements such as shadows and weeds, the
flight was carried out on the day of the year 217 at 12:00, with the
sun rising at the zenith, after harrowing the entire plot. Before the
flight, 5 ground control points (GCPs) were placed in the field,
which were georeferenced using the GNSS receiver S7-G by
Stonex (Italy, Milano), equipped with a Stonex geodetic antenna,
already used in other experiments (Catania et al., 2019, 2020). This
instrument can use multiband signals from the main GNSS satel-
lites such as GPS, GLONASS, Galileo and Bei Dou, and improve
accuracy through the RTK differential correction data. The coordi-
nates of the different GCPs were acquired in RTK mode as an aver-
age of 60 measurements. Once the GCPs were positioned, the
flight proceeded under clear sky conditions and low wind speed,
with the automatic guide following the set route and waypoints
(Figure 2).
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Figure 2. a) Drone view; b) Flight plan.
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The flight was carried out at an altitude of 50 m above ground
level, using RTK differential corrections, obtaining a ground sam-
ple surface of 2.6 cm. The image acquisition was performed at an
average speed of 10 m·s-1 in a stop-and-go mode to minimise the
distortions related to the forward speed. To get more detailed and
less distorted images, the front and side overlap percentage
between the image was 70%, while the gimbal pitch was set at 90°
(downwards). The flight path was set to minimise flight time in
specific, an angle of 178° to the North was used in our test.

Hyperspectral data acquisition
Hyperspectral acquisitions were made on 24 randomly selected

plants on the same day of the flight. The measurements were car-
ried out from 01:00 pm in the four exposures with the following
sequence: South, West, North and East. Three acquisitions were
realised for each exposure, and the radiometric reflectance calibra-
tion was performed using a calibrated Spectral on white reference.
The acquisitions were carried out in the four lateral portions of the
plants directly in the field, placing the instrument at about one
meter from the canopy (Figure 3). In this way, it was possible to
examine the hyperspectral information of an entire portion of the
canopy without any influence of the soil for the four exposures.
The acquired data were downloaded and processed through the
proprietary software associated with the instrument (HH2 Sync
and ViewSpec Pro). For each acquisition, the instrument output
provides a specific ASCIC file (asd) that can be processed in its
proprietary software, and after, it can be saved in several formats. 

Unmanned aerial vehicle images pre-processing 
Once the multispectral images were acquired, they were pre-

processed to obtain the multiband orthomosaic. Data were pro-
cessed using the Structure for motion software (Agisoft Metashape
Professional version 1.7.3). This software enables photogrammet-
ric processing of digital images and generates 3D and 2D spatial

data for use in GIS applications. Figure 4 schematically describes
the workflow used for the photogrammetric processing of the dif-
ferent images. Once the alignment had been completed, the GCPs
were inserted using the WGS84 geographical coordinate system
(EPSG: 4326). Then, the identification of the GCPs on the differ-
ent photos was done. The calibration of the images was made by
the software, using the brightness data recorded by the brightness
sensor on the drone. In addition, a white panel placed on the
ground before the flight was used to complete the radiometric cal-
ibration. After constructing the Dense Cloud, it was possible to
obtain the Mesh and the digital elevation model. Finally, through a
process of orthorectification and mosaicking, the multiband ortho-
mosaic was obtained (Figure 5).

                             Article

Figure 3. Proximal data acquisition with the hyperspectral sensor
applied on the four lateral canopy portions of the plant. The instru-
ment was placed about one meter from the canopy.

Figure 4. Workflow of photogrammetry data processing.

Figure 5. a) Multispectral bands; b) Orthomosaic in red, blue, and green representation.
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Image processing and analysis
The orthomosaic was then processed to obtain the spectral

canopy data using the open-source software QGIS version 3.16.6
Hannover (QGIS.org, 2022). The processing steps were done using
the geographic object-based image analysis methodology. First,
the segmentation of the image was performed in order to obtain a
classification in different non-overlapping zones, starting from the
VI map realised with different VI, as in Caruso et al. (2019). The
three main VI were used: NDVI (Rouse et al., 1974), MSAVI (Qi
et al., 1994), and NDRE (Maccioni et al., 2001) (Table 1). The K-
means algorithm was applied to the VI map, which allowed us to
obtain a binary clustering of the image. This methodology was pre-

ferred over threshold clustering because any non-pure pixels (espe-
cially close to the canopy) could be erroneously classified as soil.
This clustering algorithm was in Saga’s Images analysis library.

The image segmentation for the canopy extraction was
obtained by applying the following procedure (Figure 6).

Each was divided into four parts according to the exposure to
the four cardinal directions. Considering that 0° is located at the
centre of the North portion and turning clockwise: the North sector
goes from 315° to 45°, East from 45° to 135°, South from 135° to
225° and West from 225° to 315°. The intersecting of the multi-
spectral raster images with the vector of the canopy resulted in the
spectral data of each plant and its four portions (Figure 7).

                             Article

Table 1. Vegetation indices used to study multispectral and hyperspectral data.

Vegetation index                                        Acronym                                       Formula                                                         Authors

Normalized difference red-edge index                    NDRE                                                                                    Maccioni et al.., 2001

Normalized difference vegetation index                  NDVI                                                                                       Rouse et al., 1994

Modified soil adjusted vegetation index                 MSAVI                                                    Qi et al., 1994
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Figure 6. a) Extraction sequence of the canopy of the plants; b) Normalized difference vegetation index detail of each canopy on red, blue,
and green background.

Figure 7. a) False-colour image showing the four portions of the canopy of some selected plants; b) Detail of a plant sampled for hyper-
spectral measurements and the canopy divided into four portions (North, South, East, West).
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Statistical analysis
The VI data were subjected to analysis of variance (ANOVA)

and Tukey’s test to evaluate the statistical significance of the tests
at a 95% confidence level. The main techniques of inferential
statistics were applied using RStudio (RStudio Team, 2020) and
Microsoft Excel software (Microsoft Corporation, 2018).

Results

Proximal sensing from spectroradiometer
The hyperspectral data let us to know the spectral signatures of

the 24 selected plants and the reflectance of the four parts exposed
at the cardinal directions (Figure 8). The average spectral signature
for most of the reflectance spectra showed the typical trend of agri-
cultural crops, with a higher reflectance in the NIR bands than in
the visible region. More specifically, reflectance peaks were
observed at approximately 555 nm in the green band and 770 nm
in the NIR, while reflectance pits were recorded at around 690 nm.
A different behaviour based on acquisition exposure was observed.

The average reflectance that characterised the sampled plants
was 6.2% in the blue band, 12.3% in the green, 9.8% in the red,
41.0% in the red edge, and 61.7% in the NIR, respectively. A dif-
ference was observed between the reflectance values acquired in
the different cardinal directions while maintaining the same trend
along the curve.

The reflectance in the South exposure was always higher than
the other three, while the North exposure showed the lowest values
(p<0.001). East and West exposures gave similar values; in partic-
ular, in the region between 400 and 680 nm, the West exposure
shows values lower than those observed in the East exposures,
whereas in the NIR region, the West exposure has, on average, sig-
nificantly higher spectral reflectance values than East (p<0.001).

Three VI were calculated: NDVI, NDRE, and MSAVI using
the same range of the multispectral camera. Within each index, sta-
tistically significant differences were observed among the four
exposures. (Table 2). In particular, the South and West exposures
gave the three indices higher and significant values. Northern and
Eastern exposures caused a greater dispersion of the data, especial-
ly in NDVI and MSAVI. Statistically significant differences
among the indices were also observed. MSAVI gave the highest
average value with a mean of 0.718±0.14 followed by NDVI with

                             Article
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Table 2. Normalized difference vegetation index, normalized difference red-edge index and modified soil adjusted vegetation index from
hyperspectral data. Values are mean ± standard deviation of the 24 selected plants. 

Exposure                           NDVI                                                           NDRE                                                               MSAVI

S                                           0.647±0.05a                                                           0.170±0.02a                                                                 0.785±0.04a

W                                          0.643±0.05a                                                           0.167±0.02a                                                                 0.781±0.04a

N                                           0.497±0.15b                                                           0.139±0.04b                                                                 0.644±0.20b

E                                           0.508±0.14b                                                          0.147±0.03ab                                                                0.661±0.13b

Average                                 0.574±0.13                                                            0.156±0.03                                                                  0.718±0.14
NDVI, normalized difference vegetation index; NDRE, normalized difference red-edge index; MSAVI, modified soil adjusted vegetation index. a,bDifferent letters in the column indicate sta-
tistically significant differences at a significance level of 5%.

Figure 8. Representation of the reflectance of the four parts of the plants exposed at the cardinal directions (each line is the mean of 24
spectra).
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a value of 0.574±0.13 and then NDRE with 0.156±0.03. The
regression analysis between the indices used for the hyperspectral
characterisation of the plants showed statistically significant val-
ues (p<0.001) and high R2 values. NDVI had R2 values of 0.80 and
0.97 with NDRE and MSAVI, respectively. NDRE showed an R2

of 0.79 with the MSAVI value. Therefore, the coefficient of deter-
mination values between the indices was very high, with statisti-
cally significant differences; the R2 highest value was observed
between MSAVI and NDVI (Figure 9). 

Remote sensing from unmanned aerial vehicle
The spectral information was obtained for each tree canopy

and the different exposures using the drone images. From the mul-
tispectral data, the mean values of the three VI recorded in the 24
selected plants were: 0.62±0.03, 0.53±0.03, and 0.71±0.03 for
NDVI, NDRE and MSAVI, respectively. No statistically signifi-
cant differences were found among the mean values of the four
exposures for each index (Figure 10).

The regression analysis shows that, in all the VI, the values
obtained from the four exposures are statistically correlated
(p<0.001) to the mean value obtained per plant, with a very high
coefficient of determination. In this case, the southern exposure
gave the best results. In fact, the R2 values found by comparing
NDVI, NDRE and MSAVI of southern exposures with the relative
mean values per plant were respectively: 0.754, 0.775 and 0.772
(Figure 11).

                             Article
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Figure 9. Linear correlation between normalized difference vege-
tation index and modified soil adjusted vegetation index.

Figure 10. Normalized difference vegetation index, normalized
difference red-edge index and modified soil adjusted vegetation
index mean values of the individual canopies (n=24), divided into
the four exposures.

Figure 11. a) Correlation between normalized difference vegeta-
tion index values of the south exposure portion of the canopy and
the mean normalized difference vegetation index value of the
canopy; b) Correlation between normalized difference red-edge
index values of the south exposure portion of the canopy and the
mean normalized difference red-edge index value of the canopy; 
c) Correlation between the modified soil adjusted vegetation index
index of the south exposure portion of the canopy and the mean
modified soil adjusted vegetation index of the canopy.
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Comparison between proximal and remote sensing
data

Using the responses of the three different VI, ANOVA was
applied to compare multispectral and hyperspectral data obtained
by the two sensors (Figure 12). The exposure effect was statistical-
ly significant and more pronounced in the hyperspectral data than
in the multispectral ones. West and South exposures gave the most
consistent results with the multispectral images and the least scat-
ter in the data for all indices used. In general, exposure had no
impact on the multispectral data, unlike the hyperspectral ones.
Specifically, in the South and West exposures, NDVI and MSAVI
values were statistically higher than those obtained from multi-
spectral images (p<0.05). In the North and East exposures, the val-
ues were consistently lower than the ones obtained from the mul-
tispectral data for all the VI, but the high dispersion determines no
difference. The best correlation between the indices calculated
from the two different datasets was obtained in the southern and
western exposures for all three indices. In particular, NDVI in the
West exposure showed r=0.69** between multispectral and hyper-
spectral data, while for MSAVI, the best correlation was r=0.63**
in the same exposure. For NDRE, the correlation between multi-
spectral and hyperspectral data showed r=0.74** in the South
exposure.

Discussion
The olive tree trelling system in the experimental site is the

vase shape, a traditional system with very specific peculiarities
with respect to other fruit trees. The canopy, in fact, is made up of
sprouts with mixed growth: procumbent and assurgent, unlike
other fruit plants, which have predominantly assurgent sprouts.
This peculiarity generates a canopy heterogeneously distributed in
the space. The external part of the canopy has many pendulous
sprouts, while the central one has an upward trend. This heteroge-
neous arrangement of the shoots makes the olive tree particularly
interesting in studying the spectral response. The use of the two
systems, therefore, allows the entire canopy to be observed from
two different points of view.

The hyperspectral data are consistent with those generally
found in the literature. Rubio-Delgado et al. (2021) have also
attempted to describe and identify the spectral signature of olive
trees, given the wealth of information on their health status that can
be obtained. They obtained in the NIR region a slightly different
curve than the one described in this study, which can be explained
by the different POV of the sensor compared to the crop (Ye et al.,
2008). The difference in the reflectance of the hyperspectral curve
in the four exposures marked the results of the entire experiment.
The normalisation of the spectral data, and therefore of the calcu-
lation of the different indices, allowed a better understanding of the
crop’s status. The hyperspectral VI values showed a close depen-
dence on the acquisition exposure. Nevertheless, their correlation
with the multispectral data was found to be statistically significant
regardless of the type of VI and exposure.

In a traditional breeding system like the one used in the exper-
iment, the different growth conditions in the four exposures influ-
enced the relative spectral characteristics. This effect is related to
the different angles of the rows, which influences the interception
of photosynthetically active radiation (PAR) (Campos et al., 2017).
Indeed, as observed by Campos et al. (2017), with the rows in the
NE-SW direction, the part with the highest light interception in a
latitude close to 40° are the South and West zones. In our experi-

ment, hyperspectral VI showed a clear dependence on exposure, as
found in another study with hyper and/or multispectral side-view
cameras (Saiz-Rubio et al., 2021). The differences found among
the four exposures are due to their different microclimatic condi-
tions (temperature, relative humidity, wind). By grouping the
hyperspectral data from the South and West exposures and com-
paring them with the North and East data, it is evident that the
South-West exposure resulted in statistically higher NDVI,
MSAVI and NDRE values than the North-East exposure. The high-
er values found in the South and West exposures can be explained
by the better growing conditions of the crop due to the higher PAR
values (Campos et al., 2017). The result obtained in the South and
West exposures is also supported by the very high and statistically

                             Article

Figure 12. Normalized difference vegetation index, normalized
difference red-edge index and modified soil adjusted vegetation
index data calculated from multispectral and hyperspectral images
for the different portions of the canopy.
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significant r2 values found between the hyperspectral and multi-
spectral VI. It remains to be investigated how the different regions
of the spectrum change and under which conditions it is correct to
use one region rather than another when using side-view spectro-
radiometers. In fact, different studies investigated the crop status
using the entire spectral signature but with more problems with the
data management.

The multispectral images were able to determine for each plant
the crown area and the multispectral information with high preci-
sion, as obtained in previous studies (Anifantis et al., 2019; Deng
et al., 2018; Stateras and Kalivas, 2020). The multispectral images
were thus able to appreciate the spectral condition of each plant. A
good linearity of the extrapolated data was obtained from the mul-
tispectral VI analysis. In fact, no statistically significant differ-
ences were observed for the same indices among the various expo-
sures in all three indices. However, statistically significant differ-
ences were found among all the indices, probably related to the dif-
ferent bands used for the calculation, thus providing different spec-
tral information (Gómez et al., 2011; Modica et al., 2020). 

From the comparison between multi and hyperspectral images,
it can be deduced that the different VI do not associate the same
value with the same level of crop stress. MSAVI generally gave
higher values, followed by NDVI and then by NDRE, both from
multispectral and hyperspectral data.

The use of the multi and hyperspectral sensors, despite the dif-
ferent viewpoints of the object, was able to describe the health sta-
tus of the plants as found in Vanegas et al. (2018). Data from the
hyperspectral camera with a side view of the object correlated well
with the aerial multispectral images from the drone, paying atten-
tion to the exposure. Therefore, hyperspectral information is more
accurate but at the same time more affected and/or at risk of error
than multispectral information. This effect is explained by the vari-
ation in the data and the lower correlation value between the hyper-
spectral data in the four exposures. The exposures that showed the
best correlation among the VI calculated from the two datasets
were the S and W. This is probably related to the better growth con-
ditions of the two canopy portions, confirmed by the higher values
appreciable in the hyperspectral dataset, as found in (Marshall and
Thenkabail, 2015).

Conclusions
The multispectral images obtained from remote sensing by

drone can be compared with the hyperspectral images from proxi-
mal systems as they correlate well. This is especially the case when
the proper wavelengths are used from the hyperspectral data and
the acquisitions made in the South and West exposures of olive
trees. The data obtained from the remote platform showed very
good correlation and data matching over the whole plot and
allowed investigating with reasonable accuracy. However, the pos-
sibility of obtaining spectral information from the crop, the devel-
opment of new acquisition platforms from proximal sensing such
as unmanned ground vehicles and the continuous improvement of
technology make the use of hyperspectral sensors in precision
farming increasingly interesting.

This study has shown that hyperspectral data acquired from the
proximal platform with a different viewpoint can more accurately
describe the crop spectral status, despite the limited diffusion of
proximal sensing platforms for investigating the entire variability
of the plot and the high variability of the data, depending on crop
conditions as exposure and brightness. This study was able to dis-

criminate the potential of hyperspectral and multispectral data, also
considering their simultaneous use. Anyway, some characteristics
of the two different platforms, such as application time and data
management, should be in-depth evaluated for future applications.
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