
Abstract
Traceability was introduced about twenty years ago to face the

worldwide spread of food safety crises. Traceability data flow
associated with each lot of food products during any production
and/or delivery phases can also be used to guarantee product
authenticity. For this purpose, it is necessary to protect the data
from cyber intrusions and, at the same time, to guarantee the
integrity of the bond between the physical product and the data.
Price grading related to quality perceivable or credence attributes
attracts criminals to attempt item substitution fraud. Improved
track and trace technologies supported by artificial intelligence

(AI) could highly enhance systems’ capability to detect authentic-
ity violations by product substitution.

This paper proposes an innovative method based on AI, to
reinforce traceability systems in detecting possible counterfeiting
by product substitution. It is an item-based mass balance method
that analyses the congruity of the traceability data flows not by
using explicit (even stochastic) rules but by exploiting the learning
capabilities of a neural network. The system can then detect sus-
pect information in a traceability data flow, alerting a possible
profit-driven crime. The AI-based method was applied to a pork
slaughtering and meat cutting chain case study.

Introduction
Nowadays, food counterfeits, fraud, and fakes are increasing,

especially for high-end products such as wine, extra-virgin olive
oil, ripened cheese, meat, etc., resulting in reputation and econom-
ic losses. Therefore, it is recognised that a shift in focus from
intervention to prevention should be made to reduce the size of the
problem (Spink, 2019; Spink et al., 2019).

Traceability tools can be exploited to prevent, deter and elim-
inate illegal, unreported and unregulated food production. Indeed,
traceability procedures are fundamental in maintaining the food
chain integrity, which concerns aspects of food production, such
as the way food items have been sourced, procured, and distribut-
ed. In this case, food fraud is related to quality attributes that are
not perceivable by the consumer (Robson, 2021). Also, regarding
food authenticity, defined as the matching between the food prod-
uct characteristics and the corresponding food product claims, a
high level of efficiency in tracking and tracing food items is
required both during the production processes as well as through-
out the supply chain logistics (Dabbene et al., 2014; Barge et al.,
2020). Furthermore, honest and accurate food labelling is a
requirement that legal authorities must ensure. Therefore, robust
and reliable analytical methodologies must be adopted to detect
infringements (Kendall et al., 2019; Wadood et al., 2020; Esteki et
al., 2021).

The capability of traceability procedures in preventing fraud
in a supply chain derives from the ability to trace the history, pro-
cess, and location of an entity through recorded identification and
the unique and inviolable coding and identification of the products
to avoid possible infiltrations, swapping, or mixing of unautho-
rised products. In addition, the availability of data stored in differ-
ent registries, web portals, and information exchange platforms
allows the analysis of supply chain fluxes, thus preventing larger-
scale food fraud (Ulberth, 2020). Fraud prevention and anti-coun-
terfeiting can also be performed by overt (visible) and covert (dif-
ficult or impossible to see with naked eyes) product authentication
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technologies, which, in any case, should be paired with methods
for tracking and tracing products movements through the supply
chain (Spink et al., 2017; El Sheikha, 2021; Hellberg et al., 2021).

The main actions to oppose counterfeits by tracking systems
are the assurance of the link between physical items and digital
twins and the integrity control of the physical flow of food masses.
Therefore, several solutions to guarantee the identification code
have been developed, such as non-removable labels (with holo-
grams, RFID, optical codes, etc.), anti-tampering seals, etc.
(Kemény and Ilie-Zudor, 2016; Barge et al., 2017; Soon and
Manning, 2019). In some cases, this can be very difficult to imple-
ment due to the nature of the product (Barge et al., 2019) or the
peculiarity of the operations conducted in the production stages
(Comba et al., 2011). This is the case for the example reported in
this paper, which considers pork thighs. The pig’s genetic type and
weight at slaughtering determine the quality of the thighs and, con-
sequently, of the ham. Indeed, the meat of some pig genetic types,
characterised by a faster growth rate (and thus usually cheaper),
may contain an excessive quantity of fat that is inadequate for
high-quality cured ham production. The opportunity to substitute
high-quality pork thighs with cheaper ones from other pig breeds
could be very attractive to fraudsters. To detect such fraud, analyt-
ical control of the main commercial pig genetic types is possible
by employing, for example, DNA-based methods which have been
developed significantly, at lower cost and enhanced speed of exe-
cution (Wilkinson et al., 2012; Galimberti et al., 2013; Böhme et
al., 2019). The availability of analytical techniques is very power-
ful and, in many cases, is the only accepted legal proof in forensic
debates. However, track and trace technologies coupled with arti-
ficial intelligence methods consent to analyse a wider spectrum of
data flows through paths even characterised by physically distant
nodes (international trade). In several supply chains, the produc-
tion process along the whole path through primary production,
breeding, logistics, and processing plants, is regulated by specific
rules which protect quality and marks. This is the case, e.g., of pro-
tected designation of origin (PDO) and protected geographical
indication (PGI), which in Italy cover more than 300 registered
products (data updated in 2021).

Since January 2020, in certified Italian PDO ham value chains,
checking the conformity to the voluntary certification schemes

relies on registering the regulations compliance of the animals in
the farms and during transport (farm-to-farm, farm-to-slaughter-
houses, and slaughterhouse-to-cutting plants) on a website
(R.I.F.T., Registro Italiano Filiera Tutelata). Through this system
controls, certain and reliable information from the birth of the pigs
until the certification of the thighs, is shared. The pigs’ birth month
and weight data are registered by breeders, slaughterhouses, and
cutting plants and cross-checked by the certification authorities
and ham protection consortia.

The elaboration of the data arising from certified, shared, real-
time transactions combined with mass balance-based algorithms
can contribute to fraud prevention in several food supply chains.
Recently, blockchain applications have been proposed to guarantee
the inviolability of food traceability information (Xu et al., 2020;
Dey et al., 2021; Niknejad et al., 2021). Traceability models using
product volume and mass balances are also employed to check the
integrity of organic and sustainable food value chains (Mol et al.,
2015). In mass-balance models, the traded volume of certified sus-
tainable produce is monitored throughout the entire value chain to
ensure that the volume of the certified products downstream equals
the volume of the certified resource base upstream of the same
value chain. However, the mass-flow control may be vulnerable
whenever a product (or a lot) is processed and split into many sub-
products (or sub-lots), possibly generating some waste that is dis-
carded. The same applies when bulk products are managed without
a strict segregation policy (Comba et al., 2013). Typically, since
weighing is time-consuming, only the most valuable parts (or sub-
lots) are singularly weighed. This makes mass balances between
inputs and outputs unreliable, if not entirely inapplicable. Hence, it
would be difficult to detect one or more parts being swapped in this
context.

The hereby proposed artificial intelligence method was devel-
oped to verify the congruity of the mass balance of the raw mate-
rial between the input and the output of the process by considering
the true yields given by the production process, in the case of split
mass flows, with only partial information (Figure 1). The data
should be acquired and sent to the neural network whenever lots
are split or joined (Dupuy et al., 2005) or, more generally, when-
ever the granularity (i.e., the size of a traceability unit) in the pro-
duction/delivery flow is changed (Karlsen et al., 2011). Indeed,
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Figure 1. The integrated traceability and artificial intelligence system applied to the slaughtering and cutting process. 
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opportunities for fraud occur when the performance of a traceabil-
ity system decreases, the granularity worsens and/or systematic
information loss takes place, for instance, if the information about
the process parameters is not properly linked to the product and
systematically recorded (Dabbene et al., 2014). The point where
this loss occurs has been defined by Karlsen et al. (2011) as the
critical traceability point (CTP). The identification and mapping of
CTPs are typically performed by qualitative methods (direct obser-
vation, structured interviews, and document analysis) and lead to
the definition of a CTP analysis plan. These are the points that
should be monitored in the adopted approach by the NN-based
method presented in this paper. Indeed, while this type of control
is very simple in basic supply chain schemes (i.e., few partners,
well-established and linear links), the supervision of huge supply
chains could be very difficult.

Moreover, to be competitive in the market, firms may out-
source phases of the production process with the consequence that
food system frameworks become more complicated as the number
of links increases. In this context, only intelligent systems that can
learn from large amounts of data involving many supply chain
stakeholders can detect possible inconsistencies even in real-time.
With the same principle, artificial intelligence techniques have
detected potential abnormal activities such as financial fraud (Al-
Hashedi and Magalingam, 2021) and administrative errors (Young
et al., 2021).

The originality of this paper is the adoption of a neural network
coupled with a traceability system to verify the integrity of the
joint product-information flow. Indeed, research is increasingly
developing new tools able to exploit neural networks to improve
food items’ traceability. For example, Wang et al. (2017) connect-
ed a neural network to a traceability system to classify the quality
of products employing a fuzzy algorithm, but they did not identify
possible fraud. Vo et al. (2020) also used a neural network in con-
junction with image processing techniques to enable an autonomic
grading solution in the southern rock lobster supply chain. A novel
method based on deep learning to detect possible fraud in ginger or
turmeric powder was proposed by Jahanbakhshi et al. (2021).

The paper is structured as follows: the proposed method and its
application to the case of a pig slaughtering and cutting chain to
detect possible substitution or swapping of high-value cuts, such as
thighs for the ham industry, are presented in the Materials and
methods section; results are discussed in the Results and discussion
section, while Conclusions are addressed in the final section.

Materials and methods
The proposed artificial intelligence (AI) method is based on a

neural network that analyses the data flows from traceability data
acquired along the production and delivery chains.

A supervised learning phase, based on traceability data, is car-
ried out to provide the AI system with examples of fully compliant
products. Analogously, examples of products in which one or more
tracked unit variables have been perturbed along the chain (to sim-
ulate, e.g., substitution, swapping, or modification) are also pro-
vided to the AI system for learning. This way, the neural network
internally models discrimination rules between correct data flows
and potential counterfeits without the need to be explicitly defined.
This approach is particularly efficient whenever the number of
ingredients or sub-products is high, and the definition of explicit,
deterministic, or stochastic bounds (i.e., using a strict mass balance
approach) would be difficult or even impossible.

Once the neural network has been trained, it can be used to
evaluate online running data flows, looking for possible data pat-
terns which present data components that are not coherent with
each other.

Description
The case study presented in this work concerns the slaughter-

ing and cutting phase of the pork supply chain. The proposed AI
method is based on a neural network that analyses the weight data
collected by the traceability system of an Italian slaughterhouse,
where the meat is either sold fresh or cured.

After electrical stunning, sticking, scalding for hair and scurf
removal, evisceration and splitting, the warm carcasses were
weighed, classified, and then immediately delivered to the cutting
line. Six meat cuts (blade, backfat, loin, ham, belly, and shoulder,
as depicted in Figure 2) were selected from each carcass and
weighed individually.

An identification code was assigned to both the carcass and the
resulting cuts. The code was assigned to each carcass by applying
a progressive number. Some cuts are subjected to controls (e.g.,
weight and size) to verify the accordance with the strict rules of the
approved PDO or IGP procedural guidelines (M.I.P.A.A.F., 2010).
According to several PDO ham certification rules, if the require-
ments are not respected, the cut should be sold as fresh meat.
Therefore, the opportunity to physically substitute one or more
valuable cuts with others, which do not respect the constraints,
could attract fraudsters. Thus, the link between the carcass and the
cuts must not be altered to maintain the link between the carcass
and the cut’s quality grading data. The traceability data consist of
the identification number of the carcass and its weight and the
identification number of each of its cuts and weights. Since the set
of cuts is only one-half of the carcass and the yield is not constant,
it is impossible to apply a direct mass balance to verify the corre-
spondence between the carcass and its cuts.

In order to implement the AI method, the supervised learning
phase for the neural network training was carried out by using data
acquired during the industrial slaughtering in controlled, fully
compliant cutting sessions. The carcasses and main pork cuts were
obtained and weighed by following the routine operating methods
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Figure 2. Pork cuts used in the neural network training phase: a-
blade; b- backfat; c- loin; d- ham; e- belly; and f- shoulder.
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for pork and ham processing. In order to simulate a counterfeiting
event that could occur during the processing (e.g., substitution or
alteration of one or more meat cuts), a further dataset of pork cut
weights, obtained by perturbing the original one, was also used to
train the neural network for non-compliance cases. After training,
the proposed AI method can thus be implemented in advanced
traceability systems to identify potential counterfeits regarding
meat cuts substitution automatically.

This method may thus particularly fit in contexts of high
throughput processing plants, as it would be difficult, or even
impossible, to define explicit deterministic or stochastic bounds
(e.g., by using a traditional mass balance approach).

Pork cuts features
The data and the main pork cuts features were collected during

a trial conducted in 2014 by the CRPA (Research Centre on Animal
Production) in Reggio Emilia (Italy) and concerned a set of 134
pigs. In detail, pigs were randomly selected from a rearing farm
located in northern Italy. Their breeds were 50% Goland, 36.6%
Large White, and 13.4% Duroc. Using a Fat-O-Meater (FOM, an
automatic device allowed by EU regulations, 2014), carcasses
were classified according to their estimated lean-meat rate (kg lean
meat/kg carcass) SEUROP classification (EU, 2013). The percent-
age of each class was 5.9% O (40-44% lean meat), 61.2% R (45-
49% lean meat), 25.4% U (50-54% lean meat), and 7.5% E
(>=55% lean meat).

The whole group was composed of 48.5% gilt and 51.5% bar-
rows, all 9 months old and of at least 160 kg live weight, which
should be the target weight for high-quality ham production in
Italy. All pigs were slaughtered at the same slaughterhouse
(O.P.A.S., Società Cooperativa Agricola, Carpi) and processed
according to industry-accepted procedures for preparing typical
heavy pig carcasses. The weights of the chilled carcasses and the
respective single cuts are reported in Table 1, where the means and
standard deviations for the three different genetic types are also
reported. A one-way analysis of variance was used to detect differ-
ences between means (P<0.05).

The original dataset A was classified as compliant as it satis-
fied the mandatory European requirements and the quality consor-
tia acceptance criteria regarding the genetic type, animal weight,
SEUROP carcass classification, sex, and main cuts weight. Since
the objective of the neural network was to detect possible counter-
feiting by product substitution, non-compliant data were also
required to train the network properly. The non-compliant datasets
were obtained by adopting the following data-augmentation pro-
cess: 
i) dataset A was duplicated to obtain the dataset B;
ii) dataset B was then modified into two non-compliant datasets

(C1 and C2). To do this, the data of ham weights belonging to
the dataset B were randomly modified by perturbing each ham
weight by 1σ (σ being the standard deviation), or 2σ thus

obtaining the C1 and C2 datasets, respectively. The σ value for
the ham weights can be found in Table 1; 

iii) two new datasets were thus obtained as follows D1 = A U C1
and D2 = A U C2;

iv) dataset D1 and D2 were divided in D’1 and D’’1, D’2 and D’’2.
Dataset D’1 has 85% of the data of D’1, while D’’1 the remain-
ing 15%; the same for D’2 and D’’2. Datasets D’1 and D’2 were
used to train the NNs, while D’’1 and D’’2 were used for test-
ing.
An additional dataset T was constructed to serve as a test set

and thus simulate possible ham swapping. This could be the case
when the pigs, destined to a specific supply chain (e.g., Parma
ham), comply with regards to place of birth and fattening, but the
hams cuts fall outside the DOP specifications. In detail, samples of
datasets D’’1 were swapped by substituting the ham cut weight val-
ues of the Duroc samples with samples of the Large White breed,
while the Goland and Large White ham cuts were substituted with
the ones of the Duroc and Goland breeds, respectively. This oper-
ation generated the T dataset that includes fraudulent swapping of
ham cuts and, thus, non-compliant data. The two trained NNs were
then used to identify possible fraud due to the substitution of orig-
inal ham cuts; moreover, the method makes it possible to verify the
precision of the algorithm when applied to lots of different hetero-
geneity levels.

Structure of the artificial intelligence method
The algorithm used to create and train the two NNs for deep

learning feature data classification was developed in the Matlab®

environment (R2021a version, MathWorks©) by using a feature
input layer; the two NNs were trained by using D’1 and D’2
datasets, previously described. Each dataset contains several data
that consist of 8 numeric readings (weight of the whole carcass and
the considered cuts) and 3 categorical labels (genetic type, sex, and
FOM). To train the neural networks by using categorical features,
the three categorical labels were first converted to categorical fea-
tures and then to numeric ones. This conversion was automatically
done using the convertvars and onehotencode functions in
Matlab®.

The artificial NN structure adopted in this work for deep learn-
ing feature data classification is structured as follows:
i) feature input layer: this layer inputs feature data into the net-

work, applies data normalisation and sets the input size prop-
erty to the specified number of features;

ii) fully connected layer: this layer multiplies the input layer by a
weight matrix and then adds a bias vector; it then returns a
fully connected layer according to the specified output size
property. In this application, a size of 20 was adopted. Indeed,
in a fully connected layer, all neurons connect to all the neu-
rons in the previous layer;

iii) batch normalisation layer: this layer normalises a mini-batch of
data across all observations for each channel independently.
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Table 1. Mean weights and standard deviation of the chilled carcasses and the respective single cuts (ham, shoulder, blade, loin, belly,
and backfat).

Breed           Cold carcass (kg)      Blade (kg)           Shoulder (kg)         Ham (kg)           Loin (kg)            Belly (kg)         Backfat (kg)

Duroc                          130.1±9.5a                      4.7±0.4a                            9.6±0.8a                       17.2±1.3a                   12.6±1.1a                      9.0±1.1a                      4.0±0.9a

Goland                         135.1±9.4a                      5.1±0.5a                           10.1±0.8a                     17.7±1.4a                   12.9±1.1a                      9.5±1.5a                      3.9±1.0a

Large White              133.0±11.9a                     4.8±0.5a                            9.9±0.9a                       18.0±1.8a                   12.9±1.2a                      9.1±1.5a                      3.8±1.0a

Total                            133.7±10.4                      4.9±0.5                            10.0±0.9                       17.8±1.5                    12.9±1.1                       9.3±1.4                        3.9±0.9
Means with the same superscript letters are not significantly different.
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After normalisation, to avoid those inputs with zero mean
affecting the normalised data activation, the layer scales and
shifts the input using two parameters updated during network
training;

iv) rectified linear unit (ReLu) layer: a ReLu layer is a nonlinear
activation function that performs a threshold operation on each
input element, where any value less than zero is set to zero.
The ReLu layer does not change the size of its input;

v) fully connected layer: a second fully connected layer, with its
output size corresponding to the number of classes, is used for
data classification;

vi) softmax layer: this layer applies a softmax activation function
to the input; such function is also known as the normalised
exponential and can be considered the multi-class generalisa-
tion of the logistics sigmoid function;

vii) classification output layer: this layer usually follows the soft-
max layer and classifies the values obtained by the softmax
function by assigning each input to one of the classes using the
cross-entropy function. 
The trainNetwork Matlab® function was used to train the net-

work employing the architecture defined by the 7 layers described,
the training and validation data, and the training options (e.g., tol-
erance). Datasets D’1 and D’2 were partitioned into training and
validation subsets by using an array of random indices; in detail,
70% of the data of D’1 and D’2 were used for training and 30% for
validation to avoid overfitting. During training, a standard gradient
descent algorithm based on an adaptive moment estimation (Adam
optimiser) was used. The NNs were validated at regular intervals
during the training phase. The validation data were not used to
update the network weights nor for testing. Datasets D’’1 and D’’2
were used for testing the trained NNs. The T dataset was used only
for testing the performance of the NNs, i.e., to test the ability of the
neural networks to detect carcasses and meat cuts in which some
substitutions have been carried out.

The Matlab® algorithm was run on a MacBook Pro 13’’ which
has a 2.3 GHz i7 quad-core processor and 32 GB 3733 MHz of
RAM.

Results and discussion
The neural networks were trained using Matlab®, and the con-

vergence of each neural network training and validation phase was
obtained by running the algorithm for thirty epochs according to

the adopted tolerance. The average elapsed time to train and vali-
date the neural networks was 9 seconds; this result mainly depends
on the size of the dataset in terms of the number of samples (rows),
the number of features (columns), and data quality.

The obtained accuracy of the trained neural networks for the
two datasets D’1 and D’2 was 86.8% and 100%, respectively. A
confusion matrix based on D’’1 and D’’2 datasets was calculated for
each neural network, and the results were reported in Tables 2 and
3 in terms of true positive (TP), false positive (FP), false negative
(FN), and true negative (TN). Tables 2 and 3 also report: i) the true
positive rate (TPR), which is the measure of how many true posi-
tives get predicted out of all the positives in the dataset; ii) the pre-
cision, which is a measure of the correctness of a positive predic-
tion; and iii) the false positive rate (FPR), which is the measure of
how many results get predicted as positive out of all the negative
cases. The TPR and precision values obtained for D’’2 are higher
than those obtained for D’’1; as might be expected, the FPR values
decrease with increasing TPR values. Samples of the T dataset
were also used for testing the neural network trained with the D’1
dataset; in detail, about 86% of the altered samples of dataset T
were correctly identified.

These results show the ability of the AI method to detect pat-
tern anomalies at different levels of the input perturbation.
Furthermore, since the neural networks were trained by using dif-
ferent kinds of information (numeric features such as cold carcass
weight, single cuts weight, as well as categorical labels such as
sex, breed, etc.), this method is more robust than standard mass
balance methods since it can simultaneously analyse numeric read-
ings, statistics, and categorical labels. This can be assumed to be
representative of the skill of the AI system in detecting weight vari-
ations in single pig cuts, which could be related to food fraud.

The findings prove that artificial intelligence methods can be
used to implement new features in traditional food traceability as
they can monitor and check the reliability and the truthfulness of
the data flow in a concise time. This characteristic is essential as
the promptness of supervision systems in fraud identification is
essential to apply measures for the repression of illicit actions.

In particular, the AI method adopted in this work can be
applied to strengthen traceability in critical traceability points. To
apply the method, the neural network must be properly trained on
data obtained by considering pooled pig samples, choosing among
those types usually processed in the plant(s). Furthermore, this
methodology can be further improved in terms of robustness to
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Table 2. Confusion matrix of the neural network trained by using
the D'1 dataset (85% of D'1). The number of samples is lower
than the D'1 cardinality as the only subset D''1 (15% of D1) was
used for testing.

                            Predicted class
                                                Compliant                Non-compliant

True class        Compliant             17 (42.1%) - TP                      3 (7.9%) - FN
                      Non-compliant           2 (5.3%) - FP                      18 (44.7%) - TN
TPR =                   TP     = 85.0%

TP+FN
Precision =          TP     = 89.5%

TP+FP
FPR =                   TP     = 10.0%

TN+FP
TP, true positive; FN, false negative; FP, false positive; TN, true negative; TPR, true positive rate; FPR,
false positive rate.

Table 3. Confusion matrix of the neural network trained by using
the D'2 dataset (85% of D2). The number of samples is lower
than the D'2 cardinality as the only subset D''2 (15% of D2) was
used for testing.

                            Predicted class
                                                Compliant                Non-compliant

True class        Compliant             20 (50.0%) - TP                       0 (0%) - FN
                      Non-compliant             0 (0%) - FP                       20 (50.0%) - TN
TPR =                   TP     = 100%                       
                             TP+FN
Precision =          TP     = 100%

TP+FP
FPR =                   TP     = 0%

TN+FP
TP, true positive; FN, false negative; FP, false positive; TN, true negative; TPR, true positive rate; FPR,
false positive rate.

[page 370]                                           [Journal of Agricultural Engineering 2022; LIII:1328]                                                             

Non
-co

mmerc
ial

 us
e o

nly



possible fraud attempts, adopting blockchain technologies to guar-
antee the inviolability of food traceability information in terms of
data and transactions.

Conclusions
This paper presents an innovative artificial intelligence method

for online traceability data analysis aimed at identifying possible
counterfeiting events. This method could be exploited in systems
that generate a warning whenever a possible inconsistency in the
traceability data flow is detected. Since this method is based on
direct learning from the data, it does not require any explicit pre-
definition of rules, thresholds or statistical discriminators. The
reported example shows how this method can easily be implement-
ed, is computationally efficient, and is able to detect the swapping
of single items (meat cuts). The opportunity to consider numerical
and categorical variables can significantly enhance the number of
applications of neural networks in food traceability. This approach,
which considers mass balance data congruity as a tool to detect
possible fraud associated with product substitution or modifica-
tion, is not based on data integrity protection from cyber intru-
sions, which can be obtained using other techniques (e.g.,
blockchain). Nevertheless, this method can be recommended when
enforcing traceability systems at the points of the production/deliv-
ery chain where lots are split or joined or, more generally, wherev-
er the granularity is changed. Artificial intelligence methods
embedded in traceability systems could also be favourably adopted
to identify the occurrence of other types of fraud by selecting and
monitoring the appropriate production process variables.
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