
Abstract
Sustainable agricultural development is one of the most

important tools for the economic growth of a country. Therefore,
water and land use management is considered a priority. This
research aimed to develop a framework to optimize crops’ spatial
and temporal distribution in an irrigation district. The AquaCrop-
OS (FAO) water productivity model was integrated with a nonlin-
ear optimization model to maximize the annual net profitability
and minimize the water consumption of three crops (rice, corn,
and forage). It was applied at a regional level to 905 simulation
sub-units in the Zulia irrigation district (Colombia), in three typi-
cal climatic years’ scenarios, and at a multi-period level (month-
ly). The results indicated that: i) crop simulation for the study area
was applicable and feasible; ii) rice can be combined with forage
and corn; iii) corn is a viable option under dry year conditions; iv)
under a wet year, forage production is the best option. On average,
in the dry year, profitability decreased by 14.5% compared to the
normal year in half of the study area, and in some areas, economic
losses of up to 53% were obtained. In the wet year, profitability
remained at the same level as the normal year in 43.8% of the area.
However, there were significant decreases in profitability in
23.1% of the district. In the normal year, the water demand of the
crops in each simulated period allows savings of up to 50% of
water compared to the current concession amount, which is 1000
mm. This study is useful for making decisions on sustainable

resources management and optimal irrigation water and land use
under different biophysical and economic conditions.

Introduction
Colombian’s agriculture sector has grown at an impressive

rate. This sector accounted for 6.7% of the national gross domestic
product (GDP) in 2019. The agriculture sector went from a total
value of 14.81 billion USD in 2000 to 24.70 billion USD in 2019.
(World Bank, 2020). The recent growth in agricultural production
may result from increases in either the area cultivated or the crop
productivity. However, current land use levels correspond to a
lower use intensity than optimal use or land use capacity
(Sylvester et al., 2020). 

Colombia is one of the countries with the highest number of
water resources in the world. It has five mayor macro basins:
Caribe, Pacific, Magdalena, Cauca, Orinoquía and Amazonia.
However, the spatial and temporal availability of fresh water at
both the regional and local levels is affected by low irrigation cov-
erage in crops, high variability in available flows, seasonality of
rains, low irrigation efficiency, presence of drought, and water
excess. The agriculture sector requires 16,067 million m3 of water
per year, of which 10% is supplied by irrigation and 90% by rain-
water (IDEAM, 2018).

Both the lack of water resources planning and the low access
to irrigation water reduce crops productivity. Land use planning is
one of the most effective instruments to optimize the allocation of
resources, improve the natural environment and achieve the sus-
tainable development of the economy, society, and ecology in a
watershed (Ouyang et al., 2016). The spatial variability of agricul-
tural production and income is mainly dependent on the biophys-
ical and economic conditions of farmers in each location.

Regional planning of crop planting can be attributed to the
need for optimal use of local production resources and the provi-
sion of solutions to balance supply and demand in decision-mak-
ing (Mardani et al., 2019). Therefore, climate change and variabil-
ity, together with rapid economic development, are fundamental
elements of optimization models for the spatial distribution of
crops (Rădulescu and Rădulescu, 2012). 

Seeding area and several crops ratio optimization can be
obtained through mathematic programming tools. For this pur-
pose, an objective function that reaches an extreme value under
the condition of satisfying specific restrictions needs to be defined
(Liu et al., 2019; Pei et al., 2021). Some of the most common
mathematic programming methods for optimization include linear
programming, nonlinear programming, dynamic programming,
integers programming, binary programming, critical path method,
and assignment method.

Various studies have been in crop planning in agriculture. He
et al. (2020) developed a spatial optimization model defined by
the economic net profits produced per unit of irrigated water.
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Moreover, it presented results for a baseline year (2015) and a
planning year (2020). Similarly, Pei et al. (2021) proposed a two-
stage optimization model for the crop’s spatial distribution from
the supply and demand perspective. Previous studies mostly took
economic benefits, supply, and demand balance as evaluation
indexes.

One of the significant drawbacks of optimization models has
the over-simplification of crop growth and yield. Therefore, in
recent years, developed models that allow the crops optimal distri-
bution based on soil heterogeneity and irrigation water allocation
(Daghighi et al., 2017; Kuschel-Otárola et al., 2018; Pahmeyer et
al., 2021). 

Despite this progress, previous optimization models integrated
crop growth simulation model used the crop function proposed by
Doorenbos and Kassam (1979), which relates the yield reduction
because of the relative water loss due to evapotranspiration. This
water productivity approach requires the yield response factor
(Ky) under local conditions, which it might carry out field experi-
ments is expensive, laborious, and time-consuming.

Such studies successfully helped implement the optimization
model with principal factors of the crop. Which inspired us that the
optimization spatial of crops can be generated based on simulation
models complementary to the empirical relationships (Steduto et
al., 2009), considering the spatiotemporal heterogeneity of agricul-
tural climate. Also, results can offer reproducible and reliable
mapped estimations of low cost. Thus, crop growth simulation
models facilitate the evaluation of agricultural production under a
range of possible environmental conditions.

Among the crop growth simulation, an existing model is
AquaCrop (Raes et al., 2009; Steduto et al., 2009), which can be
applied to a wide variety of herbaceous crops (Bello and Walker,
2016; Hadebe et al., 2017; Zeleke, 2019; Yeşilköy and Şaylan,
2020). In addition, foster et al. (2017) developed the model
AquaCrops-OS for the geo-spatial crops modelling, which reduces
the execution time of large-scale simulations.

AquaCrop-OS model can be combined with the optimization
nonlinear model to complete the dynamic optimization of time and
space. It is necessary to carry out relevant research of adaptability,
make full use of the regional precipitation resources and choose

cropping system reasonably, ensuring sustainable agricultural
development.

We ask the following research questions: Given a limited num-
ber of resources, how does the interannual variability of the water
regime affect agricultural profits? What is the optimal irrigation
water demand, and how should water be allocated to crops? What
is the impact of water management practices that increase and/or
decrease water availability for crops production?

The goal of this study was to develop in three regional hydro-
logical scenarios [i) wet year; ii) dry year; iii) normal year] an
operational framework to optimize the spatial distribution of crops,
considering both the supply/demand of biophysical resources and
the economic conditions of the farmers. An irrigation district of
Colombia was considered as a case study. In the first place, infor-
mation about the area’s agricultural production, climate, and soils
was collected. Next, AquaCrops-OS was used to model biomass
development and productivity. The optimal crop distribution and
sowing period were determined by using nonlinear programming.
Finally, a k-means cluster analysis was developed to facilitate
interpreting results at a multi-period and spatial level. 

This study is original in relating the simulation of the growth
of forage, corn, and rice crops with AquaCrop-OS generating a
biophysical and economic optimization of the planted areas under
different agroclimatic scenarios. Furthermore, we estimate the
losses or relative gains in the production of the crops studied. This
work can provide a scientific reference for governmental settings
to formulate, implement, evaluate, or change agricultural policies
in future vulnerability to climate change.

Materials and methods
Four main stages were developed to integrate the methodology

and simulation-optimization models (Figure 1). In the first stage
(A), a compilation of the study area’s climatic, edaphic, and eco-
nomic information was carried out. In the second stage (B), the
model AquaCrop-OS was executed to simulate the production of
the crops, and a preprocessing of the economic and water availabil-
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Figure 1. A-D) The framework of simulation-optimization model.
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ity data in the study area was carried out. Finally, in the third stage
(C), the nonlinear programming model was run in Pyomo 5.7.1
(Hart et al., 2017), an open-source mathematical modelling lan-
guage based on Python. It allows obtaining an optimal cropping
pattern subject to water, capital, market, and labour constraints. 

Finally, a cluster analysis was performed to facilitate the inter-
pretation of the results at a multi-period and spatial level. In this
phase, the results net profitability of different cropping patterns
was clustered using a k-means algorithm. This algorithm aims to
partition n observations into k clusters in which each observation
belongs to the cluster with the nearest mean. GeoDa (Anselin et
al., 2006) tool was utilized in this study to assess the k-means.
GeoDa implements the cluster algorithms by leveraging the C
Clustering Library (Hoon et al., 2017), augmented by the k-
means++ algorithm from Arthur and Vassilvitskii (2007).

AquaCrop-OS model
The AquaCrop model was developed by the Food and

Agriculture Organization of the United Nations (FAO). This model
allows simulating the yields of herbaceous crops as a function of
the amount of transpired water by the crop under different irriga-
tion and dryland conditions (Steduto et al., 2009). 

To simulate the daily growth and development of the crops,
AquaCrop requires information on local air temperature, reference
evapotranspiration (ETo), rainfall, atmospheric CO2 data, and
Crop characteristics; also, irrigation method, soil profile, and field
management containing characteristics of the field on which the
crop is cultivated. In this model, crop parameters are differentiated
as conservatives and non-conservatives.

Conservative parameters are inherent to the species and rela-
tively stable. The most important are canopy growth coefficient
(CGC); canopy decline coefficient (CDC); crop coefficient (Kcb)
for complete coverage transpiration; normalized water productivi-
ty (WP*) for biomass formation; coefficients to adjust the harvest
index (HI) in relation to the inhibition of the leaf growth and con-
ductance of stomata; and soil water depletion thresholds for leaf
growth inhibition, stomata conductivity, and canopy senescence
acceleration. The non-conservative parameters depend on the envi-
ronmental conditions, the handling decisions, and cultivated vari-
eties.

The AquaCrop model has five available versions: standard,
plug-in, GIS, R, and OS (Steduto et al., 2009; Lorite et al., 2013;
Foster et al., 2017). In this study, the version AquaCrop-OS (Open
Source) was used, and it was addressed with the software Octave
to adapt it to the information volume and allow parallel simula-
tions of multiple points.

Nonlinear programming model with multi-period and
spatial analytic approach 

The basic structure of the objective function, which goal is to
maximize profits, is derived from the study of Kuschel-Otárola et
al. (2018) (Eq. 1). The calculation of the annual net profit from
agriculture production for each simulation sub-unit in the proposal
model has different components. The first component of this equa-
tion is related to calculating the net profit from the sales of the
crops within the irrigation district. The crop yield is calculated
with the AquaCrops-OS model. The second component is related
to the labour cost. The third component is related to the cost of
inputs, and the fourth component is related to the cost of irrigation
water.

         

(1)

                                               

(2)

where:
j: represents crop type (1: Corn;2: Rice; 3: Forage grass);
t: month sown (1 to 12);
Pj: Price per unit of crop j product, in USD t–1;
Aj: Harvested crop j area, in hectares (ha);
Yj: crop yield (t ha–1);
WP*: Water productivity normalized by weather (ET0) and CO2
concentration in the air, in t ha–1;
Tr: Crop transpiration, in mm per time unit;
ETo: Reference evapotranspiration, in mm per time unit;
HI: Harvest index of crop j.;
Lc: Labour cost, in USD wage–1;
Ljt: Amount of USD wages per growing season in one hectare, in
USD ha–1;
CIjt: Cost of inputs (seeds, herbicide, fertilizers) in one hectare, in
USD ha–1;
CR: Cost of irrigation per cubic metre, in USD m–3;
Rjt: Irrigation depth applied to the crop j in the growing season, in
mm. 

The following constraints were used in the optimization model
(Eqs. 3-7):
i. Water availability: this restriction represents the minimization

of irrigation water use. The total water requirement for differ-
ent crops must be less than or equal to the total water available
for the local agricultural irrigation (Aw). 

                (3)

where PPt is the precipitation in t, R is irrigation. It is essential to
mention that TAWj, refers to the total available soil water after
applying an initial volume of water, and EFj is the application effi-
ciency of the irrigation system for crop j.
ii. Available area: the total area assigned to crops must be less

than or equal to the sum of the cultivated areas in the evalua-
tion period. The total size of the assigned land to the crops
should not exceed the arable land for each simulation sub-unit,
defined in 49 hectares.

                (4)

where At is the land availability (in ha).
iii. Cropping area: this restriction aims to limit the assigned crops

area so that it is not too small or too big and food supply can
be satisfied: .

iv. Capital availability: the production cost should not exceed the
total income of the spending unit in populated centres and rural
areas. For each simulation sub-unit, a capital of 514.8 USD
month–1 was defined, equivalent to two updated legal monthly
minimum wages (National survey of household budgets -
ENPH, DANE, 2017).

                             Article
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(5)

v. No negativity restriction: the total area cannot be less than
zero;

vi. No negativity restriction: the water requirement of the crop
must be higher than zero:

                (6)

vii. Complementary considerations: To force that the water crop
requirement is zero when the cropped area is also zero;

viii.Water supply: No more water than required by the crop should
be applied. 

ETc is the actual crop evapotranspiration 

(7)

Case study: Zulia River irrigation district
The optimization model was applied to agriculture areas

(45,536 hectares) of the Zulia irrigation district, located in the
northeast of Colombia (latitude between 8° 4.6’ and 8° 23.0’ N and
longitude between 72° 22.1’ and 72° 35.5’ W- Figure 2). The study
area is in a warm temperate locality with a mean annual tempera-
ture that varies between 26° C y 28°C, mean annual precipitations
of 2487 mm, and multiannual reference evapotranspiration of
1378.63 mm. The altitude varies between 36 m and 150 m above
sea level.

The organization of the irrigation district is dominated by
small farmers, who have adopted associative integration as valid
strategy for the economic development of the region and to ensure
the sales of their production. Currently, 8500 hectares of surface
irrigation. There is a network system for the irrigation canals com-
posed of 410 km, 425 km of roadways, 32 km of flood control
dams, and in the intake, the gravity system captures 14 m3s–1, out
of the 28 m3 s–1 that, in normal conditions, has the flow of the Zulia

                             Article

Figure 2. Study area.
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River. In the summertime, there are irrigation shifts programmed
to avoid crop losses due to water deficit. In practice, the agriculture
area is used for the sowing of transitory crops, mainly rice, since it
allows farming families to have an income from the first harvest
year.

We used AquaCrop-Os to determine crop yield (i.e., for a given
crop, soil, weather, sowing date, and management). The
AquaCrop-OS model was executed using the parallel run mode in
MATLAB R2018b (MathWorks, 2018). This process required high
computational effort, as building 97,740 scenarios (905 points or
simulation sub-units for 3 reference years, 12 different sowing
dates, and 3 crops) was required.

Data

Meteorological data
In this study, meteorological records were analysed for 1980-

2010 with daily data for temperature (mean, maximum, and mini-
mum), precipitation, and wind speed. Data were extracted from the
Colombian Institute of Hydrology, Meteorology and
Environmental Studies (IDEAM) database. Solar radiation infor-
mation was obtained from the database AgMERRA (Ruane et al.,
2015). Finally, the reference evapotranspiration in mm/day (ETo)
was calculated using the Penman-Monteith FAO-56 method (Allen
et al., 1998). 

Climate variability scenarios
Based on the analysis of precipitation records for 34 meteoro-

logical stations in the study area, three scenarios of year-on-year
precipitations variation were identified (Figure 3). According to

the annual rainfall distribution, the climatic data were divided into
wet, normal, and dry years. It was found that the precipitations fre-
quency and intensity in 1996 was close to that of the normal year.
Therefore, 1996 was selected as the average (normal) reference
year. Regarding the critical years, 2010 was considered as the ref-
erence for maximum positive (excess) anomalies with 50% of
excesses (wet year) and 2001 as the minimum negative (deficit)
anomalies with –42% (dry year).

Soil and crop data
Physical and hydrodynamic properties such as moisture reten-

tion curves (saturation, field capacity, permanent wilting point),
bulk and real density, and the saturated hydraulic conductivity,
were extracted from Agrosavia (2018). In this research, the soil
samples were collected from the land surface of the irrigation dis-
trict in a 0.7×0.7 km2 georeferenced grid. Black dots in Figure 2
represent samples of hydrodynamic soil properties, and the trian-
gles in the map represent the locations of the meteorological sta-
tions in the study area. Rice, corn and forage grass crops were con-
sidered for the case study. We assumed that each simulation sub-
units grow rice two times a year, corn three times a year. On the
other hand, we assumed six different harvests per year, for forages,
owing to high temperatures, sufficient solar irradiation, and avail-
able water in the study area. Yield parameters of the crops were
extracted from local information and from the AquaCrop manual
for the available crops. The non-conservative parameters input to
the model were determined using data from local registries and, the
conservative parameters were determined using data from other
researchers in Colombia, who report the validations or calibrations
of the crops of interest: corn and rice (Cortés-Bello et al., 2013),
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Figure 3. Spatial distribution of the annual precipitation in the study area: A) Dry year 2001; B) Normal year 1996; C) Wet year 2010.
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forages (Terán-Chaves, 2015), and calibration and validation data
included in the AquaCrop reference manual carried out by different
teams of researchers around the world (Foster et al., 2017). For the
forage production analysis, the model was extended with addition-
al components to simulate the beef cattle’s annual yield in terms of
meat production. We evaluated profitable beef production from
forages in the study area. A series of assumptions were made in the
present modelling exercise for Colombian native cattle Chino
Santandereano (Table 1). Firstly, average dry matter intake (3.96
kg MS animal–1) and average daily gain (0.5 kg day–1). Next, we
estimated efficiency at converting grazing resources into beef in
7.92 kg intake kg production–1. Finally, from estimating biomass
production with the AquaCrop-OS model, we multiply the crop
yield (forage) by the proxy efficiency at converting grazing
resources into beef (kg intake kg production–1).

The study area was divided into 905 sub-units, each of them
with a 0.7×0.7 km resolution, i.e., a 0.49 km2 grid. The crop simu-
lation was carried out for the 12 months of each reference year. The
irrigation district allocates 10000 m3 ha–1 of water for irrigation
purposes per semester. Therefore, initial soil moisture was
assumed at field capacity, and we used net irrigation calculation. 

Economic data
The production costs were obtained from The Colombian

Agricultural Research Corporation databases, the sales price from
the database Price and supply information system of the agricultur-
al and livestock sector-food supply component of The National
Administrative Department of Statistics. Table 2 shows the refer-
ence data of the selected crops, costs, and prices. The exact value
daily wage for agricultural labour, 8.57 USD day–1 (8 hours of
work), was considered for the three crops and water purchase price

of 0.01 USD m–3. The prices were adjusted to October 2020 using
the Consumer Index Prices (IPC) calculator. For this study, a value
of 3500 Colombian pesos (COP) was considered per US dollar
(USD). All the agriculture parameters, including prices, remained
constant throughout the simulation. Therefore, the only source of
variation between different study years is the effect of climate.

Results and discussion
The appropriate cropping pattern according to the available

resources, the economic profitability, and the optimal irrigation
depths are presented in this section. The model assumes each
month’s first day as the start of the sowing. We used a K-means
spatial clustering algorithm based on the net profitability. The sta-
tistical spatial clustering identified 4 different groups (Figure 4).
The spatial clustering results indicated that the dry year led to
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Table 1. Parameter and assumptions for the production animal.

Parameter                                                                             Value

Heads per hectare                                                                                            10
Body weight of the animal (kg)                                                                    180
Average dry matter intake [kg MS animal–1]                                             3.96
Average daily gain [kg day–1]                                                                          0.5
Efficiency at converting grazing resources into beef                             7.92
[kg intake kg production–1]                                                                              

Figure 4. Cluster Net profitability: A) Dry year 2001; B) Normal year 1996; C) Wet year 2010.
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lower profitability. In contrast, the normal and wet years showed
higher returns. Moreover, for each group, the spatial-temporal het-
erogeneity of net profitability is shown in Table 3.

In a dry year, the total study area covered by cluster 1, fol-
lowed by cluster 2, cluster 3, and cluster 4 was approximately
49.28%, 31.49%, 9.61%, and 9.61%, respectively. On average,
because of the optimization process for a 49 hectares surface, the
net profitability was 43,700 USD per year in cluster 1. For cluster
2 a net profitability of 37,200 USD per year was obtained. For
cluster 3 an average net profitability of 24,000 USD per year was
obtained, and for cluster 4 an average net profitability of 2,900
USD per year was obtained. Thus, the model shows areas unsuit-
able for agriculture production. In these cases, water resources
management could be a good option to increase the profit levels.

In the normal year and once the production resources were
optimized, the total area covered by cluster 1 was 23,997 hectares,
equivalent to 52.7% of the total study area. The average net prof-
itability of cluster 1 for a 49 hectares surface (simulation sub-unit)
was 51,100 USD per year, and 44,200, 30,300, and 5620 USD for
clusters 2, 3, and 4, respectively. For the wet year scenario, the
profitability levels resulted similar compared to the normal year
optimization results.

Figure 5 shows for each agroclimatic scenario the optimal
cropping patterns for the study area and the net profitability for
each month sowing (period), which can vary between 0 and 50
thousand USD. According to the water deficit conditions results,
rice and corn crops represent the optimal combination for 83.7% of
the Zulia irrigation district area, with profitability levels that vary

                             Article

Figure 5. Net profitability-cropping pattern (in thousands of
USD) for reference years: A) Dry year 2001; B) Normal year
1996; C) Wet year 2010.

Table 2. Parameters and input data for each crop.

Input                                                                                                                                 Rice                           Corn                            Forage

Historical average crop yields [kg ha–1]                                                                                                         5000                                    3000                                       1869*
Price [USD kg–1]                                                                                                                                                   0.29                                      0.21                                          1.24
Gross value of production [USD ha–1]                                                                                                         1442.86                                617.14                                     2313.97
Hired labour-days (person days per hectare)                                                                                              9.00                                     11.00                                        20.00
Operating costs: seed, fertilizer, chemicals [USD ha–1]                                                                           815.94                                 339.71                                     1118.30
Machinery rental rate (average rate for agricultural operations) [USD ha–1]                                    496.79                                 148.57                                       27.14
*Kilograms beef live-weight per hectare. 
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Table 3. Clustering k-means net profitability (in thousands USD).

Sow.              Dry year (2001)       Normal year (1996)           Wet year (2010)
date            C1           C2             C3         C4                     C1              C2            C3               C4                    C1           C2            C3          C4

Jan                  44.1            38.7               24.6            2.8                          51.6                45.8              30.5                   5.9                         49.1             39.2              24.8            4.1
Feb                 43.6            36.7               21.7            1.7                          52.3                43.2              26.3                   3.6                         48.7             39.5              23.6            2.2
Mar                 46.4            38.6               23.2            2.1                          51.9                42.9              30.4                   5.9                         49.7             38.6              24.7            4.1
Apr                  47.7            40.2               25.5            3.1                          50.4                44.1              31.7                   6.0                         54.7             42.8              29.8            5.6
May                 48.9            43.4               31.1            4.3                          50.1                42.9              30.4                   5.9                         53.9             40.8              24.7            4.1
Jun                  45.7            41.0               29.3            4.3                          51.3                46.4              31.8                   6.0                         52.4             47.0              30.8            5.6
Jul                   44.1            38.7               24.6            2.8                          51.6                45.8              30.5                   5.9                         49.1             39.2              24.8            4.1
Aug                  43.6            36.7               21.7            1.7                          52.4                45.4              31.7                   6.0                         49.3             42.7              29.8            5.6
Sep                 18.4             7.8                 0.3             0.0                          50.1                40.1              26.8                   3.7                         48.4             36.4              22.2            2.8
Oct                  47.7            40.2               25.5            3.1                          50.4                44.1              31.7                   6.0                         54.7             42.8              29.8            5.6
Nov                  48.9            43.4               31.1            4.3                          50.1                42.9              30.4                   5.9                         53.9             40.8              24.7            4.1
Dec                 45.7            41.0               29.3            4.3                          51.3                46.4              31.8                   6.0                         52.4             47.0              30.8            5.6
Mean              43.7            37.2               24.0            2.9                          51.1                44.2              30.3                   5.6                         51.4             41.4              26.7            4.4
Min                 18.4             7.8                 0.3             0.0                          50.1                40.1              26.3                   3.6                         48.4             36.4              22.2            2.2
Max                 48.9            43.4               31.1            4.3                          52.4                46.4              31.8                   6.0                         54.7             47.0              30.8            5.6
A                                                    977                                                                                          1010                                                                                            895
B                                                  9871                                                                                         9838                                                                                           9953
C                                                   0.91                                                                                          0.91                                                                                            0.92
A, the total within-cluster sum of squares; B, the between-cluster sum of squares; C, the ratio of between to total sum of squares.
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between 45 and 50 thousand USD throughout 11 periods. The
month of September is considered unsuitable for crop planting
because a negative net benefit per hectare was obtained in this peri-
od. In the normal year, the combination of rice and corn resulted
optimal for 31.5% of the district area for the 12 months of crop
planting evaluated, with profitability levels that vary between 45
and 50 thousand USD. The combination forage-rice resulted opti-
mal for the 36.8% of the productive area of the irrigation district
with profitability levels that vary between 40 and 45 thousand
USD. The forage system evaluated in terms of meat production
resulted optimal in 21.6% of the productive area, with profitability
levels that vary between 35 and 45 thousand USD. The periods that
showed the lowest profit were January, February, and July. 

In the water excess scenario (wet year), the forage crop proved
to be the best option at a regional level, with net profitability that
varied from 25 and 35 thousand USD. The cropping pattern rice-
corn resulted optimal for the 24.1% of the agriculture area with
profit levels from 40 and 50 thousand USD. The cropping pattern
forage-rice resulted optimal in 22.4% of the irrigation district area.
In this scenario, the unsuitable area for agriculture production was
3.65%. The difference in the spatial distribution of crops was
affected by the adaptability of the units’ simulation to climate vari-
ability conditions.

The results obtained for the rice and forage crops distribution
are very similar to the current situation. According to the optimiza-
tion data, the forage area resulted big, while the corn area resulted
small. Therefore, combined cropping rice with forage grasses is a
potential strategy for enhancing the sustainability of agriculture in
the tropical region by increasing food production, land use per unit
area, nitrogen (N) cycling, and profitability (Crusciol et al., 2021).
Furthermore, the optimization model proposed in this paper
improves the irrigation water productivity and crop yields and pro-
vides a methodological basis for the sustainable use of local water
resources and sustainable agricultural development.

Compared with the income of an average farmer in the zone,
the crop net benefits of the optimized scenarios have increased. In
other words, the benefits and efficiency of agricultural water use
have been improved, which will positively impact future agricul-
tural irrigation in the study area. Furthermore, the study area could
obtain high economic benefits if rice intercrop with forage grasses
in an integrated crop-livestock system.

When there is not a viable solution for the model, the algorithm
considers the area as unsuitable lands. This happens when, given
the biophysical or economic conditions, it is not feasible to define
a cropping pattern in the supervised area.

In the Zulia irrigation district, the water concession per hectare
is 10,000 m3 per semester, equivalent to a water volume of 1000
mm depth. Figure 6 shows the optimal distribution of the irrigation
depth that maximizes the crops’ economic benefit and minimizes
both operating costs and the water deficit of crops. The results
show that temporal variability of the irrigation depth reached its
highest value in the dry year, with a range between 800 mm to
1200 mm. Next was the normal year, with a range between 185
mm to 610 mm, and the lowest value was obtained for the wet year
with a range from 109 mm to 318 mm. Therefore, according to Li
et al. (2020), a simulation-optimization model can provide a tech-
nical method for developing irrigation programs. This would
ensure crops profitability and irrigation water savings for multiple
scenarios, particularly in water deficit periods. 

In the dry year, it is noted that the water requirement was the
highest (>=1200 mm) in September. Therefore, this period resulted
unsuitable for cropping. The rice-corn cropping pattern shows the
optimal water requirement for 83.1 % of the evaluated area with an

average water demand of 700 mm.
In the normal year scenario, the combinations forage-rice and

rice-corn maximize the profits in most areas. If the crops’ water
demand is optimized for each simulated period (500 mm), up to
50% of water could be saved. Wet year conditions, the cropping
patterns are profitable with 300 mm to 400 mm irrigation depths
during most of the simulated crop periods, and predominated pat-
terns were forages. 

It is worth noting that the C4 species such as forage grasses are
more efficient in converting energy intercepted by the canopy into
biomass production (Zhou et al., 2015), in scenarios low doses of
radiation on the crop, resulting in faster growth compared with C3
species such as rice (Karki et al., 2013). In general, high forage
yield could be associated with higher projected higher meat. These
parameters are relevant for farmers who need to provide food to
livestock through mechanical harvest or grazing (Pariz et al.,
2017) can also improve crop systems sustainability in tropical
regions (Crusciol et al., 2021).

The profit and irrigation depth combined model presents great
advantages to achieve resources optimization and maximize
returns. For instance, in the rice-corn production system of the dry
year scenario, the irrigation depth is optimized, as Figure 6 shows,
since the water requirement level is the lowest compared to the
other production systems. This is similar for the forage-rice pro-
duction system in the average scenario and the rice-corn in the
water excess scenario. 

Similar to the findings of Moraes et al. (2019), our results sup-
port a combination of crops as a feasible option for increasing sus-
tainability in tropical areas by creating opportunities for farmers to
seek greater revenue, furthermore, as these systems can increase
global food production without increasing the area of cultivation,
under different climate change scenarios. Our data indicate that

                             Article

Figure 6. Net irrigation water requirements (NIWR) in mm: A)
Dry year 2001; B) Normal year 1996; C) Wet year 2010.
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rice combined with forage grasses will be a promising approach
for farmers, above all in these tropical regions in condition wet
year. This result is consistent with findings from Crusciol et al.
(2021). 

In general, improving the utilization rate of water can save irri-
gation water without reducing crop yield, which has vital meaning
for food security, health, livelihoods for poor people, and sustain-
able development of arid and semi-arid regions (Mohammadzadeh
et al., 2020). Moreover, related studies have proved that these opti-
mization measures have great potential in developing agricultural
water-saving (Tan and Zheng, 2019; Fan et al., 2021).

This study illustrated the importance of the cropping pattern
simulation-optimization model for water use efficiency and eco-
nomic return optimization; even though rice yield may be lower,
the farmer can generate additional income due to meat production
and improved land use.

Conclusions
The model can achieve a cropping pattern and optimal water

volume based on space grids and different crop growth periods.
The objective function included a water productivity model
(AquaCrop-OS) adjusted to the spatio-temporal patchiness of soil
and rainfall. In the study case applied to the Zulia irrigation dis-
trict, different optimization schemes were obtained for the normal
year (1996), the wet year (2010), and the dry year (2001). 

The main advantage of considering a multiple period model is
that it is the best option to deal with climate variability and analyse
its effect on the productive system’s yield and economic profitabil-
ity according to the water regime scenario and the sowing dates. 

The rice-corn combination has the best net profitability for all
climate scenarios. For this reason, a more diverse planting struc-
ture should be encouraged to replace rice monocropping with a
rice-corn dual crop for responding to variations in the precipitation
regime. Although of lower net profitability, the cropping pattern of
the highest coverage was obtained in the normal year for the for-
age-rice combination in 36.8% of the area, and in the wet year for
the forage with a coverage of the 45.6% of the area.

The simulation-optimization framework developed allowed us
to estimate the effect of climate variability on a cropping pattern’s
yield developed for the study area. On average, in a dry year, the
net profitability can decrease up to 14.5% compared to a normal
year in half of the area. This could result in a profits reduction of
up to 53%. In the wet year, profitability remains at the same level
in 43.8% of the area compared to the normal year. However, in
23.1% of the district, there were considerable reductions in profits. 

The optimal irrigation demand varied significantly among the
different meteorological years established in this study. In the dry
year, the cropping pattern rice-corn generates the optimal water
requirement for 83.1% of the evaluated area with an average water
demand of 700 mm. In the normal year, the water demand of the
crops for each simulated period was on average 500 mm, which
could allow to save up to 50% of water compared to the current
concession, which is 1000 mm. In wet year conditions, the crop
patterns resulted profitable with 300 mm to 400 mm irrigation
depths during most crop simulated periods. 

These results could be useful for the formulation of a regulato-
ry and operational framework in the study area to ensure crop
yields and save irrigation water consumption. This type of analysis
can be used to adapt prevention and mitigation strategies to tempo-
ral and spatial-specific agroclimatic conditions. However, manage-
ment decisions to that profit-maximization are conducted at differ-

ent spatial levels from the field (farm or irrigation district) to terri-
torial entities. Our study provides an example of how to plan future
management at different scales and how resource allocation should
be evaluated as spatio-temporal patterns of the crop that do not nat-
urally follow administrative spatial units (e.g., municipalities or
departments).

The difference between the current crops’ patterns situation of
the optimized area and the ones obtained in the optimization model
shows the importance of combination biophysical and economic
models to determine resource optimization in variability and cli-
mate change scenarios. Furthermore, this model can be applied to
other arid and semi-arid regions to help solve the problem of
unreasonable use of irrigation water resources and thus compre-
hensively enhance the agricultural economy and environment of
these areas. 

In the future, the combination of crop models and economic
optimization models will be considered to optimize the yield crop
and crop water consumption on a monthly or daily scale, for
instance, AquaCrop-OS with information times series prices and
costs regionals. In addition, to prevent an intensive increase in cul-
tivation area for some crops, the model can be designed to adapt
water prices dynamically in different zones for each crop.
Therefore, we suggest considering any water price function for the
users and crops 

Furthermore, an agent-based model could be developed to
account for the role of interactions among agents in determining
crop patterns and area allocation. We also recommended including
the participatory approach with the mathematical optimization to
derive acceptable solutions in land use allocation.
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