
Abstract
Yield is the most often used metric of crop performance, and

it can be defined as the ratio between production, expressed as a
function of mass or volume, and the cultivated area. Estimating
fruit’s volume often relies on manual measurements, and the pro-
cedure precision can change from one person to another.
Measuring fruits’ mass will also destroy the samples; consequent-
ly, the variation will be measured with different samples.
Monitoring fruit’s growth is either based on destructive tests, lim-
ited by human labour, or too expensive to be scaled. In this work,
we showed that the cluster visible area could be used to describe
the growth of mini tomatoes in a greenhouse using image process-
ing in a natural environment with a complex background. The pro-
posed method is based on deep learning algorithms and allows
continuous monitoring with no contact with the cluster. The
images are collected and delivered from the greenhouse using
low-cost equipment with minimal parameterisation. Our results
demonstrate that the cluster visible area accumulation is highly

correlated (R²=0.97) with growth described by a parameterised
Gompertz curve, which is a well-known growth function. This
work may also be a starting point for alternative growth monitor-
ing methods based on image segmentation. The proposed U-Net
architecture, the discussion about its architecture, and the chal-
lenges of the natural environment may be used for other tasks in
the agricultural context.

Introduction
Mass and volume variation as a function of time usually

defines fruit growth (Oswell et al., 2018), and determining them
requires measurements at frequent intervals. Obtaining fruits’
diameters manually using measuring tapes, sizing rings, or cal-
lipers may be a way of estimating their volumes; however, the pre-
cision in the procedure can change from one person to another,
and samples will either be limited by human labour or too expen-
sive. Masses can be obtained by weighing fresh or dry fruits on a
digital scale (Hall et al., 2013), but obtaining the dry mass will
destroy the samples, and as a consequence, mass variation will be
measured with different fruits. Fruit mass can also be estimated
using previously obtained statistical models that relate other char-
acteristics measured with mass determined by destructive tests.
After fitting the model, mass can then be obtained indirectly with
non-destructive approaches. For example, Tabatabaeefar and
Rajabipour (2005) proposed estimating the mass of apples using
the fruit’s projected area and observed a correlation of 94%.
Using the same methodology, Khoshnam et al. (2007) obtained
96.6% with pomegranates, Taheri-Garavand et al. (2011) of 94%
with tomatoes, and Soltani et al. (2011) of 88.4% with bananas. 

Although the projected area in these cases is carried out post-
harvest in controlled environmental conditions; results suggest
that it may be used to estimate mass in a natural non-controlled
environment. However, this is a more challenging task: total or
partial fruit occlusion, over or under lighting, and the low contrast
between unripe fruits and leaves (Chen et al., 2017; Fukui et al.,
2017) make it difficult to segment fruits’ pixels from the back-
ground using only the human-perceived features, like colours or
shapes. These difficulties could be overcome by machine learning
(ML) and deep learning (DL) algorithms, and among them, the
convolution neural networks (CNNs). 

CNNs are a particular type of neural network designed for
image processing that has been used for audio and text. As its
name suggests, the convolution operation is the base of its
behaviour, in which a 3D vector (called the kernel) extracts patch-
es of features from an image (also a 3D vector) through a linear
function (Chollet, 2018). CNNs’ performance in image processing
is related to two main characteristics: the hierarchical nature of its
architecture allows it to detect more complex and abstract ele-
ments as layers go deeper; also, the sliding nature of the kernel
makes detections translation-invariant, meaning that once they
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learn a feature, it may appear anywhere in the image. These aspects
of CNNs make them particularly useful in a natural environment
scenario leading to accurate predictions, as reported in many works
(Table 1). Like other DL algorithms, CNNs have evolved through
time, resulting in multiple specialized architectures. U-Nets are
one of them, described firstly by Ronnenberger et al. (2015) for
biomedical image segmentation, where it showed good perfor-
mance (Ali et al., 2020; Jha et al., 2020; Zafar et al., 2020; Zhou
et al., 2020). U-Nets are composed of a contracting path in which
feature information increases and an expansive path that concate-
nates up-convolutions with high-resolution features from the con-
tracting path. For agricultural purposes, U-Nets also achieved high
accuracy in predictions (Ngugi et al., 2020; Bragagnolo et al.,
2021; Su et al., 2021), even with small datasets.

Tomatoes are a significant horticultural product, and DL tasks
for this crop have been mainly focused on their detection (Liu et
al., 2019; Afonso et al., 2020; Lawal, 2021), environment control,
and yield prediction (Solanke and Kumar, 2013; Hemming et al.,
2020; Johansen et al., 2020), so, there would be benefits from
monitoring tomato growth non-destructively. Thus, this work pro-
posed monitoring fruits’ growth in a greenhouse by comparing
their projected areas with a generalized sigmoid function, well-
known for describing mass accumulation in tomatoes (Fayad et al.,
2001; Heuvelink, 2005; Faurobert et al., 2007). Although the use

of CNNs in agriculture is nothing new, most papers rely on fruit
detecting, locating, or counting (Chen et al., 2017; Ganesh et al.,
2019; Song et al., 2019; Santos et al., 2020; Wan and Goudos,
2020) and so, our main contribution is to use it as a measuring tool
in an operational context with low-cost equipment. Besides that, as
additional contributions, we made publicly available the dataset
described in Dataset construction section (Abreu and Rodrigues,
2022) with 385 images and binary masks for semantic segmenta-
tion tasks. We also explore using daytime and night time images on
models’ training and the effects of the different light conditions on
its precision and sensitivity.

Materials and methods
This section covers all materials and the experiment we con-

ducted to collect the images used in modelling. In Experiment
overview section, we describe the crop and the image collecting; in
Dataset construction section, the image pre-processing and dataset
construction; in Proposed architecture section, the symmetric U-
NET architecture used for image segmentation; in Training and
validation section, U-NET’s training and validation, and at last, the
correlation of the areas extracted from the images with the
Gompertz function in Gompertz curve fitting section.

                             Article

Table 1. Examples of convolution neural networks used in the fruit culture context.

Work                                          Task                         Crop                                  Technique                                     Reported metrics

(Liu et al., 2019)                                    Detection                        Cucumber                                  Faster R-CNN                                            Precision 0.858, 
                                                                                                                                                                                                                                       Recall 0.836
                                                                                                                                                                 Original Mask R-CNN                               Precision 0.887, 
                                                                                                                                                                                                                                       Recall 0.863
                                                                                                                                                                 Improved Mask R-CNN                            Precision 0.906, 
                                                                                                                                                                                                                                       Recall 0.882
                                                                                                                                                                 YOLO V2                                                     Precision 0.818, 
                                                                                                                                                                                                                                       Recall 0.762
                                                                                                                                                                 YOLO V3                                                     Precision 0.862, 
                                                                                                                                                                                                                                       Recall 0.816
(Ganesh et al., 2019)                           Segmentation                Orange                                        Mask R-CNN                                               Precision 0.975,
                                                                                                                                                                                                                                       Recall 0.812
(Song et al., 2019)                                Detection                        Kiwi                                              Faster R-CNN + ZFNet                            AP 0.725
                                                                                                                                                                 Faster R-CNN + VGG16                           AP 0.876
(Pérez-Borrero et al., 2020)               Segmentation                Strawberry                                 RCNN                                                           AP 0.438
(Wan and Goudos, 2020)                     Detection                        Apple, orange, mango              YOLO                                                           AP 0.787 (Apple)
                                                                                                                                                                                                                                       AP 0.709 (Mango)
                                                                                                                                                                                                                                       AP 0.606 (Orange)
                                                                                                                                                                 Fast R-CNN                                                AP 0.787 (Apple)
                                                                                                                                                                                                                                       AP 0.798 (Mango)
                                                                                                                                                                                                                                       AP 0.765 (Orange)
                                                                                                                                                                 Faster R-CNN                                            AP 0.868 (Apple)
                                                                                                                                                                                                                                       AP 0.893 (Mango)
                                                                                                                                                                                                                                       AP 0.873 (Orange)
                                                                                                                                                                 YOLOv2                                                       AP 0.906 (Apple)
                                                                                                                                                                                                                                       AP 0.881 (Mango)
                                                                                                                                                                                                                                       AP 0.876 (Orange)
                                                                                                                                                                 YOLOv3                                                       AP 0.918 (Apple)
                                                                                                                                                                                                                                       AP 0.895 (Mango)
                                                                                                                                                                                                                                       AP 0.887 (Orange)
                                                                                                                                                                 Improved Faster R-CNN                         AP 0.925 (Apple)
                                                                                                                                                                                                                                       AP 0.889 (Mango)
                                                                                                                                                                                                                                       AP 0.907 (Orange)
CNNs, convolution neural networks. 
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Experiment overview
We collected the required data from Milla mini-tomatoes

plants in a greenhouse at the University of Campinas’ School of
Agriculture Engineering (FEAGRI-UNICAMP) between 18th July
and 28th October, 2019. A commercial unit produced 72 seedlings
transplanted within 45 days to 8-liter polyethylene pots, arranged
0.5 meters apart in four rows with 1.5 meters spacing. We random-
ly selected two for continuous monitoring of a cluster in each
plant. For continuous monitoring, we used 2 Raspberry Pi Zero W
mini computers with 1 GHz Broadcom BCM2835 processor and
512 MB of RAM, equipped with 5MP digital cameras and LED
flashes, positioned 70 cm from the clusters. We programmed the
computers to take a picture every 15 minutes, from 00:00 a.m. to
06:00 p.m., which resulted in 11,232 images.

Dataset construction
The pictures taken in the greenhouse cover all the fruits’ mat-

uration stages, from the flowers blooming to the cluster full ripen-
ing, with intentional redundancy to prevent data loss. Using all
these images for modelling would increase autocorrelation and
processing time. Furthermore, it would have little or no perfor-
mance improvement since mini-tomatoes mass accumulation is
barely noticeable with time intervals below 24 hours. So we select-
ed four pictures a day, from the moment the first cluster’s fruit
appeared to its full ripening, at 03:00 a.m., 05:30 a.m., 12:00 p.m.,
and 4:30 p.m., to include different light conditions, resulting in 385
images divided into three sets as shown in Table 2. Pictures origi-
nally had 2592×1944 px dimensions and were clipped in an image
editor to the smallest possible size that would fit an entire cluster
in the frame. Final images then had 1024×1024 px, which reduced
the number of pixels processed by the network and RAM con-
sumption. For each image in the dataset, we built a mask, a binary
representation of positive (‘tomato’) and negative (‘non-tomato’)
classes in a homemade tool called TommyGUI, which created an
ellipse from a set of dots drawn on the fruit edges (Figure 1). All
visible fruits in the foreground truss were labelled from the

moment they could be visually identified. In the case of a missing
fruit in the truss, the absent fruit was represented with the smallest
possible ellipse for later removal. An automated script loaded and
transformed the images into 3D arrays, making it possible to
change the size, colour encoding, and augment data in real-time.

Proposed architecture
Ronnenberger et al. (2015) originally proposed the U-Net for

biomedical image segmentation. These images, like those pro-
duced by ultrasound, magnetic resonance, and tomography, have a
complex background and diffuse edges; so the U-Net is naturally
robust to overcoming them. Therefore, we proposed a modified
version of this U-Net called TommyNET as the greenhouse images
share some of the biomedical image features. Our architecture was
built with the Keras framework with symmetrical contracting,
expanding paths, and multi-scale residual blocks, as cited by Xie et
al. (2017) (Figure 2). The symmetry was strategic to produce fea-
ture maps identical to inputs in size, 1024×1024 px. 

Training and validation
We carried out TommyNET’s training at Google Collaboratory

PRO with a Tesla V100-SXM2-16GB GPU and 26 GB RAM. We
chose Adadelta with standard parameters as its optimiser, 10-fold
cross-validation, and Hubber as its loss function (Eq. 1):

     (1)
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Figure 1. The dots drawn on the edges of the fruit (left) are used to adjust the ellipses (right). The red dots were misplaced and rejected.

Table 2. Train, test, and validation split in the dataset by daytime.

Daytime              Train                        Test                  Validation

03:00 a.m.                       65                                     17                                   9
05:30 a.m.                       70                                     15                                  13
12:00 p.m.                      70                                     22                                   7
04:30 p.m.                      72                                     15                                  10
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We conducted three different training sessions using combina-
tions of day and night images. We augmented the train and test sets
with vertical and horizontal flips, rotations, and random noise by a
variable augmentation factor that makes their final number of
observations close to each other. Table 3 summarises the three ses-
sions. Training sessions were interrupted when the loss did not
decrease by at least 0.001 in 20 epochs.

We considered three main metrics for validating the predic-
tions: precision, recall, and IoU. Precision may be interpreted as
the accuracy in prediction when we consider all predictions that
have been made for the positive class. The recall is similar but con-
siders all true positive class examples in the dataset. Finally,
Intersection over Union (IoU) is commonly used for image seg-
mentation tasks and relies on sets theory, matching pixels in the
prediction and in the mask. After training, the resulting predictions
were thresholded to make it possible to use classification metrics,
meaning every pixel greater than 160 was changed to 1 or 0. The
threshold value was chosen to maximise the validation set IoU.

Gompertz curve fitting
In each dataset image, we summed the pixels corresponding to

the ‘tomato’ class to obtain the corresponding area. The values were
standardised using a z-score and normalised to fit the range [0, 1].
Dates were replaced by ‘days after appearance’; the first date is
defined as 0 and the following by the number of days counted after
the fruit first appeared. We then adjusted the curve using the curve_fit
function from the SciPy Python library (Virtanen et al., 2019), which
uses a non-linear least-squares optimisation. The Gompertz function
is described by three parameters, as seen in Eq. 2: 

                                  (2)

In this form, a is the superior asymptote meaning the maxi-

mum cluster size, b is the halfway point representing the speed at
which they reach a, and c is the horizontal curve displacement
determining the moment the exponential growth starts.

Results and discussion
This section covers the experiment results and the discussion that

precedes the conclusions. In Image and segmentation performance
section, we present models 1, 2, and 3 training conditions and vali-
dating results. In Light influence section, we will discuss the light
influence on model training and how the well and poorly illuminated
images contribute to model accuracy and sensitivity. Finally, in
Automatic feature detection section, the light influence will be corre-
lated with the kernel size and automatic feature detection.

Image segmentation performance
TommyNET’s training has achieved the results summarised in

Table 4. They achieve their best performance when models are val-
idated using only the same light conditions used in training. The
results show that the precision, recall, and IoU are nearly the same
for all models in this scenario. Although expected, this information
is useful as it may be treated as a performance benchmark.

Light influence
Since the U-Net mimics the natural vision mechanism, light

plays an essential role in model performance. We may observe that
the precision from the results in Table 4, is higher for Models 1 and
3, indicating that these models benefit from training with well-illu-
minated scenes. On the other hand, training with poorly illuminat-
ed images forces models to be more sensitive to light, which leads
to a high average recall for Model 2, which also has the lowest
average precision, likely caused by false positives proportionally
to the light in the environment (Figure 3).

                             Article

Figure 2. TommyNET architecture.

Table 3. Summary of TommyNET training sessions.

Model          Condition                  Train images              Test images          Augmentation factor                Epochs               Train time

1                         Day+Night                                   831                                       207                                             2                                               138                             9:00:48
2                              Night                                        825                                       203                                          11.70                                           151                             9:45:01
3                               Day                                          830                                       206                                           4.89                                            155                            10:05:24Non
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Automatic feature detection
As deep learning techniques rely on automatic feature detec-

tion, features obtained often make little or no sense to humans.
However, we may explore intermediate results to study which
parts contribute more to prediction. 

From the images we sampled to analyse, in all models’ inter-
mediate predictions, we observe abstraction levels increasing with
network depth. The first convolution block produces an activation
map in which we may still notice the cluster silhouette and some
light effects such as shadows and highlights, which may be the
result of this convolution block using low-level features, such as
colours. The second and third convolution blocks’ segmentation

maps, especially kernel sizes 3×3 and 5×5, appear to edge detec-
tors, reinforcing the fruit silhouette. Finally, the last convolution
block is nearly abstract, and its resolution does not allow us to
make any interpretations. This behaviour may be easily seen in the
examples for Model 1 (Figure 4) but is also noticeable for Model
2 (Figure 5) and Model 3 (Figure 6) when using their respective
validation datasets.

The kernel size is related to model performance. Smaller ker-
nels tend to use shallow features compared to fewer neighbouring
pixels. They also allow deeper networks since the activation maps
are smaller on each layer, but very small kernels cause instability
in the model’s training (Agrawal and Mittal, 2020). On the other
hand, larger kernels are related to performance decreasing (Chen
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Figure 3. Example of Model 2’s predictions (second line) for the same day images (first line) in different light conditions. Darker colours
for predictions mean lower pixel values, i.e., lower probability of the positive tomato class.

Table 4. Training session results. The results were evaluated in validation images described in Table 2.

Model    Train set condition                           Validation set condition                    Precision                      Recall                          IoU

1                            Day+Night                                              Day+Night                                                                 0.97                                      0.97                                     0.94
                                                                                               Day                                                                              0.87                                      0.86                                     0.83
                                                                                               Night                                                                           0.96                                      0.97                                     0.93
                                                                                               Average                                                                      0.93                                      0.93                                     0.90
2                                 Night                                                   Day+Night                                                                 0.42                                      0.96                                     0.41
                                                                                               Day                                                                              0.18                                      0.97                                     0.17
                                                                                               Night                                                                           0.98                                      0.97                                     0.95
                                                                                               Average                                                                      0.53                                      0.97                                     0.51
3                                  Day                                                    Day+Night                                                                 0.95                                      0.81                                     0.80
                                                                                               Day                                                                              0.99                                      0.95                                     0.94
                                                                                               Night                                                                           0.83                                      0.34                                     0.33
                                                                                               Average                                                                      0.92                                      0.70                                     0.69
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Figure 4. One random filter of each size chosen from Model 1’s first convolution block (top line) to the last (bottom line). The first col-
umn is the original image, and the next three are the activation maps produced by different-sized kernels, followed by a sum (add) and
a max-pooling layer, which give the result for this filter. Darker colours mean lower pixel values.

Figure 5. One random filter of each size chosen from Model 2’s first convolution block (top line) to the last (bottom line). The first col-
umn is the original image, and the next three are the activation maps produced by different-sized kernels, followed by a sum (add) and
a max-pooling layer, which give the result for this filter. Darker colours mean lower pixel values.
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and Shen, 2017; Ozturk et al., 2018) and are more common in shal-
low networks since the activation maps are considerably smaller in
each layer.

In this work, the kernel size appears to be related to the training
condition of each model, and their behaviour is similar to the one
of a digital camera that needs to open its diaphragm to receive
more light for a poorly illuminated scene. Kernels 7×7 and 5×5
(Figure 5) on the first convolution block of Model 2 have higher
pixel values, i.e., pixels with a value close to the maximum of 255
on images and masks, which represent the positive class, in a
small, concentrated area on the cluster’s top-left section, which is
better illuminated at the moment. The same area and the cluster
were mainly neglected by kernels 3×3, indicating that this size was
insufficient to retrieve the scene information for this image. We
may observe a similar situation in Model 3’s predictions. Still, in
this case, the absence of darker images in training leads to the most
insensitive model, like a digital camera with a low ISO sensitivity.
Consequently, kernel sizes 5×5 and 3×3, representing the low aper-
tures, detect almost nothing from the original image. This suggests
that using different size kernels in the first convolution block is
helpful to overcome environment light conditions.

Convolution blocks two, three, and four appear to compensate
for this difference, and the last one is very similar in all models,
indicating that higher-level features were detected and used for

prediction at that point. This compensation leads to image recon-
struction results appearing more understandable and consistent
among models. 

Figures 7, 8, and 9 exemplify deconvolution blocks. As we can
see for Models 1 (Figure 7), 2 (Figure 8), and 3 (Figure 9), the first
deconvolution block shows the cluster’s silhouette, but the back-
ground is also very noticeable. The difference between them is
reinforced by blocks two and three, where some spots and stains
remain apparent and reach their maximum in the last block, where
the foreground cluster is entirely segmented.

Gompertz curve fitting
We used train and test sets to fit the Gompertz function since it

does not require hyperparameter tuning. The optimal curve (Figure
10) was validated with validation set images and showed a high
correlation with data, with a symmetric mean absolute percentage
error (sMAPE) of 10.1% and an R² of 0.97. Curve parameters are
a=0.846; b= –0.175; and c=10.501. 

In Figure 10, it is possible to see the different growth stages,
particularly the rapid growth moment, between days 5 and 25 and
the slow growth moment, after day 25, with durations very close to
the ones described by Heuvelink (2005) and Faurobert (2007). It is
also possible to notice a discontinuity caused by camera displace-
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Figure 6. One random filter of each size chosen from Model 3’s first convolution block (top line) to the last (bottom line). The first col-
umn is the original image, and the next three are the activation maps produced by different-sized kernels, followed by a sum (add) and
a max-pooling layer, which give us the result for this filter. Darker colours mean lower pixel values. 
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Figure 7. One random filter of each size chosen from Model 1’s first deconvolution block (top line) to the last (bottom line). The first
column is the original image, and the next three are the activation maps produced by different-sized kernels, followed by a sum (add)
and a max-pooling layer, which give us the result for this filter. Darker colours mean lower pixel values.

Figure 8. One random filter of each size chosen from Model 2’s first deconvolution block (top line) to the last (bottom line). The first
column is the original image, and the next three are the activation maps produced by different-sized kernels, followed by a sum (add)
and a max-pooling layer, which give us the result for this filter. Darker colours mean lower pixel values.

Non
-co

mmerc
ial

 us
e o

nly



                          [Journal of Agricultural Engineering 2022; LIII:1366]                                          [page 247]

                             Article

Figure 9. One random filter of each size chosen from Model 3’s first deconvolution block (top line) to the last (bottom line). The first
column is the original image, and the next three are the activation maps produced by different-sized kernels, followed by a sum (add)
and a max-pooling layer, which give us the result for this filter. Darker colours mean lower pixel values.

Figure 10. Optimal curve (dashed) over clusters’ normalised predicted areas. This curve was fitted over train and test image sets (purple
dots) and validated with validation image set only (orange dots). Regression sMAPE (purple dotted line) and absolute error (orange dot-
ted line) curves were fitted over the entire dataset. The shaded areas represent the error variance for that point.
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ment on days 24 and 38. The fruit’s image size is inversely propor-
tional to the distance between the camera and the cluster. Since we
measure the cluster area variation concerning the first image col-
lected, this distance is fundamental to the method.

sMAPE appears inversely proportional to time (Figure 10).
This is mainly because it has the disadvantage of being unstable
with low values, which is the case for the early stages of growth.
If we disconsider this period of instability, the error falls from
10.1% to 3.8% after day 5, 2.9% after day 10, and 1.5% after day
15. However, when we confront it with the predictions of absolute
error, this tendency is not noticed.

Conclusions
In this work, we proposed to use the projected area of mini

tomatoes as an alternative to destructive mass measurements to
describe their growth. The high correlation between the segmented
areas and the Gompertz function and its performance being similar
to other results in the literature suggest its usefulness as a method
for quantifying growth. 

The predictions’ sMAPE error is higher in the early stages of
growth, but not with the absolute error, which points to an sMAPE
instability with low values, a well-known characteristic of this
function, rather than some issue with flowers classification.

Light played an important role in model performance.
Combining well and poorly illuminated scenes lead to a model
with high precision and recall. 

The network architecture overcame light discrepancies in all
models, supporting reported results that the U-net is effective for
segmentation problems even with small datasets.

The multi-scale residual blocks with different-sized kernels
were more effective in the first block of the contracting path. The
kernels behave as a digital camera diaphragm balancing the envi-
ronment light discrepancies.

Compared to the traditional methods discussed in this paper,
the proposed methodology may benefit tomato producers by pro-
viding real-time data about the crop with no need for special tests
or equipment. Also, we have made the images gathered in the
experiment publicly available, expecting they may contribute to
future research in computer vision and agricultural fields.
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