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Abstract

Tomato disease control remains a major challenge in the
agriculture sector. Early-stage recognition of these diseases is
critical to reduce pesticide usage and mitigate economic losses.
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While many research works have been inspired by the success of
deep learning in computer vision to improve the performance of
recognition systems for crop diseases, few of these studies opti-
mised the deep learning models to generalise their findings to
practical use in the field. In this work, we proposed a model for
identifying tomato leaf diseases based on in-house data and pub-
lic tomato leaf image databases. Three deep-learning network
architectures (VGG16, Inception_v3, and Resnet50) were
trained and tested. We packaged the trained model into an
Android application named TomatoGuard to identify nine kinds
of tomato leaf diseases and healthy tomato leaves. The results
showed that TomatoGuard could be adopted as a model for iden-
tifying tomato diseases with a 99% test accuracy, showing sig-
nificantly better performance than APP Plantix, a widely used
APP for general-purpose plant disease detection.

Introduction

According to the FAO (The Food and Agriculture Organization
of the United Nations, FAOSTAT), China was the largest producer
of tomatoes from 2013 to 2017. Diseases in tomato leaves cause
major production and economic losses by reducing both the quality
and quantity of productivity in the tomato industry. Moreover, crop
disease control issues are closely related to the development of sus-
tainable agriculture. In China, crop disease diagnosis still heavily
relies on the experiences of farmers or crop producers. Excessive
use of pesticides leads to long-term drug resistance of the bacteria,
which severely impairs the disease resistance in the crop (Hanssen
et al., 2010). To reduce the use of pesticides, the timely and accu-
rate detection of tomato leaf disease in the early stages has become
a critical and urgent challenge to tackle.

Traditionally, identification of the type and the severity of the
plant disease mainly relied on experienced farmers or trained
experts (Liu et al., 2017; Riley et al., 2002). However, the process
is not ideal, and difficult to meet the requirements of modern agri-
culture because of low efficiency, small scope, and poor real-time
performance. With the rapid development of machine learning algo-
rithms in computer vision, especially deep artificial neural network
technology, it is now possible to perform an automatic, timely, and
accurate diagnosis of crop diseases with the support of massive
agricultural information data (Wolfert ef al., 2017).

Researchers (Chung et al., 2016; Shrivastava et al., 2017;
Sabanci et al., 2017; Kezhu et al., 2014; Romualdo et al., 2014)
have used Bayesian classifiers, support vector machines, and arti-
ficial neural networks to develop several expert diagnosis systems
for disease detection in various crops. Intelligently identifying
crop diseases has achieved reasonable success in many specific
cases. The traditional machine learning methods consist of image
preprocessing, feature extraction, and classifier training (Mokhtar
et al., 2015). Among these three steps, the feature extraction step
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is the key challenge. Traditionally, features were extracted based on
prior knowledge to obtain the image’s colour, shape, texture, and
other characteristics, such as scale-invariant feature transform and
histogram of oriented gradient. Generally, the extracted features do
not generalise into new images for universality (Tamaazousti et al.,
2020), which is one of the main reasons that the developments cur-
rently stay in the laboratory phase and cannot be applied in prac-
tice. More recently, the emerging deep Convolution Neural
Network (CNN) (Fukushima et al., 1983; LeCun et al., 1989), gen-
erated via reference to the structure of the visual system has per-
formed very well in image feature extraction. Researchers have
achieved excellent performances in various types of image recog-
nition tasks, such as face recognition (Parkhi ez al., 2015), human
eye detection (Liu et al., 2015), pedestrian detection (Tomée et al.,
2016), license plate recognition (Masood et al., 2017). Due to the
impressive success in image-based recognition, CNN is now wide-
ly used to identify plant and crop disease images. Prasad et al.
(2017a, b) proved that the features captured from CNN were effec-
tive in plant species recognition. Yang et al. (2017) proposed a rice
disease identification method based on deep CNN techniques to
identify 10 common rice diseases where their model achieved an
average accuracy of 95.48%. Kawasaki et al. (2015) presented a
cucumber leaf disease detection system based on CNN. Their sys-
tem achieved an average accuracy of 94.9% in classifying cucum-
bers into two typical diseased classes and a healthy class.
Sladojevic et al. (2016) proposed a novel approach based on deep
CNN, which can detect 13 different common types of plant dis-
eases by distinguishing the plant leaves from their surroundings,
and the average test accuracy was 96.3%. Mohanty et al. (2016)
developed a CNN-based model to detect 26 diseases in 14 crop
species and achieved an accuracy of 99.35%.

Additionally, Fuentes ef al. (2017) presented a deep-learning-
based approach to detect diseases and pests in tomato plants, and
the mean average precision for their whole system showed a per-
formance of more than 80% for the best cases, but they only used
their private dataset from areas of the Korean Peninsula and did not
provide an open source. Generally, most of these studies are mainly
limited to their curated data and have not yet demonstrated the
application in practice. In addition, while these studies proved that
CNN is effective in recognising crop and plant diseases, the CNN-
based models could be further tuned and optimised to identify crop
and plant diseases in real-life practice. Finally, it has to note that
even if massive agricultural information data can be acquired with
the support of automatic sensors, the data annotation still relies on
manual labelling.

This work aimed to provide a solution for early control of
tomato diseases from the perspective of image recognition. For this
purpose, we have comprehensively considered data acquisition,
model optimisation, result analysis, and application deployment.
The specific contributions of this paper are as follows: 1) we curat-
ed a comprehensive dataset with images from our in-house and other
public datasets to improve the diversity of training data; ii) we
developed a more generalised CNN-based model. We tuned the
classification structure, added batch normalisation and dropout
layer into the network, and replaced the flattened layer with a
Global max pooling layer; iii) we also explored the mechanism of
the CNN model diagnosing tomato leaf diseases by saliency maps
and activation maximisation of the Softmax layer; iv) we also
implemented the proposed deep learning model in the
TomatoGuard Android application for deployment on Android
phones.
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Materials and Methods

Identification and control methodology of various
diseases of tomato leaves

Tomato diseases are caused by various factors including fungi,
bacteria, virus, mite (Chowdhury et al., 2021). Fungi are the pre-
dominant plant pathogens, and can cause multiple diseases, includ-
ing early blight, septoria leaf spot, target spot, and leaf mould. The
leaf symptoms of early blight are large irregular patches of black,
necrotic tissue surrounded by larger yellow areas. The leaf spots
have a characteristic concentric banding appearance (oyster-shell
or bull’s eye). The effective control method minimises leaves’ wet-
ting by using drip or furrow irrigation. Infection occurs rapidly
during periods of warm, wet weather. Fungicide sprays control the
disease effectively.

Septoria leaf spots of tomato plants are caused by a fungus,
which leads to circular water-soaked lesions that occur first on
older leaves. These spots eventually turn brown with grey centres
and die; if the infection is severe enough, the entire leaf will die.
The fungus can survive in the debris from previous crops and/or
weeds. Clean cultivation is important. Labelled fungicides can
control the disease. The fungus causes the leaf mould disease of
plants. Symptoms appear as light green patches on the upper sur-
faces of older leaves. Underneath the leaves in these areas, a pur-
plish or olive-green patch of mould growth is visible. Infected
leaves turn yellow and drop off the plant. Fungus is spread by wind
currents. High humidity and warm temperatures encourage mould
growth. The problem is especially severe in greenhouses, where
adequate ventilation and air movement reduce disease severity by
lowering moisture at the leaf surface. Fungicides are effective con-
trols. The fungal pathogen causes the target spot of tomato. The
initial foliar symptoms are pinpoint-sized, water-soaked spots on
the upper leaf surface. The spots develop into small, necrotic
lesions with light brown centres and dark margins. The primary
strategy used to manage target spots on tomatoes is the regular
application of fungicides.

Bacteria are also major plant pathogens. Bacterial spot is a
plant disease caused by bacteria. First, dark brown water-soaked
spots appear on the leaves; later, these spots become blackish, and
eventually, the affected tissue drops out, leaving a hole in the leaf.
Copper sprays provide some control. Good sanitation practices,
including prompt plough-down of stubble and weed control, help
prevent the disease.

Moulds are also a major cause of plant diseases. The character-
istics of late blight of tomato plants caused by mould are that
lesions on leaves appear as large water-soaked areas that eventual-
ly turn brown and papery. Fruit lesions are large irregular greenish-
brown patches having a greasy rough appearance. Green to black
irregular lesions are also present on the stems.

Tomato yellow leaf curl virus is a devastating virus causing
tomato disease, denoted by plant stunting and pronounced chlorot-
ic leaves that curl upward. Older leaves become leathery and brit-
tle. The nodes and internodes are significantly reduced in size. The
infected plants look pale and produce more lateral branches giving
a bushy appearance. The infected plants remain stunted. Removal
of plants with initial symptoms may slow the spread of the disease.
Low-concentration sprays of a horticultural oil or canola oil will
act as a whitefly repellent, reducing feeding and possibly transmis-
sion of the virus. Tomato mosaic virus is another viral disease.
Depending on the strain and age of plants when infected, plants are
stunted with mosaic or fern leaf-like symptoms. Aphids often are
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virus vectors, so an attempt to control the aphids is the first step.
Eliminate weeds and remove infected plants from the field as soon
as they are seen.

Mites are a common pest that attacks vegetable and fruit crops.
Tomato plants attacked by mites often have a mottled or speckled
dull appearance on the top leaf surfaces due to feeding injury.
Leaves then turn yellow and drop. Large populations produce vis-
ible webbing that can completely cover the leaves. The use of over-
head-sprinkler irrigation may provide short-term relief for mite
infestations.

In-house and public tomato image datasets

To obtain a reliable CNN model, a large-scale dataset is essen-
tial. We used both in-house and public datasets of tomato disease
leaf images in this work. The first dataset was acquired from the
College of Water Conservancy and Civil Engineering greenhouse
at South China Agricultural University. The tomato seedlings were
inoculated with tomato yellow leaf curl virus (TYLCV) and tomato
mosaic virus (TMV) at the Plant Protection Research Institute of
Guangdong Academy of Agricultural Sciences, then transplanted
to the conservatory (Polston et al., 1999). Tomato was raised after
seven-day acclimatisation. During the period of growth, the
Hoagland nutrient solution (Hoagland et al., 1950) (150ml) was

Plant village

| In-house

Internet

. D

manually sprayed every two days by using a sprinkling can to pro-
vide sufficient nutrients for the plants. Tomato images were col-
lected as the dataset during the growth cycle by a digital camera
(SONY DSC-HX400), which was set to adjust the focal length and
aperture, auto white balance, and without flash. The image resolu-
tion was 5184x3888 pixels. To maintain the diversity of the data for
the test of the generalisation ability of the algorithm, tomato images
were captured in all the weather conditions.

The second dataset, PlantVillage data (Hughes et al., 2015),
was an open-access dataset with more than 50,000 images of
leaves, from which we extracted 18,160 images of 10 different
tomato leaf classes. These images’ size was 256x256. To comple-
ment the in-house dataset and enhance data diversity, we also cre-
ated the third dataset as a supplement and named it the Internet
dataset. We downloaded 295 images from multi-sources, such as
the Arkansas Plant Diseases Database, the American
Phytopathological Society database, the Bugwood image database,
and several other academic sources. So, these images’ sizes varied
from 35%47 to 2156x2232. The sampled images of these three
datasets are shown in Figure 1. The differences among the images
from these three sources included the shooting environment, the
growing season, and the growing location. The specific type of dis-
eases and quantities of the images in these three datasets are shown

‘_.m

Figure 1. Sample images. A) PlantVillage data (PV) -Bacterial Spot; B) PV-Early Blight; C) PV-Late Blight; D) PV-Leaf Mould; E) PV-
Septoria Leaf Spot; F) PV-Spider Mites two spotted Spider Mite; G) PV-Target Spot; H) PV-Tomato Yellow Leaf Curl Virus; I) PV-
Tomato Mosaic Virus; J) PV-Healthy; K) OUR-Healthy; L) OUR-Tomato Mosaic Virus; M) OUR-Tomato Yellow Leaf Curl Virus; N)
Internet data (INT)-Bacterial Spot (Clemson University - USDA Cooperative Extension Slide Series, Bugwood.org / CC BY 3.0); O)
INT-Early Blight (Nancy Gregory, University of Delaware, Bugwood.org / CC BY 3.0); P) INT-Late Blight (Elizabeth Bush, Virginia
Polytechnic Institute and State University, Bugwood.org / CC BY 3.0); Q) INT-Leaf Mould (Elizabeth Bush, Virginia Polytechnic
Institute and State University, Bugwood.org / CC BY 3.0); R) INT-Septoria Leaf Spot (William M. Brown Jr., Bugwood.org / CC BY
3.0); S) INT-Spider Mites-Two Spotted Spider Mite (Clemson University - USDA Cooperative Extension Slide Series, Bugwood.org /
CC BY 3.0); T) INT-Target Spot (Photograph by Dr. Ken Pernezny from University of Florida / CC BY-SA 4.0). PV, PlantVillage data

released under CC BY-SA 3.0; INT, Internet data.
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in Table 1. Since there are few other public large-scale tomato dis-
ease datasets, the Internet dataset was much smaller than the
PlantVillage dataset. In addition, the image background of our in-
house dataset and the PlantVillage dataset was uniform and noise-
free. Nevertheless, most of the Internet dataset images were taken
in the wild; their backgrounds were complicated and noisy. So, we
manually segmented the background for the Internet dataset.

Image augmentation

Accurate and comprehensive annotation of the images for
training and validation was crucial for developing an appropriate
and reliable detecting model because deep learning models tend to
fit the labelled samples for learning the features during the training.
Thus, the ideal training images should be photographed from var-
ious angles, scales, and scopes, which was difficult to achieve in
actual shooting situations because of the photograph restrictions.
Furthermore, the lighting condition was another disturbance. Many
factors interfered with the lighting condition, such as the weather,
occlusion between leaves, shadows, and the disturbance of sand and
dust. Only using these disturbing images as training data could lead
to the over-fitting problem of deep learning models (Heisel et al.,
2017). Besides, both the in-house and Internet datasets were much
smaller than the PlantVillage dataset. The augmented images were
used to enrich the dataset at the experimental phase to expand the
data amount and better generalisation.

Image preprocessing is a common technique for enhancing
data (Bow, 2002). This technique involves removing low-frequen-

Table 1. The consist of the dataset.

cy background noise, normalising the intensity of images of indi-
vidual particles, removing reflections, and masking portions of
images. In this work, we eliminated the interference of the shoot-
ing position by randomly rotating within 90-degree angles, flip-
ping, and mirroring. We also shifted the brightness value to elimi-
nate the problem of uneven illumination. In addition, cropping the
original image randomly also augmented the original data. We used
the ImageDataGenerator tool in Keras (Chollet, 2015) to augment
the in-house and Internet datasets. ImageDataGenerator can gener-
ate batches of tensor image data with real-time data augmentation.
The data will be looped over (in batches). The continuous iteration
can keep producing the augmented image. After excluding the
largest and smallest classes in the PlantVillage dataset, the median
number of all classes was 952. The largest number of classes in the
in-house and Internet datasets was 111. The difference between the
two was about 9 times. To reduce the huge gap among the number
of three datasets and avoid excessive redundancy of repeated
images, we finally augmented 9 times the in-house dataset and
Internet dataset. To expand the diversity of the training data, we
merged the augmented in-house dataset and the Internet dataset as a
new dataset. Then, we split this new dataset and the PlantVillage
dataset into testing data (10%) and training data (90%), respectively.
Finally, we combined the corresponding training and test data as the
final input data. During the training process, 10% was split from the
training data as a validation set to verify the model trained extent.
The final input data are shown in Table 2.

Tomato Bacterial Spot Bacteria 2127 0 34
Tomato Early Blight Fungi 1000 0 61
Tomato Healthy - 1591 82 0
Tomato Late Blight Mould 1909 0 63
Tomato Leaf Mould Fungi 952 0 57
Tomato Septoria Leaf Spot Fungi 1771 0 51
Tomato Spider Mites/Two-spotted Spider Mite 1676 0 18
Tomato Target Spot Fungi 1404 0 1la
Tomato Mosaic Virus Virus 373 110 0
Tomato Yellow Leaf Curl Virus Virus 5357 111 0
Total - 18 160 303 295
Table 2. Input data.

Tomato Bacterial Spot 1998 222 247
Tomato Early Blight 1305 144 161
Tomato Healthy 1953 216 242
Tomato Late Blight 2057 228 254
Tomato Leaf Mould 1233 136 153
Tomato Septoria Leaf Spot 1847 205 229
Tomato Spider Mites/Two-spotted Spider 1503 167 186
Tomato Target Spot 1226 136 152
Tomato Mosaic Virus 1193 132 148
Tomato Yellow Leaf Curl Virus 538 582 647
Total 19553 2168 2419
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Deep convolution neural network and transfer learning

CNN has been developed explosively since its successful
application in classifying the MNSIT (LeCun et al., 1998) dataset.
The close connection and spatial information between layers in
CNN make it particularly suitable for image processing and under-
standing. Deep learning is an end-to-end approach. Researchers
(Dhingra et al., 2018; Durmus et al., 2017) have proven that CNN
can automatically extract rich, relevant features from images. Given
a large amount of input image data and output labels, a CNN model
automatically learns the features in the data. The learned features
are effective because the data annotation is accurate. For a long
time, increasing the hidden layer was a common strategy to
improve the performance of the networks, and there are many
excellent models which have been proposed based on that, such as
AlexNet (Krizhevsky et al., 2012), VGG16 (Simonyan et al.,
2014), Inception_v3 (Szegedy et al., 2015), ResNet50 (He et al.,
2016) and DenseNet (Huang et al., 2017).

According to literature (Brahimi ef al., 2018), six state-of-the-
art architectures (AlexNet, DenseNet-169, Inception_v3, ResNet-
50, SqueezeNet-1.1, and VGG13) were trained on the PlantVillage
dataset. Inception_v3 gave the best accuracy for the deep training
strategy. The inception in Inception_v3 is the most prominent char-
acteristic. Its core idea is factorisation, replacing the big convolu-
tional kernel with multiple smaller kernels. The inception mecha-
nism not only reduces calculations but also improves feature
extraction capabilities. However, when the network depth increas-
es, the network accuracy becomes saturated or even decreases; this
problem is called the degradation problem. ResNet was developed
to solve this problem; it can achieve a deeper network without
causing the gradient to disappear or the gradient explosion prob-
lem. VGG16 is one of the most utilised classical sequential net-
works. It was used to win the ILSVR (ImageNet) competition in
2014. Although its performance was surpassed by the later
Inception and ResNet architectures, it still has research value
because of its compact structure and easy-to-implement character-
istics. So, we compared the performance of using the backbone of
VGG16, Inception_v3, and ResNet50 on tomato disease images in
this work.

Usually, the structure of a deep CNN contains the convolution-
al layer, fully connected layer, pooling layer, and other additional
layers. The multi groups of convolutional layers are the core
because they were used to gradually extract the advanced feature
from the image. The fully connected layers act as classifiers

N Fea:ure maps
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throughout the CNN. The convolutional layer and pooling layer
mapped the original data to the hidden layer feature space, the fully
connected layer mapped the learned distributed feature representa-
tion to the sampled marked space. Because of the redundancy of
the fully connected layer parameters (its parameters account for
about 80% of the entire network parameters), some high-perfor-
mance network models such as ResNet and DenseNet replaced the
fully connected layer connected to the last pooling layer with glob-
al max pooling (GMP) (Lin et al., 2013). However, redundant
parameters are not always worthless. Zhang et al. (2017) have
shown that the fully connected layer can use as a firewall for model
representation capability. Especially in the case where the source
domain and the target domain have large differences, the fully con-
nected layer can maintain a large model capacity to ensure the
migration of the model representation capability.

Transfer learning is a machine learning technique in which a
model trained on one task is re-purposed on a related task
(Goodfellow et al., 2017). Fine-tuning is the most commonly used
transfer learning technology. For example, VGG16, Inception_v3,
and ResNet50 achieved spectacular results in the computer vision
challenge ImageNet. Furthermore, these models allow us to fine-
tune and transfer learning from a task with a large labeled dataset
to a particular task such as disease classification. In the case of
small training datasets, the pre-trained model achieved faster con-
vergence and higher accuracy (Brahimi et al., 2017). In this work,
we keep the feature extraction part of the pre-trained existing deep
architectures but redesigned their classifier. We replaced the flat-
tened layer with GMP, simplified the fully connected layers and
their hidden nodes, and added batch normalisation layers.
Simultaneously, we used the dropout layer before the output layer.
The construction is shown in Figure 2.

Results

Deep convolution neural network can accurately
classify tomato leaf disease images

The training proceeded on the training set; after that, the eval-
uation in each epoch was performed on the validation set, and the
final evaluation was done on the testing set. The validation set is a
technique used for minimising over-fitting and is a typical way to
control training processing.

nodes

. BN . BH+ReLU 3 BN
_‘. i
. . ReLU . RELU. Dropot 5*“‘"““" -

Figure 2. Network construction. We used VGG16 and Inception_v3 as the pre-trained model. N determined by the selected pre-trained
model, for VGG16 is 512, for Inception_v3 is 2048, and for Resnet is 2048.
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The network was trained using mini-batch stochastic gradient
descent with a momentum factor. The number of samples per small
batch was 32, and the momentum factor was set to a fixed value of
0.9. The initialisation of the weight affected the convergence speed
of the network. In this work, the Glorot uniform initialiser (Glorot
and Bengio, 2010) was used to initialise the weights of all network
layers. The biases of all convolutional layers and fully connected
layers were initialised to 0. The same learning rate was adopted for
all layers in the network, and the initial learning rate was set to
0.001 and decayed le-6 for each training epoch.

All the processes of training and testing the tomato disease
identification model described in this work were implemented on
one machine, whose configuration parameters were Intel Core 19-
7900X 3.3 GHz Processor, an Nvidia GeForce 2080Ti GPU, and
11GB memory. The model proposed in this work was trained on
Tensorflow (Abadi et al., 2015) and Keras (Kotikalapudi, 2017)
frameworks. During the training process, the augmented dataset
was produced along with the increased number of iterations, which
meant that the training dataset differed in each epoch. However,
the model was saved once the validation loss was improved. The
model convergence result is shown in Table 3. And Figure 3 illus-
trates the change of accuracy and loss in 300 epochs, demonstrat-
ing that those models efficiently learn the data while achieving a
high accuracy rate.

From Table 3, all models converged before the 300th epoch,
which means that the number of training epochs was sufficient.
Resnet50 converged fastest among these three models; its loss
arrived at 0.00281 at the 246th epoch. However, the test accuracy
was inversely proportional to minimum validation loss. According
to Figure 3, the training and validation accuracy curves were near-
ly flat after 200 epochs and close to 1. Observing the training pro-
cess curve, we found that the validation loss converged to a small
value and did not change in many epochs before the minimum val-
idation loss was obtained. So, we set up the early stop strategy to
avoid over-fitting. Once the validation loss does not change in 30
epochs, stop the training. As we can see from Table 3, an early
stop strategy can significantly reduce model training time.
Compared with the regular strategy, the early stop strategy ended
the training about 100 epochs in advance and kept the test accuracy
high. Finally, we choose the Inception v3 model to package an
application.

TomatoGuard application

For most of the similar research, they ended their work after
completing the model training. To move forward a single step,
applying the findings in practice, we deployed the proposed deep
learning model into Android devices. Nowadays, the smartphone
has become indispensable tool in people’s life. Since 2007, the

VGG16 Inception_v3 Resnet50
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Figure 3. Model training process.
Table 3. Model convergence result.
VGG16 0.00822 288 99.75 0.00856 162 99.62
Inception_v3 0.00491 213 99.42 0.00604 177 99.75
Resnet50 0.00281 246 98.92 0.00779 108 99.50
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Android system has been widely used in smartphones and tablet
computers. To implement our research, deploying the trained deep
learning model in a smartphone is meaningful. We use Android
Studio to deploy our model into the Android device. To optimise
the model for smartphone applications, we compressed our trained
model with Tensorflow lite and compared it. The model’s perfor-
mance before and after compression is shown in Table 4. All the test
was run on Huawei Honor V8 equipped with the Android 8.0 sys-
tem. Compared with regular model packaging applications, com-
pressed model applications not only had smaller installation pack-
ages but also had faster calculation speeds. However, the test accu-
racy was slightly reduced. 12.6% reduction in installation package
size in exchange for 8.3% accuracy reduction. Since both opera-
tion speeds were at the millisecond level, accuracy should be pri-
oritised when hardware conditions permit. Our goal is to provide
an immediate and effective tool for people who want to recognise
tomato leaf diseases. So, the process of our application is inputting
a tomato leaf image, computing it by the advanced trained model,

From camera

cepress

and displaying the result of recognition. We developed an Android
APP named TomatoGuard. It can identify 9 kinds of tomato leaf
diseases from healthy tomato leaves. The APP workflow is shown
in Figure 4. In the current version of TomatoGuard, we implement-
ed captured images from the camera or loaded local pictures in the
device. The input tomato leaf image needs to undergo image pro-
cessing to divide all pixel values by 255 to meet the training model
data requirements. Image processing steps are done automatically.
The identification of tomato disease types and confidence levels
are quickly displayed above the image. At present, there is only
one similar APP in Google Play called Plantix. It claimed that it
could detect more than 200 diseases covered from more than 40
crops, including 10 kinds of tomato leaf images discussed in this
work. However, since some of the test set in this work was aug-
mented from some of the training set, the test set was unsuitable for
testing Plantix. So, we collected 127 more new images, including
10 classes mentioned above from multi-sources for comparing
with Plantix strictly. The test result is shown in Figure 5.

Trained
deep learming model

Figure 4. The workflow of TomatoGuard.
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Figure 5. Test result. The number above the column is the quantity of the image. TBS, tomato bacterial spot; TEB, tomato early blight;
TH, tomato healty; TLB, tomato late blight; TLM, tomato leaf mould; TSL, tomato septoria leaf spot; TSM, tomato spider mites/two-
spotted spider mites; TTS, tomato target spot; TMYV, tomato mosaic virus; TYLCV, tomato yellow leaf curl virus.

Table 4. Android application test results.

Regular model 103M
Compressed model 90M

360ms 67.5
220ms 61.9
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TomatoGuard performed better than Plantix. Additionally, for low-
resolution images, even if users have selected the objective crop in
advance, Plantix asked users to repeatedly choose the kind of crop
during testing because of its compatibility and versatility.

From the perspective of early detection of diseases, accurate
identification is the basic premise, and rapid feedback and low cost
are the core conditions for a useful implementation to be extended
to ordinary farmers. As shown above, TomatoGuard basically
meets the requirements for realising early tomato disease identifi-
cation. However, the current version of TomatoGuard stays at the
technology readiness level (TRL) 5, and the application needs to
optimise the interaction logic and supplement more functions
before it is put on the market.

Feature visualisation

The symptoms of tomato diseases are various. Some disease
characteristics are spots on the leaf or/and the edge of the leaf.
Some diseases infect the whole leaf, it which will change the leaf

colour, shape, and texture, such as TYLCV. These diseases’ char-
acterisation is a global feature. These tomato disease diagnoses
depend on the entire leaf. Therefore, it is unsuitable to localise
these disease parts on the leaf.

We visualised the model output layer to analyse how the neural net-
work works with an image. First, we generated 10 arbitrary images
and updated them until we maximised each node activation of the
network’s last layer. These images represented the feature of each
class exacted from this model and allowed us to understand what
sort of input patterns activate a particular filter, as shown in Figure
6. Distinctly, most of these features do not conform to any observa-
tion in the human sense. This is because the CNN classifies images
by decomposing the visual input space into a hierarchical-modular
network of convolution filters mapping the probabilities between
certain combinations of these filters and a set of arbitrary labels.
But some class feature maps made sense, such as tomato bacterial
spot (TBS) feature map containing multiple prominent bright spots,
similar to TBS pathological symptoms.

Figure 6. Feature maps. A) Tomato bacterial spot; B) Tomato early blight; C) Tomato late blight; D) Tomato leaf mould; E) Tomato sep-
toria leaf spot; F) Tomato spider mites/two-spotted spider mites; G) Tomato target spot; H) Tomato yellow leaf curl virus; I) Tomato

mosaic virus; J) Tomato helathy.
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Discussion

Because of the complexity of the patterns shown in each class,
especially in terms of infection status and background, the model
tends to be confused with several classes. Figure 7 presents a con-
fusion matrix of the Inception_v3 test results.

Based on the confusion matrix, we can evaluate the classifier’s
performance and determine what classes were more highlighted by
the neurons in the network. Furthermore, it helped us analyse fur-

nagcpress

ther procedures to avoid inter-class confusion. For instance, 2
tomato target spot (TTS) images were being incorrectly classified
into tomato spider mites (TSM). The TSM class precision
(98.9%) was shown to be the lowest. These two classes have shown
relatively strongly missed up. This was related to their disease symp-
toms. TSM is not a virus disease, spider mites cause it. Mostly
mites live on the underside of leaves and feed by piercing leaf tis-
sue and sucking up plant fluids. Feeding marks show up as light
dots on the leaves. As feeding continues, the leaves turn yellow. The

Confusion Matrix
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Figure 7. Confusion matrix. The rows (Output Class) correspond to the predicted class, and the columns (Target Class) correspond to
the true class. Diagonal cells are the correctly classified observations. Off-diagonal cells are the incorrectly classified observations. Both
the number of observations and the percentage of the total number of observations are shown in each cell. The rightmost column of
the plot shows the percentages of all the examples predicted to belong to each class that are correctly and incorrectly classified. These
metrics are often called the precision (or positive predictive value) and false discovery rate, respectively. The row at the bottom of the
plot shows the percentages of all the examples belonging to each class that are correctly and incorrectly classified. These metrics are
often called the recall (or true positive rate) and false negative rate. Finally, the cell in the bottom right of the plot shows the overall
accuracy. TBS, tomato bacterial spot; TEB, tomato early blight; TH, tomato healty; TLB, tomato late blight; TLM, tomato leaf mould;
TSL, tomato septoria leaf spot; TSM, tomato spider mites/two-spotted spider mites; TTS, tomato target spot; TMV, tomato mosaic

virus; TYLCV, tomato yellow leaf curl virus.
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TTS disease first appears as small, necrotic lesions with light-brown
centers and dark margins on tomato leaves. In brief, these diseases
have common symptoms: they all have spots (marks) on the leaf and
change the colour to yellow. Moreover, two tomato early blight
(TEB) images were misidentified as TTS (1) and tomato septoria
leaf spot (TSL) (1). Comparing TEB, TTS, and TSL, they all
have similar disease spots. TEB causes small dark spots to form
on older foliage near the ground initially. Leaf spots are round
and brown and can grow up to a half-inch in diameter. Larger spots
have a target like concentric rings, and tissue around spots often
turns yellow (Gleason and Edmunds, 2005).

Similarly, spots caused by TSL are circular with dark brown

margins and tan to gray centers with small black fruiting structures.
Characteristically, there are many spots per leaf. If leaf lesions are
numerous, the leaves turn slightly yellow, brown, and wither.
When these diseases’ unique characteristics are not obvious, there
is the possibility of being confused. There are also 1 tomato mosaic
virus (TMV) image classified as TYLCV and 1 TYLCV image
classified as TMV. Considering the dense tomato growth environ-
ment of the in-house dataset, tomato plants may be cross-infected,
which means there are probably two disease features shown on one
leaf. Overfitting is the most prone problem in deep neural net-
works. Adding the dropout and batch normalisation layers (BN) to
the model is a very effective way to solve the problem of overfit-

original images

TLM

T™MV

TBS TEB TLB
TSM
salicency maps
TBS TEB TLB
TSM TTS TYLCV
overlap images
TB

S TEB TLE
TSM TT5 TYLCV TMV TH

TLM

Figure 8. Saliency maps. The overlap images show the trained model interested area of diseased leaves. The original images were sampled
from the PlantVillage data, released under the CC BY-SA 3.0. TBS, tomato bacterial spot; TEB, tomato early blight; TH, tomato healty;
TLB, tomato late blight; TLM, tomato leaf mould; TSL, tomato septoria leaf spot; TSM, tomato spider mites/two-spotted spider mites;
TTS, tomato target spot; TMV, tomato mosaic virus; TYLCV, tomato yellow leaf curl virus.
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Table 5. Comparison experiment.

press

Segmentation X X X

BN+Dropout X X X

GMP X X X X

Test accuracy % 38.1 314 55.5 4.1 45.3 32.7 56.5 53.2
Test accuracy (Balanced data) % 31.2 29.3 514 44.3 343 36.8 39.4 311

BN, batch normalisation; GMP, global max pooling.

ting. The idea of the dropout layer can be described very simply:
randomly drop units (along with their connections) from the neural
network during training. The batch normalisation layer is used to
normalise the activation of the previous layer at each batch, specifi-
cally applying a transformation to maintain the mean activation
close to 0 and the activation standard deviation close to 1. Usually,
batch normalisation and dropout layers can be used simultaneously.
To verify which method was useful, we used different strategies to
train VGG16 on 3 kinds of tomato disease [tomato healthy (TH),
TMV, TYCLV] in PlantVillage data and tested them on our in-
house data. Since the number of TYCLV classes in the PlantVillage
data was much larger than the other two classes, we also did a com-
parison experiment with the balanced data (each class included 300
training images). The comparison experiment results are shown in
Table 5. According to the experiment results, although the test
accuracy was not high, the batch normalisation layer and dropout
layer showed powerful improvement in the training effect. It
should be pointed out that networks that use GMP instead of the
fully connected layer have better predictive performance. In this
experiment, the balanced data did not bring higher accuracy, even
reduced accuracy. To explore whether the knowledge of model
learning is consistent with the knowledge of pathology, we used a
saliency map (Gleason and Edmunds, 2005) to figure out what cor-
responding pixel in a disease image our model used. A saliency map
is an analytical method that allows the estimation of the importance
of each pixel. The saliency maps are shown in Figure 8. From these
images, it was easy to conclude that the saliency map can localise
our model interest regions in the input tomato image with good
precision. TEB, TLB, TLM, TSL, and TTS were good examples to
illustrate that for each different tomato disease which pixels our
model precisely focused on. The saliency areas of these diseases
were the disease spots. For TSM and TYLCV, our model focused
on the spider mites and the leaf edge, respectively. All these salien-
cy areas were consistent with disease characteristics.

Conclusions

This work presents a deep-learning-based classifier for nine
tomato diseases and healthy tomato leaf recognition, which
achieved 99% test accuracy. We also developed a tool named
TomatoGuard on Android devices to help people recognise toma-
to diseases. The experiment results showed that TomatoGuard dra-
matically overcame the state-of-the-art of this field as it recorded a
higher test accuracy resulting in higher performance than the APP
Plantix. We expect this tool to significantly contribute to the crop
protection research area. Although TomatoGuard stays at the TRLS
level, to make this tool more applicable, future studies will need to
detect the diseased crop planted on site, and the application needs
to optimise interaction logic and supplement more functions.
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