
Abstract
Pasta enriched with soy flour can be considered as a functional

food, due to its content in nutraceutical compounds such as
isoflavones, carotenoids, and other antioxidants. The quantifica-
tion of the amount of a functional ingredient is an important step
in food authenticity. The availability of non-destructive techniques
for quantitative and qualitative analyses of food is therefore desir-
able. This research aimed to investigate the feasibility of hyper-
spectral imaging in reflectance mode for the evaluation of the soy
flour content, also to investigate the possibility of implementing a
feed-back control system to precisely dose the soy flour during the
industrial production of pasta. Samples of pasta in shape of
spaghetti were produced with durum wheat semolina and soy flour
at increasing percentages (0, to 50%, steps of 5%). A feature selec-
tion algorithm was used to predict the amount of soy flour. The
most influent wavelengths were selected, and a six-term Gauss
function was trained, validated, and tested. The identified transfer
function was able to predict the percentage of soy flour with high

accuracy, with an R2adj value of 0.98 and a Root Mean Square
Error of 1.31. The developed system could represent a feasible
tool to control the process in a continuous mode.

Introduction
Pasta is a very popular food obtained by extrusion, lamination,

or shaping on a belt, generally followed by drying, of a mixture of
semolina and/or wheat flour and water. The amount of world pasta
production is reported to be around 17 million tons and the main
producer is the European Union (32,8%), followed by the other
European countries (17.9%), Central and South America (17.7%),
Africa (13.8%), and North America (12.9%) (IPO, 2021). Always
in 2021, the top 5 consumers are Italy (23.5 kg), Tunisia (17 kg),
Venezuela (15 kg), Greece (12.2 kg), and Perù (9.9 kg). Despite
the data referred to production and consumption are considerable
and although pasta has been included within the intangible cultur-
al heritage list (Giannetti et al., 2021), this traditional product is in
the maturity stage of its life cycle. This state of things implies that
the price can be secondary to quality in consumer choice. In addi-
tion, despite having a long-shelf-life and being a good and cheap
source of carbohydrates, pasta lacks proteins and functional bioac-
tive compounds, factor that can slow down its consumption by
people interested in a healthier lifestyle (Bianchi et al., 2021). In
order to increase purchase and expand consumer targets, new
pasta products have been developed including functional pasta,
which can be consumed as part of the normal diet but that contains
bioactive components able to enhance health or reduce risk of dis-
ease (Di Monaco et al., 2004). Functional foods are gaining an
increasing interest with an annual average growth rate of about
8.5%. and a global market of around 300 billion dollars (Bogue et
al., 2017). Although, functional dairy products have the biggest
market share, followed by beverages and cereals (Stein and
Rodríguez-Cerezo, 2008), according to the World Health
Organization and the Food and Drug Administration, the fortifica-
tion of pasta with valuable ingredients assumes great nutritional
importance since pasta is a useful carrier for compounds acting as
nutrition enhancers or improving some physiological functions. It
can be functionalized by fortification with vitamins, minerals,
vegetable fibers, probiotics, or prebiotics or by partial replacement
of wheat flour with other ingredients (Fares et al., 2015; Omeire
et al., 2014; Pasqualone et al., 2016; Romano et al., 2021; Wang
et al., 2021). The demonstration of its suitability is given by the
fact that pasta has a well-documented, long-standing research his-
tory of partial or total substitution of the durum wheat semolina
with ingredients from vegetable and animal sources, including
insects (Duda et al., 2019; Nilusha et al., 2019). Although pasta
produced from durum wheat flour has excellent rheological prop-
erties of the dough and high cooking and sensorial quality, the
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addition of flours from various high-protein sources allows the
improvement of its nutritional properties (Fuad and Prabhasankar,
2010). In particular, the replacement with soy (Glicine max L.)
flour is attractive because it is abundant and inexpensive if com-
pared to animal proteins. Furthermore, soybean seeds contain: over
40% protein with essential amino acids, whose amounts often
closely match those required for humans or animals, 30-35% car-
bohydrates, 20% fat with an interesting content of linoleic acid;
many bioactive compounds, including vitamin B6, folate vitamin
E, isoflavones, lecithin, saponins, oligosaccharides, and phytos-
terols (Dulger and Hallac, 2020; Tripathi and Mangaraj, 2011).
Thanks to this variety of compounds, soy is able to exert beneficial
effects by reducing risks of coronary heart disease and some can-
cers and lowering cholesterol and glycemic index (Messina, 2003;
Wietrzyk et al., 2005). Furthermore, soy proteins have remarkable
technological effects, having emulsifying, gelling, water, and oil-
holding capacity (Nishinari et al., 2014; Wietrzyk et al., 2005).
Concerning the impact of soy flour addition on pasta, according to
Baiano et al. (2011), it can increase the optimal cooking time and
decrease the release of organic matter whereas the sensory
response is similar for semolina and semolina-soy spaghetti. A dif-
ferent opinion was expressed by Kamble et al. (2019), who found
that increasing the addition of soy flour reduces pasta’s optimum
cooking time, increases cooking loss, and alters all sensory charac-
teristics. The amount of a functional ingredient in a food is of fun-
damental importance since it contributes both to the nutritional and
economic value of the products. In addition to destructive analyti-
cal techniques, techniques that allow the evaluation of the sample
in a rapid and non-destructive way are taking place. Hyperspectral
imaging (HSI) integrates conventional imaging and spectroscopy
to obtain spatial and spectral information of an object (Gowen et
al., 2011). An HSI system can be used for quantitative and qualita-
tive analyses by recording the spectral characteristics of samples
and for classifying objects based on their spectral properties
through the building of mathematical model based on algorithms
(Liu et al., 2017). Multispectral and hyperspectral imaging have
been successfully used for the identification and quantitation of
durum wheat grain samples in relation to pasta authenticity. These
techniques were suitable to rapidly distinguish between durum
wheat and common wheat cultivars and to assign percentage adul-
teration levels (Wilkes et al., 2016).

This research aimed to investigate the feasibility of the appli-
cation of hyperspectral imaging for the estimation of the amount of
soy flour in the semolina-soy flour mixtures used to produce func-
tional pasta. This is to find an easy and precise way to control the
dosing of functional ingredients during the pasta production
process. In particular, the hyperspectral imaging system was used
to distinguish between durum wheat flour (semolina) and soy flour
based on their spectral signatures, using pasta samples in which
increasing amounts of semolina were replaced by soy flour. A
mathematical model was developed to assess the correlation
between the reflectance of pasta samples and the percentage of soy
flour used for their production in the way to develop a mathemati-
cal model to be used as a transfer function to control the correct
dose of soy flour in feed-back continuous mode.

Materials and Methods
Flour samples and pasta production

Commercial durum wheat semolina and green soy flour were
found on the local market. Pasta was produced in a 2-kg pilot plant

(NAMAD, Rome, Italy) consisting of a mixer and an extruder. The
flours were mixed with tap water (for 10 min) to obtain a dough
having a water content of about 45%. The extrusion conditions
were the following: temperature 50±5°C; kneading time 15 min;
pressure 60-125 atm as a function of the specific formulation; vac-
uum degree 700 mmHg. A Teflon die-plate suitable for spaghetti
production was used. Spaghetti had a diameter of 1.70±0.03 mm.
Eleven types of spaghetti were produced: a control, made of 100%
(named 0% soy flour, SF) durum wheat semolina and spaghetti in
which 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50% of durum wheat
semolina was replaced with SF. Ten batches were produced for
each type of spaghetti. 

Hyperspectral image system and acquisition mode
The hyperspectral imaging system used in reflectance mode -

linear scanning type – consisted of a progressive scan camera
(AVT F100 B, Allied Vision Technologies, DE) equipped with a
16-bit Charge-Coupled Device (CCD) chip (Kodak KSI 1020,
DE), spectrograph (ImSpector V10, Specim Ltd, NL). The acqui-
sition field was in the range of 400-1000 nm with spectral resolu-
tion of 5 nm to obtain the reflectance values corresponding to 121
wavelengths. The excitation source consisted of two halogen
lamps whose light was conveyed on the acquisition plane by two
linear diffusers (placed behind and forward the line of view of the
spectrograph). Before hyperspectral image acquisition, an elec-
tronic correction was made by setting the 0 and 100% values of
reflectance. The 0% reflectance was set by placing a black cap on
the objective and recording the camera response. In this way, it was
possible to exclude the electronic noise of the CCD detector, which
is thermally sensitive. The 100% reflectance intensity was set by
recording the reflectance of a standard with reference (Teflon
white board, 99% reflectance). A factory software (DV s. r. l., IT)
converted the data acquired by the hyperspectral system in a hyper-
cube made of the 121 component images quantized with 4096 grey
levels. Before data analysis, the pixel intensity of each component
image was corrected using the related white and dark reference
component images. The corrected image (R) was estimated using
the following equation (Elmasry et al., 2007):

                                                                  
(1)

where Rl is the recorded hyperspectral image, Dl is the dark com-
ponent image (0% reflectance) acquired by turning off the lighting
source with the lens of the camera completely closed by a black
cap, and Wl is the white reference component image (acquiring the
white board reference). Equation (1) was iteratively applied for all
121 component images to obtain the corrected component images
(Rcl). These corrected images were repacked into a hyperspectral
image. The choice to use a hyperspectral system was dictated by
the opportunity to investigate a large area of the product under
investigation, instead of a point measurement. This is because
functional doughs are very often characterized by irregularities due
to the mixing of flours. To both threshold the samples from the
background and retrieve their reflection spectra, a specific algo-
rithm based on the Otsu’s method and coded in MATLAB®

R2022b (The Mathworks Inc., Natick, USA) was written using the
Image processing toolbox. The spectrum of reflectance of each
sample was determined by measuring the average grey level value
for each of the 121 images in the corresponding hyperspectral
image component. This operation allowed to collect 30 reflection
spectra per each of the 11 types of samples. Considering the ten
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baches for each type, a total of 3300 hyperspectral images were
collected. 

Mathematical modeling
In classification problems based on hyperspectral data, the

selection of wavelengths that are useful for the problem is neces-
sary to reduce the size of the data to be processed and, above all,
is very useful for the subsequent engineering of the system, as it
defines a limited number of wavelengths that can be managed by
commercial hardware. To reduce the calculus complexity, some
chemometric tools are used, such as partial least squares and prin-
cipal component analysis methods (Beghi et al., 2013; Piazzolla et
al., 2017; Matera et al., 2021; Altieri et al., 2022; Benelli et al.,
2022). These techniques have the advantage of reducing computa-
tional complexity by generating linear combinations of predictors.
In this way, the calculation algorithm uses the combinations that
explain the highest percentage of variance. In contrast, models do
not directly give the possibility of defining which variables are the
most influential for the classification/prediction problem. In these
cases, it is necessary to use methods based on feature selection, to
define the actual useful wavelengths and then implement them on
multispectral systems during industrial scale-up.

The selected variables are then used to create a mathematical
model. This model is then optimized for the required feature clas-
sification problem. Reducing the complexity of hyperspectral data
leads to benefits in the form of improved prediction performance.
Using too many features can degrade prediction performance even
when all features are relevant and contain information about the
response variable (Ding and Peng, 2005).

The most influent wavelengths were identified to model the
percentage of soy flour based on reflectance data using a method
for wavelength selection. In particular, the 121 wavelengths
obtained from the hyperspectral imaging system were subjected to
the Feature Selection Minimum Redundancy Maximum Relevance
(FS-MRMR) Algorithm. The method is based on a forward addi-
tion scheme to insert data into an empty set S containing the best
wavelength to be used for the mathematical model. To this pur-
pose, the algorithm uses a function of interdependence (I)
(Darbellay and Vajda, 1999), indicating the interdependence or not
of a couple of l, and a mutual information quotient (MIQ) value to
rank features (wavelengths). MIQ (Eq. 2) includes two indexes,
and  indicating the relevance and redundance of  with respect to the
response variable  (% of soy flour).

where:

                                                          

(2)

Once the set S was defined, a mathematical model was imple-
mented to predict the percentage of soybean meal based on the
selected wavelengths. Based on the assumption that the aim of the
research was to find a system that could be easily implemented on
the production line, it was decided to test the selected wavelengths
one by one, to assess which of the selected wavelengths gave the
best results in predicting the percentage of soya meal. From pre-
liminary tests performed (data not shown), the two-terms Gaussian
prediction model was chosen (Eq. 3). 

                               
(3)

The calibration and the validation of the model were per-
formed on randomly selected 50% and 25% of the whole data set,
respectively. The remaining 25% was used for the testing phase of
the determined model.

Results and Discussion
Visible and near infra-red spectra of acquired
samples

The relative reflectance spectra extracted from the hyperspec-
tral images of the 11 dough samples at increasing concentrations of
soya flour, from 0 to 50%, were obtained downstream of the pro-
cessing performed with MATLAB and displayed in Figure 1.

A preliminary analysis of the hyperspectral images (hyper-
cubes) shows that the pasta surface didn’t suffer from inhomogene-
ity (data not shown). Therefore, a punctual hyperspectral method
could be used and this is an advantage for the industrial implemen-
tation. The analysis in Figure 1 shows an interesting aspect, name-
ly that the addition of only a small percentage of soya flour to
semolina flour totally changes the spectrum profile. In fact, the
100% semolina flour shows a significantly higher relative
reflectance between 400 and 650 nm, and with a drop in intensity
between 800 and 840 nm compared to the mixtures with soya flour.
In the latter region of the spectrum, the 100% semolina spectrum
and the spectra of the mixtures even appear to be in countertrend.
In the near infra-red region, the 100% semolina spectrum shows an
increase in relative reflectance values, compared to the mixtures
with soybean meal, especially in the band between 930 and 1000
nm. The mixtures with increasing concentrations of soybean meal,
on the other hand, show a constancy in the spectral profile, and, in
particular, a decreasing relative reflectance trend is visible as the
percentage of soybean meal increases. The increases are not con-
stant throughout the spectral range but are greatest in the visible
region between 600 and 750 nm.

                             Article

Figure 1. Relative reflectance spectra of the 11 samples considered.
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Choice, calibration, and validation of the 
mathematical modeling

The Curve fitting toolbox of MATLAB® offers a wide choice
of methods to fit experimental data and allowing the evaluation of
fitting accuracy. The first step was to check the functions that bet-
ter fit the reflectance data. Analysis of the most influential wave-
lengths using the MRMR algorithm indicated five variables. The
influential wavelengths were tested with the 6-term Gaussian pre-
diction model and the performance of the model was evaluated. On
each selected wavelength, the mathematical model was calibrated
using 50% of data and then validated on 25% of data. In Tables 1
and 2, performance parameters (RRadjusted and Root Mean Square
Error, RMSE) and equations terms, based on calibration and vali-
dation dataset are reported.

The results shown in Tables 1 and 2 show how the variables
(wavelengths) are ordered with respect to both R2adj and RMSE.

The model calibration (Table 1) showed high R2adj values with
low RMSE values. The biggest differences between the calibration
and validation phase lie in the fifth most influential wavelength,
namely that at 855 nm. The lower R2adj value compared to the other
wavelengths is found for both the calibration and validation phas-
es. In fact, in Table 2, the R2adj value drops to below 90%. The 655
nm wavelength alone can estimate the percentage of soya flour in
the dough, with an RMSE of 1.2 and an R2adj of 0.99, based on the
validation set. The transfer function is as follows (Eq. 4).

      
(4)

Once the transfer function was identified, the remaining 25%
of the data was used for the testing phase of the mathematical
model. Thus, Equation 4 was used to predict the percentages of
soya present from spectral data (at 655 nm) unknown to the math-
ematical model, i.e., not used in the training and validation phase.

The performance of the model in the test phase was compara-
ble to that found in the validation phase. In particular, the R2adj
value was 0.98, and the RMSE value was 1.31 (Figure 2). The
model showed a good ability to generalize the data, a sign of the
closeness of the validation and test data.

Figure 2 highlights that the considered wavelength and the
other 5 selected wavelengths by MRMR algorithm (data not
shown), the relative reflectance decreased as percentage of semoli-
na replaced by soy flour increased. On the x-axis the central value
of prediction is shown. As depicted, each true value of soy percent-
age (y-axis) is related to a range of percentage varying between the
central value. This variation represents the prediction error. Based
on the relationship Absorbance = log(1/Reflectance), at increasing
percentage of soy flour in the samples, absorbance increased. It
was supposed that those differences should be due to qualitative-
quantitative differences in composition between semolina and soy
flour (Workman, 2016). More in depth, the wavelength (655 nm)
most effective in predicting the percentage of soya flour in the
dough corresponded to the chlorophyll absorbance in green light
reflectance region (Masithoh et al., 2023; Pahlawan et al., 2022).
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Table 1. Performance parameters of six-terms Gauss equations on the best 5 wavelengths (calibration dataset).

Wavelength (nm)                R2adjusted                RMSE                 a1                   b1                   c1                    a2                    b2                  c2

655                                                    0.99                          1.11                    50.15                49.18                10.10                 14.21                 60.00                3.32
755                                                    0.99                          1.41                    51.62                36.11                 7.22                   3.12                  43.06                3.98
535                                                    0.99                          1.24                     0.54                 -0.43                 1.14                  44.54                  -1.00                2.32
785                                                    0.96                          2.20                    -3.13                61.22                 3.05                  50.99                 61.20               11.08
580                                                    0.94                          2.96                     2.22                 51.29                 0.01                  41.55                 50.77               10.16

Table 2. Performance parameters of six-terms Gauss equations on the best 5 wavelengths (validation dataset).

Wavelength (nm)                 R2adjusted               RMSE                 a1                   b1                   c1                    a2                    b2                  c2

655                                                     0.99                         1.28                    51.96                48.99                10.62                 11.44                 62.00                6.61
755                                                     0.99                         1.64                     52.6                 38.21                 9.52                   7.65                  49.06                4.80
535                                                     0.99                         1.65                     0.00                 -3.77                 0.25                  49.84                  -1.89                2.19
785                                                     0.92                         4.50                    -6.28                67.79                 4.06                  52.49                 63.70               13.19
580                                                     0.88                         5.32                     3.56                 57.05                 1.07                  47.26                 56.43               12.77

Figure 2. Six-terms Gauss function (Eq. 4) fitting reflectance
@655nm using data from the test set. x-axis: central value of pre-
dicted class of soy percentage; y-axis: true value of soy percentage.
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Moreover, another consideration that can be made is that the
small RMSE value obtained certainly allows one to discern devia-
tions of soybean meal percentages with deviations between 5 and
10%, as can also be seen in Figure 1. In an industrial context, hav-
ing a feedback control based on this technique can certainly be
very useful to ensure quality production, despite the small devia-
tions found.

Conclusions
A simple hyperspectral imaging-based system in the

reflectance mode was used to predict the percentage of soy flour in
pasta made with semolina-soy flour mixtures. The elaboration of
raw data shows the effectiveness of the FS-RMRM algorithm to
individuate the most influent wavelengths in a prediction modeling
problem. Moreover, after the validation process, the identified
transfer function was able, with an acceptable accuracy, to identify
the percentage of substituted soybean flour.

Given today’s availability of both hardware and software, the
system represents an opportunity to improve pasta production lines,
with affordable investment costs and high system reliability. This
technology also fits very well into the 4.0 technology perspective,
as it can be remotely controlled and generate continuous reports on
the analysis of the pasta throughout the production phase. Further
research will be conducted to evaluate the efficiency of the model
developed in this work on other replacement ingredients.
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