
Abstract
The measurement of vegetation indexes that characterise the

plants growth, assessing the fruit ripeness or detecting the presen-
ce of defects and diseases, is a key factor to gain high quality of
fruit or vegetables. Such evaluation can be carried out using both
destructive and non destructive techniques. Among non-destructi-
ve techniques, hyperspectral imaging (HSI), combining image
analysis and visible/near-infrared spectroscopy, looks particularly
useful. Many studies have been published concerning the use of
hyperspectral cameras in the agronomic and food field, especially
in controlled laboratory conditions. Conversely, few studies
described the application of HSI technology directly in field, espe-
cially involving ground-based systems. Results suggest that this
technique could be particularly useful, even if the role of environ-
mental variables has to be considered (e.g., intensity and incidence
of solar radiation, wind or the soil in the background). In this
paper, recent in-field HSI applications based on ground systems
are reviewed.

Introduction
The hyperspectral imaging (HSI) concept originated from

imaging spectrometry (Liu et al., 2015). In the mid-1980s imaging
spectrometry, a new Earth remote sensing technique, was develo-

ped at the Jet Propulsion Laboratory (JPL) of the California
Institute of Technology in Pasadena, affiliated with the National
Aeronautics and Space Administration (NASA). Airborne and
spaceborne sensors allowed the identification of surface materials
directly and remotely; images of the observed surface were obtai-
ned, simultaneously with reflectance values coming from up to
200 contiguous spectral bands in the reflectance spectrum (Goetz
et al., 1985).

During the last few decades, numerous imaging and spectro-
scopic techniques have been developed and implemented by the
agricultural and food industries for the evaluation and classifica-
tion of products based on their intrinsic characteristics and proper-
ties (ElMasry and Sun, 2010). In recent years, the integration of
imaging and spectroscopy through the development of HSI
technology has made it possible to combine their benefits, obtai-
ning results that are difficult to achieve with traditional imaging
and spectroscopic technologies (Lu and Park, 2015). As evidence
of this, there is a growing interest in research in this field as shown
in Figure 1 where the number of papers published in Scopus data-
base (January 2020) in the range of years 2000-2018 on hyper-
spectral imaging in agricultural and biological sciences and engi-
neering subject areas are reported. The categories ‘Cereals’,
‘Fruits’ and ‘Vegetables’ have been created from the FAO (Food
and Agriculture Organisation of the United Nations) Commodity
lists (©FAO 1994); in particular, the ‘Vegetables’ category, was
obtained by aggregating the FAO categories vegetables, roots and
tubers, pulses and oil bearing crops. 

Operating principles of a hyperspectral camera
A HSI laboratory system (Figure 2) typically consists of a

light source, a CCD or CMOS camera with a spectrograph (HSI
camera), a translation stage composed by a conveyor belt on
which the sample flows, and a computer (ElMasry et al., 2012;
Liu et al., 2015).

The operating principle of a HSI camera is comparable to that
of an RGB camera: both measure and record the amount of light
reflected by the framed object, which reaches the sensor. Both
cameras can only partially process the electromagnetic spectrum:
the RGB camera sensor measures only three bands of the visible
radiation (corresponding to the blue, green and red light), while
the HSI camera sensor can measure a few hundred bands within
the characteristic wavelength range of the sensor. The amplitude
of a few nanometers of the spectral bands determines a high spec-
tral resolution of the HSI sensor (Thomas et al., 2018). To disperse
the light into selected wavelengths, optical and electro optical
wavelength dispersion devices are used (Liu et al., 2015).
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Sensor systems
There are three types of sensor systems (Figure 3): i) ‘whisk-

broom’ linear array with a rotating mirror: ii) ‘push-broom’ linear
array; iii) area array. The sensor systems with linear arrays include
diodes or charge coupled devices that measure the radiance resul-
ting from the object framed. Linear array sensors are often named
‘push-broom’ because their disposition resembles the arrangement
of a single line of bristles in a broom (Jensen, 2014). Since the HSI

camera captures only one line of the object framed, a translation
stage is used to slide the sample below the lens. In this way a whole
scan of the surface of the object can be obtained, then the computer
create and display a complete hyperspectral image (Liu et al.,
2015). Respect to whisk-broom detectors, push-broom detectors
provide a more accurate measurement of the radiant flux reflected
by the sample because: i) there are no moving mirrors; and ii)
push-broom linear array sensors are able to stay longer on a speci-

                             Review

Figure 1. Number of documents published in Scopus database in the range of years 2000-2018 on hyperspectral imaging in agricultural
and biological sciences and engineering subject areas. 

Figure 2. Components of a typical hyperspectral imaging system of the push-broom type.
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fic part of the sample (Jensen, 2014). With the area array detector
system, hyperspectral images are acquired entirely, one at a time
for each spectral band. This system does not require sample or HSI
camera movement. A filter, wheel or tunable, is necessary to select
different wavelengths during the scanning process (ElMasry et al.,
2012). Area array sensor system is more practical in multispectral
imaging techniques, where the number of wavelengths selected is
limited (Garini et al., 2006).

The hyperspectral image
In a hyperspectral image, each pixel is characterised by the

information on reflectance, absorbance or transmittance from each
spectral band selected. The so-called spectral signature (or spectral
profile) can be obtained by summing this information, but it can
also be measured through a non-imaging hyperspectral sensor like
a spectrometer, loosing spatial information (Thomas et al., 2018).
HSI, combining spectroscopy and imaging, measures at the same
time the spectral signatures and the spatial information from a
sample. The HSI data output is a stack of narrow band sub images
organised along the reflectance spectrum axis, thus generating a 3-
D hypercube (Figure 4). The 3-D cube data (named ‘voxel’) is cha-
racterised by two spatial (x, y) and one spectral dimension (λ)
(Mishra et al., 2017).

                             Review

Figure 4. A) Representation of a 3-D hypercube, composed of a stack of sub-images of apricots in contiguous spectral bands; B)
Reflectance spectrum of one pixel represented in (A) by a red square.
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Figure 3. Three types of scanning systems used for multispectral and hyperspectral data collection: A) imaging with a scanning mirror
and linear arrays, often referred to as whisk-broom technology; B) hyperspectral imaging with linear arrays, often referred to as 
push-broom technology; C) digital frame camera based on area arrays. FOV, field of view of the rotating mirror.
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Hyperspectral image processing
A typical hyperspectral image processing consists in the follo-

wing phases: i) calibration and image acquisition; ii) spectral/spa-
tial processing and dimensionality reduction; iii) data elaboration
and development of prediction or classification models. Several
techniques have been developed to process both the spatial and
spectral dimensions of a hyperspectral image. Dimensionality
reduction means reduction in data size and extraction of spatial
and/or spectral characteristics in a smaller dimensional space.
Subsequently, the data can be classified to identify the pixels/spec-
tra useful for the analysis. Regression techniques can also be
applied, to estimate a reference parameters in particular, in recent
years techniques of chemometric and multivariate analysis have
been applied to hyperspectral images (Yoon and Park, 2015).

Calibration and image acquisition
The calibration of the image acquired in reflectance, absorban-

ce or transmittance mode allows to obtain a corrected image con-
sidering a black and a white reference image: the black image can
be obtained by placing the cap on the lens of the camera, instead
the white image is carried out of a high reflectance material placed
inside the framing area (Ma et al., 2019).

Spectral/spatial processing and dimensionality reduction
Spectrum processing includes pre-processing and extraction of

spectral characteristics. The most commonly used techniques are:
smoothing methods of random noise from raw data (e.g. Savitzky-
Golay, moving average, median filter), or spectral pre-processing
algorithms to refine the spectral data as the derivatives (Norris-
Williams and Savitzky-Golay), multiplicative scatter correction
(MSC), standard normal variate (SNV), alignment technique
(COW) (Rinnan et al., 2009).

Considering the multivariate models, to avoid problem of mul-
ticollinearity, it is useful to make a variable selection. This can
improve model performance and model characteristics by identi-
fying and removing useless, noisy and redundant variables (Liu et
al., 2014). There are three main variable selection methods: filter
methods (information gain and correlation-based feature selection)
wrapper methods (learning algorithms, such as beam search, simu-
lated annealing and genetic algorithms) and embedded methods
(SMV and decision tree).

Regarding the wavelength selection the most common
methods are successive projections algorithm (SPA), stepwise
regression (SWR), PLSR and uninformative variable elimination
(UVE). Some other algorithms for applications in HSI analysis
have been developed recently and exhaustively described by Liu et
al. (2014).

Classification and prediction methods
Classification methods include multivariate classification

techniques, which comprises: i) unsupervised methods as principal
component analysis (PCA), clustering (k-means, Jarvis-Patrick,
hierarchical), and convolutional neural networks (CNN); ii) super-
vised methods as discriminant analysis (linear, quadratic or regula-
rised DA), soft independent modelling class analogies (SIMCA),
partial least square discriminant analysis (PLS-DA), support vec-
tor machines (SVMs), and the non parametric k-nearest neighbour
(kNN) (Ma et al., 2019).

Prediction methods used to estimate the relation between spec-
tral information and reference properties measured on the samples
are divided into linear and non linear regression. Linear regression
includes multiple linear regression (MLR), principal component

regression (PCR), and linear partial least square regression
(PLSR). The most commonly used non linear regression are artifi-
cial neural networks (ANN), e.g. multilayer perceptron (MLP) or
generalised regression neural network (GRNN), SVM and non-
linear PLSR (Ma et al., 2019).

HSI application in the field
Recently, due to the rapid development of computer systems

with high data processing capacities and the miniaturization of HSI
systems, the opportunity of analysing in real time plants and foods,
such as fruits and vegetables directly in the field at ground level,
has become more interesting. Satellite based systems or airborne
systems (manned or unmanned aerial vehicles, tethered balloons),
characterised by low spatial resolution are mainly aimed at the
study of the plants canopy and terrestrial vegetation. In addition,
ground based systems mounted on agricultural vehicles or fixed
platforms have been introduced, due to their high spatial resolu-
tion, for the estimation of quality parameters of plants and foods.

In this work, both remotely and directly controlled ground
based HSI systems have been considered, which have been used in
the field for: i) phenotypic analysis of plants; ii) determination of
fruit ripeness, chlorophyll and nitrogen content of plants; iii) detec-
tion of fungal diseases, drought stress, weeds, maize stubble in
conservative agriculture; and iv) monitoring of canopies under
uncontrolled conditions. The search for the papers was carried out
on the abstract and citation database ‘Scopus’ on January 29th,
2019: the keywords ‘hyperspectral’ and ‘field’ were searched; the
search was limited to the subject area ‘agri’. Hence, 1069 results
were obtained: from the list of results, only the articles that met the
purposes of this work were selected (Table 1). 

High-throughput phenotyping
The study of different crop genetic varieties and growth related

phenomic effects under different environmental conditions is
essential to achieve higher productivity in terms of yield per hec-
tare and sustainable use of natural resources (Underwood et al.,
2017). High-throughput phenotyping (HTP) is crucial to improve
yield as well as quality and it contributes to a better understanding
of plant genomics. However, phenotyping techniques mainly rely
on manual measurements and visual inspections. In addition, phe-
notyping techniques are not developed as well as genotyping
techniques in terms of throughput, accuracy, and repeatability. This
condition hinders the potential use of plant genotyping data for the
development of genotype phenotype maps and for the characteri-
sation of the interactions between genotype and environment
(Jiang et al., 2018).

In line with the aforementioned state, Underwood et al. (2017)
used a high-throughput phenotyping system, designed for row
crops composed by a set of grains and legumes. The system descri-
bed, named Ladybird UGV, was based on an unmanned ground
vehicle (UGV) that allowed autonomous, high resolution, multi
modal sensing and data processing. Hyperspectral data were acqui-
red with a visible to near-infrared (VNIR) push-broom camera
(Pika II, Resonon); hyperspectral images were of 648 spatial by
244 spectral pixels, with a spectral resolution of 2 nm in the range
from 390.9 to 887.4 nm. Data were compared to those obtained by
a hand held sensor named Greenseeker. Moderate linear relation-
ships characterised by a R2 = 0.83 and R2 = 0.72, were reported for
data acquired in August and September, respectively. Ladybird
UGV was able to efficiently scan areas of coverage typically used
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Table 1. Works cited, in the order in which they are listed in the text, with a brief description of their strengths and weaknesses.

Topics                                            References             Applications                                                            Strengths Weaknesses
High-hroughput phenotyping

             Underwood et al., 2017                        Grains, legumes                 Adoption of an unmanned ground                                                        Limitation for the tallest plants (faba
                                                                                                                               vehicle, useful in term of labour saving and accuracy.                    beans). Potential for crop damage.
                                                                                                                               Moderately good results.                                                                        

              Jiang et al., 2018                                    Cotton                                   Multi-instrumental system.                                                                   The implementation of a cover reduced the amount
                                                                                                                               Moderately good results.                                                                        of incident sunlight, requiring the use of artificial  lights.

              Gutiérrez et al., 2018                            Grapevine                            Real time, on the go HSI approach.                                                     Nothing to report.
                                                                                                                               Good prediction performance.                                                              

              Deery et al., 2014                                  Wheat                                   Multi-instrumental system.                                                                    Requires a high degree of expertise.

Fruit ripening

             Wendel et al., 2018                               Mango                                   Adoption of an unmanned ground vehicle.                                         The geometry of the trees, the shadows of the fruits 
                                                                                                                               Dry matter prediction of on-the-tree mangoes                                and the variation in the intensity and angle of the 
                                                                                                                               is possible and repeatable.                                                                    solar radiation affected the result.

Chlorophyll content

             Wang et al., 2018                                    Rice canopy                         The spectral purification procedure developed contributes         The method lacks automation.
                                                                                                                               to reduce the background impact. 
                                                                                                                               Moderately good results.                                                                        

              Wu et al., 2016                                        Wheat leaves                      Good results from single.                                                                       Low precision of canopy spectral data,  
                                                                                and canopy                          wheat plant leaves                                                                                    due to soil in the background.

              Jay et al., 2017                                        Sugar beet canopy             Good performances achieved with                                                      Results affected by a great variability of leaf 
                                                                                                                               an optimised vegetation index.                                                              orientation and lighting conditions.

              Al Makdessi et al., 2017                       Durum wheat canopy        Development of a light propagation                                                    Multiple scattering effects mainly affect the lower
                                                                                                                               model based on 3D models.                                                                   leaves, which cannot be discarded due to a
                                                                                                                               Acceptable nitrogen content prediction.                                            significant loss of information.

              Malenovský et al., 2015                        East Antarctic                     Good chlorophyll a and b, and leaf                                                       The prediction of the turf water content was
                                                                                dominant mosses              density estimation.                                                                                   influenced by the selection of the near infrared
                                                                                                                                                                                                                                                      spectral region, which does not include wavelengths
                                                                                                                                                                                                                                                      with adequate water absorption.

Nitrogen content

             Onoyama et al., 2015                            Rice plant                             Good results applying the growing degree-day parameter,           The wind has made some of the captured images 
                                                                                                                               related to air temperature, to predict nitrogen content.                unusable.

              Onoyama et al., 2018                            Brown rice                           Good prediction performance                                                              Exception on good prediction performance for the 
                                                                                                                               adopting 4 regions of interest models.                                               dark area model. Strong wind affected the capture of
                                                                                                                                                                                                                                                      two images.

              Vigneau et al., 2011                               Wheat leaves                       Complications introduced by variable solar lighting and                Models are dataset dependent, probably due to low
                                                                                                                               plant architecture were considered.                                                   sample number and growing conditions,
                                                                                                                               Good prediction performance of leaf nitrogen content.                in particular with regard to the plant nitrogen supply.

              Whetton et al., 2018                              Wheat, barley                      Performance was better in wheat than in barley.                             Use of an external light source.

              Zhao et al., 2016                                    Winter wheat                      Able to follow the vertical features of the infestation.                    The method lacks automation.

Drought stress detection

             Römer et al., 2012                                 Barley, corn                         Corn: clear detection of clusters, determined by                            Barley: the experiment was conducted inside a rain
                                                                                                                               two irrigation and nitrogen availability regimes.                               out shelter.

Weeds detection and management

             Pantazi et al., 2016                                Corn                                      Use of an autonomous platform and information system.             One class classifiers based on support vector 
                                                                                                                               Excellent crop recognition performance, using one class             machine and autoencoders have failed, in 
                                                                                                                                classifications constructed on neural networks.                              most cases, to yield acceptable results.

              Herrmann et al., 2013                          Wheat                                   Detection of four categories, with a good                                         In most of the cases, shaded classes produced less 
                                                                                                                               accuracy: weeds (2), wheat and soil.                                                   user’s and producer’s accuracies than the respective sunlit class

              Huang et al., 2016                                  Palmer amaranth,              On-the-go HSI system. Excellent accuracy                                        Wind interference and sensor overheating due to 
                                                                                Italian                                   obtained on glyphosate resistant and sensitive                               intense solar irradiation had affected the experiment.
                                                                                ryegrass, soybeans            weeds differentiation.                                                                             

              Reddy et al., 2014                                  Palmer amaranth               Excellent validation accuracy of the field model                              Nothing to report.
                                                                                                                               classification, able to differentiate between 
                                                                                                                               glyphosate resistant and sensitive palmer 
                                                                                                                               amaranth plants.                                                                                       

No tillage in conservative agriculture

             Chen et al., 2017                                    Corn stubble                       Good capacity to detect corn stubble, useful                                   The study is limited to the selection of optimal 
                                                                                                                               in corn wheat rotation systems in case                                              wavelengths by means of principal component analysis 
                                                                                                                               of no tillage sowing.                                                                                 to optimise image segmentation.

Canopy monitoring under uncontrolled conditions

             Rodriguez-Moreno et al., 2016           Wheat                                   The error in estimation of crop reflectance was                             The main problem observed is not 
                                                                                                                               compatible with a proper agronomic interpretation                       the accuracy of the measurements, but the precision.
                                                                                                                               of the images using thresholds, linear functions 
                                                                                                                               or combination of both.                                                                         
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in real world scientific phenotyping studies. This way of operating
was faster than optimised traditional manual measurement, and it
was able to generate highly repeatable and accurate data
(Underwood et al., 2017).

The field-based high-throughput phenotyping (FB-HTP)
system developed by Jiang et al. (2018), named GPhenoVision,
consisted of a high-clearance tractor with imaging, environmental
and GPS sensors; it was evaluated by field scan of 23 cotton geno-
types, to quantify canopy growth and development. Imaging sen-
sors consisted of a conventional RGB-D, a thermal and a hyper-
spectral camera (MRC-923-001, Middleton Spectral Vision,
Middleton, WI, USA). HS camera has a spectral range of 400-1000
nm, an image resolution of 640 (spatial) × 236 (spectral), and a
nominal spectral resolution of 2.7 nm. About imaging tests, to
reduce the intensity of sunlight and wind effects a cover was adop-
ted, but with this configuration the intensity of the signal recorded
by the hyperspectral camera was low due to the reduced amount of
incident light. Finally, regarding the hyperspectral camera, three
calibration lamps were used to obtain a more accurate regression.
In the present study, six phenotypic traits were extracted: plant
height, width in-row (WIR), width across-row (WAR), projected
leaf area (PLA), canopy volume (CV) and canopy expansion (Tc-
Ta). The considered traits had a moderate correlation (r = 0.54-
0.74). These results suggested that a quantitative genetic analysis
could be conducted and yield prediction models could be develo-
ped (Jiang et al., 2018).

Phenotyping of grapevine varieties is important both for pro-
ducers and for the wine industry (Gutiérrez et al., 2018). Gutiérrez
et al. (2018) classified a high number of grapevine varieties under
field condition and natural illumination using a hyperspectral
camera system (Pika L VNIR hyperspectral imaging camera,
Resonon, Inc., Bozeman, MA, USA) mounted on an all-terrain
vehicle (ATV). The horizontal movement of the ATV regulated the
scanning of the push-broom type line scan hyperspectral camera.
Data were processed by using SVM and artificial neural networks
(multilayer perceptrons, MLP) testing several spectra pre-proces-
sing methods. Recall (the ratio of the number of correctly classi-
fied samples to the total number of testing samples), F1 value [2 ×
(precision × recall) / (precision + recall)] and AUC (area under the
receiver operating characteristic curve) were used as performance
statistics. The prediction performance of SVM respect to indivi-
dual varieties resulted in a range from 0.83 (recall) to 0.93 (AUC),
while for MLP between 0.95 (recall and F1 score) and 0.99 (recall
and F1 score), showing a low variability, in particular the AUC
values (Gutiérrez et al., 2018).

To keep up with the development of genomic technologies, fast
and accurate crop phenotyping methods are required, in order to
meet expected growing demand for food and fibre in the future
(Deery et al., 2014). In this perspective, Deery et al. (2014) descri-
bed the development of a ground based proximal remote sensing
buggy named ‘Phenomobile’, implementing these sensors: three
LiDAR, four RGB stereo cameras, a thermal infra red camera,
three infra red thermometers and a hyperspectral subsystem. The
latter is composed by a full range spectroradiometer (Fieldspec 3,
ASD Inc., Boulder, CO, USA) and a Vis-NIR hyperspectral line
scanner camera (Micro-Hyperspec, Headwall Photonics Inc.,
Fitchburg, MA, USA). Sensors were mounted on a height adjusta-
ble bar (max 3 m from the ground). The frame of the Phenomobile
was designed to traverse a mature wheat crop (1.2 m ground clea-
rance and 1.8 m width) without coming into contact with the cano-
py, at a typical operating speed of 1 ms–1. Moreover, Phenomobile
presented a Real Time Kinematic GPS characterised by about 2 cm
resolution, and a removable light bank (Deery et al., 2014).

Fruit ripening
Fruit should ripen on the tree, to allow accumulation of sugars

and starch getting the best harvesting conditions. Fruits would
have to reach on-tree physiological maturity, finding a balance bet-
ween on-tree ripening and characteristics required for transport
and storage. Hyperspectral imaging systems implementation direc-
tly in-field can help farmers to optimise harvest time, evaluating
the grade of ripening of fruits (Wendel et al., 2018). In the study of
Wendel et al. (2018), a hyperspectral camera (Resonon Pika II visi-
ble to near infrared (VNIR) line scanning hyperspectral camera,
with a spectral range of 411.3-867.0 nm), a LIDAR sensor and a
navigation system mounted on a ground vehicle contributed to
carry out the measure of dry matter (DM) of mango to evaluate
maturity. DM resulted from measures performed by a hand-held
NIR spectrometer of harvested and on-tree fruit. These data were
elaborated by using PLSR and CNN. Considering the cross-valida-
tion data set, R2 = 0.64 and RMSE = 1.08%w/w was achieved by
CNN in fruit on tree, while R2 = 0.58 and RMSE = 1.17%w/w was
achieved by PLS. Moreover, PLSDA and a CNN were compared
to discriminate non mango pixels from mango pixels, obtaining
good classification performance (mean F1 score > 0.97). The
described system permitted to predict the maturity of fruits at a
distance from trees, but presented difficulties due to the geometry
of the trees, the shadows of the fruits and the variation of the inten-
sity and angle of solar radiation (Wendel et al., 2018).

Chlorophyll content
Determining chlorophyll quantitative variation during plant

growth can be useful to monitor the physiological state of the
plant, to better understand the growing status and consequently to
estimate the yield of the plant (Jay et al., 2017).

Wang et al. (2018) captured rice canopy images with an ima-
ging spectrometer (Cubert S185 Imaging Spectrometer, with a 4
nm of spectral resolution and a spectral range of 450-950 nm).
Rice leaf hyperspectral images were obtained, in order to retrieve
chlorophyll content from refined leaf spectra resulting from 58 rice
canopies and to estimate the yield of paddy rice. Vegetation indices
extracted from those hyperspectral data were correlated with crop
chlorophyll density measured with a SPAD meter (soil plant ana-
lysis development chlorophyll meter), with the aim to estimate leaf
pigment content. Three vegetation indices with the highest corre-
lation were selected and used: photochemical reflectance index
(PRI), structural independent pigment index (SIPI) and green nor-
malised difference vegetation index (GNDVI). A PLSR was used,
obtaining in cross validation R2 = 0.703 before purification, and R2

= 0.753 after purification. A commonly used field portable spectro-
radiometer can only obtain point spectral information. However,
the device is not able to obtain spectral and image information at
the same time. Usually, canopy spectral data resulting from a spec-
troradiometer are the average of spectra collected in a specific area
and are affected by the weaker part of the plant, which is located
under the foliage, and by the environment (Wang et al., 2018).

Wu et al. (2016) analysed canopy and single wheat plant lea-
ves at seedling stage using a spectroradiometer and a planar array
visible near infrared hyperspectral camera (VNIR hyperspectral
MS4100 high resolution 3 CCD camera, Redlake Inc.) to establish
prediction models to monitor plant growth. Data obtained by the
two instruments were correlated to plant growth measured factors
(chlorophyll SPAD value, nitrogen and water content, dry matter).
The hyperspectral camera adopted is more portable, with a higher
acquisition rate and without the necessity to move the ground sup-
port mounted on a rail, respect to a push-broom hyperspectral
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camera. Due to the soil in the background, both the spectral data of
canopy obtained with the two instruments were characterised by
low precision. Instead, spectral data from single wheat plant leaves
obtained with the hyperspectral camera were more detailed, gai-
ning a correlation coefficient r of 0.8836, 0.8520 (PLSR) for chlo-
rophyll SPAD and nitrogen content, respectively (Wu et al., 2016).

Jay et al. (2017) studied methods based on reflectance obser-
vations for non-destructive leaf chlorophyll content (Cab) estima-
tion at field level in sugar beet canopies. It was adopted a push-
broom hyperspectral camera (HySpex VNIR 1600, Norsk Elektro
Optikk, Norway) in the 400-1000 nm range, with high spatial reso-
lution (millimetre to centimetre) mounted on a ground-based plat-
form. The push-broom camera was positioned at 1.1 m above the
ground and vertically oriented. At this scale, soil reflectance and
the shape of canopy structure interact with the scattering properties
related to leaf, producing canopy reflectance. Effects of canopy
structure and leaf architecture (leaf orientation and spatial distribu-
tion) should be carefully straighten out when relating remote sen-
sing observations to foliar biochemistry. The best performances
were achieved with an optimised vegetation index named ‘modi-
fied normalise difference’, mND[λ1,λ2], defined as (Rλref −
Rλ1)/(Rλref + Rλ2), using a blue reference spectral band λref = 440
nm (Rλ refers to the reflectance at the given wavelength). Data
were computed considering the average reflectance spectra related
to the 50% brightest green pixels, with a spatial resolution equal to
3.5 cm. mNDblue[728,850] was correlated with Cab using a linear
regression model, obtaining R2 = 0.83 and RMSEP = 2.45 µg cm–2

(Jay et al., 2017).
Leaf radiance variation is strongly induced by the great varia-

bility of leaf orientation and lighting conditions (Jay et al., 2017).
At this regard, Al Makdessi et al. (2017) implemented the ‘Caribu’
light propagation model on 3D models of durum wheat canopy,
trying to obtain a picture of the spectra variability induced by the
leafy architecture. Spectra were acquired in various phases on lea-
ves completely expanded using a field spectrometer [FieldSpec,
Analytical Spectral Devices, Inc. (ASD), Boulder, Colorado, USA]
with a leaf clip. A PCA was performed to analyse the distribution
of resulting simulated spectra in the spectral feature space. Finally,
the performance of PLSR in predicting leaf nitrogen content
(LNC) was evaluated. At the plant level, considering only the lea-
ves on the top of the plant, it revealed an acceptable nitrogen con-
tent prediction, with an error about 0.5% of dry matter (Al
Makdessi et al., 2017).

Near distance imaging spectroscopy was used by Malenovský
et al. (2015) to evaluate spatial distribution of three East Antarctic
dominant mosses (Bryum pseudotriquetrum, Ceratodon purpureus
and Schistidium antarctici), due to the reduction of liquid water
availability caused by latest environmental changes. Three quanti-
tative stress indicators were used: turf chlorophyll a and b (Cab),
water content (TWC) and leaf density (LD). Reflectance was mea-
sured in the laboratory and outdoors in both poor and abundant
water conditions. Field measurements were performed by an ima-
ging push-broom type spectroradiometer (Headwall Photonics
Micro-Hyperspec VNIR scanner, Headwall Inc., Fitchburg, MA,
USA) mounted to a geodetic tripod on a rotation and tilt platform.
In the spectral range of 496-898 nm, ten bands were selected, three
in the visible (496-710 nm) and seven in the near infrared (710-848
nm). The best results were obtained estimating the reflectance con-
tinuum removal (CR) transformation of Cab applying SVR on refe-
rence and remotely sensed spectra trained with all the three species
of mosses together and considering the wavelengths between 648-
719 nm, specific for chlorophyll absorption [RMSE = 238.3 nmol
g–1 DW (dry weight) and R2 = 0.54]. The best LD estimation was

achieved on S. antarctici, adopting SRV trained with the reflectan-
ce between 708 and 782 nm (RMSE = 1.8 leaves mm–1, R2 = 0.55)
(Malenovský et al., 2015).

Nitrogen content
Nitrogen nutrition index (NNI) is an expensive, laborious and

destructive method to assess plant nitrogen status during plant
cycle. Since nitrogen is an essential nutrient and the main limiting
factor of plant growth, many new non-destructive techniques have
been proposed to replace NNI, such as hyperspectral imaging
(Vigneau et al., 2011).

Onoyama et al. (2015) developed a ground-based hyperspec-
tral imaging system to estimate rice plants nitrogen content at the
panicle initiation stage. In rice cultivation, nitrogen is applied in
the form of topdressing in the early stages of panicle development,
in order to increase the yield in terms of rice grains. The hyper-
spectral imaging system adopted consists of a prism-grating-prism
(PGP) component and a monochrome camera (ImSpector QE
V10E; Specim, Oulu, Finland), with a nominal spectral range bet-
ween 400 and 1000 nm and a 5 nm nominal spectral resolution. A
planetary gearbox rotational stage rotated the camera with the aid
of a motor, for push-broom type line scan. Three PLSR models
were tested, including both the reflectance and the growing degree
days (GDD), to explain the differences in growing temperature
conditions over a 3-year period (2008, 2009, and 2010): 1-year
model, 2-year model and 2-year model based on GDD. GDD
represents a meteorological condition frequently used to describe
the timing of biological processes: it was calculated based on air
temperature measurements. In order to determine the adaptability
of the PLSR models to test data collected in different years, a
mutual estimation of the values for the other years was calculated.
In 1-year model, the RMSE and relative error (RE) values of the
mutual estimation resulted much higher respect to the values of the
validation of the same 1-year model (RMSE from 0.49 to 3.95
g/m2 and RE from 8 to 85% in mutual estimation, RMSE from
0.48 to 0.65 g/m2 and RE from 7 to 15% in validation), because of
underestimation and overestimation. Similar results were obtained
by applying the 2-year model, without significant differences in
accuracy respect to the 1-year model (mutual estimation RMSE
from 1.29 to 3.32 g/m2 and RE from 21 to 43%). The introduction
of GDD in the 2-year model (third model) resulted in a decrease in
mutual estimation RMSE and RE values (RMSE from 0.55 to 0.95
g/m2 and RE from 8.2 to 13%), proving its usefulness for predic-
ting the nitrogen content. Ultimately, it has been shown that the
combination of reflectance and temperature data could be used to
construct a model that explains the changes in growth conditions
of rice plants at the heading stage (Onoyama et al., 2015).

In brown rice production, it is important to consider grain qua-
lity as well as grain yield. A ground-based hyperspectral imaging
system (ImSpector QE V10E, Specim, Oulu, Finland) with a nomi-
nal spectral range from 400 to 1000 nm, and a nominal spectral
resolution of 5 nm, was used for the estimation of protein content
before harvest. Protein content is related to rice taste quality; fur-
thermore, it is also useful for establishing the application plan of
the amount of basal and top dressing fertiliser for the following
year. The use of a spatial scanning hyperspectral camera allowed
to obtain three dimensional data. In spatial scanning, spatial spec-
tral three dimensional images can be collected line by line through
rotational movement of the camera powered by a motor. Instead,
one dimensional data, deriving from a common spectroradiometer
and represented by the reflectance of the analysed target, also
include unwanted parts, such as soil background. The reflectance
of five regions of interest (ROI-I: target area; ROI-II: dark area;
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ROI-III: canopy area; ROI-IV: leaf area; ROI-V: ear area) were
related with protein content according to PLSR analysis. R2 and
RMSE prediction values were similar for each model, with R2

values between 0.83 and 0.86, and RMSE between 0.27 and
0.30%, but with the exception of the dark area model, where R2 =
0.76 and RMSE = 0.35%. No significant differences in the magni-
tude of the estimation error between all models were observed.
(Onoyama et al., 2018).

Vigneau et al. (2011) developed a system composed by a push-
broom CCD camera (HySpex VNIR 1600-160, Norsk Elektro
Optikk, Norway) installed on a tractor mounted motorised rail. The
camera operated in the spectral range between 400 and 1000 nm,
with a spectral resolution of 3.7 nm (160 wavelength bands). Close
range hyperspectral images acquired were used to evaluate leaf
nitrogen content in wheat. The study also considered in-field com-
plications introduced by variable solar lighting and plant architec-
ture, such as illumination level variation induced by leaf inclina-
tion and specular reflection. Reflectance pre-processing and cor-
rection process led to the same quality of results obtained in labo-
ratory. A PLSR model considering nitrogen concentration and
reflectance spectra of single leaves was developed; it was obtained
by grouping two datasets, related to plants grown in pots in green-
house or in field conditions. The model predicted leaf nitrogen
content for the two growing conditions, with R2 = 0.875 (test step),
and standard error of prediction corrected of the bias (SEPc) =
0.496% DM (Vigneau et al., 2011).

In summary, hyperspectral images produced spatial nitrogen
cartographies, and it was possible to monitor nitrogen dynamics at
leaf level. Consequently, these data could be implemented in gro-
wing models or nitrogen remobilisation models (Vigneau et al.,
2011).

Fungal diseases detection
Cereal production can be compromised by the presence of 

in-field fungal diseases. Due to their spatial variability, it is neces-
sary to acquire high spatial resolution data to perform a detailed
site specific control of the diseases (Whetton et al., 2018).

Whetton et al. (2018) measured two fungal diseases with a
mobile measurement system in four fields of wheat and barley:
yellow rust (determined by Puccinia striiformis), one of the most
detrimental foliar disease of wheat in cool climates, and fusarium
head blight (Fusarium graminearum), producing mycotoxins in
the grain. Such online system consisted of a push-broom hyper-
spectral camera (HS spectral camera model from Gilden Photonics
Ltd., UK) attached to a tractor, with an external light source; the
camera works in the spectral range of 400-1000 nm. The percenta-
ge of coverage of the diseases was assessed using two methods, 
in-field visual assessment (IVA) and photo interpretation asses-
sment (PIA) on the basis of a 100-point grid superimposed on RGB
images. The spectral data were analysed by PLSR with leave-one-
out cross-validation. Measurements of yellow rust and fusarium
head blight were similarly accurate, while performance was better
in wheat than in barley. PIA analysis resulted more accurate than
IVA for fusarium. Considering PIA analysis, residual prediction
deviation (RPD) value was 2.27 and R2 value was 0.82 for wheat,
while RPD was 1.56 and R2 was 0.61 for barley. On the contrary,
IVA analysis was more accurate than PIA in the yellow rust. In bar-
ley RPD and R2 values were 1.67 and 0.72, while in wheat they
were 2.19 and 0.78 respectively (Whetton et al., 2018).

The yield and quality of winter wheat grains can also be
seriously compromised by yellow rust. For this purpose, a hyper-
spectral imaging spectrometer (ImSpector V10E, Specim, Spectral
Imaging Ltd., Finland) was used to accurately assess wheat yellow

rust. The instrument works in the wavelength range between 400
and 1000 nm, with a spectral resolution of 2.8 nm. This ground-
based imaging spectrometer system collected images in a push-
broom manner. It consisted of a camera, a spectrograph, a mount
zoom lens, and a mirror scanner: the system generates a hyperspec-
tral data cube, which simultaneously collected spectral and ima-
ging characteristics of pure yellow rust spores. Three flag leaves
(F-1, F-2 and F-3: F = flag leaf) were randomly collected from the
inoculated and normal wheat fields. Six region of interest (ROI)
from the tip to the bottom of the three samples were analysed, fin-
ding a relation between the general trend of chlorophyll content (F-
1 > F-2 > F-3) and the averaged hyperspectral reflectance measu-
red; reflectance values gradually increased (F-1 > F-2 > F-3) in the
visible region selected (520-720 nm) and decreased (F-1 < F-2 <
F-3) in the NIR region (730-1000 nm) (Zhao et al., 2016).
Compared to a conventional non-imaging spectrometer, a hyper-
spectral imaging system is particularly useful to detect the disease
development along the leaf layers, following the vertical features
of the infestation, in the appropriate growth phases considered.
Furthermore, spectral and image data can be collected at once,
regularly and automatically. In this way, it may be decided to spray
the fungicides, especially in the initial stages of the infestation
(Zhao et al., 2016).

Drought stress detection
Hyperspectral imaging sensors were adopted to evaluate early

water stress: i) on barley (SOC-700, Surface Optics Corp., San
Diego, CA, USA) in controlled drought conditions inside a rain-
out shelter; and ii) on corn (PS V10E, Spectral Imaging Ltd, Oulu,
Finland,) directly in the field, in order to check if the method is
applicable both in controlled conditions and in the field. The linear
push-broom hyperspectral camera used on corn (PS V10E) is cha-
racterised by a spectral resolution of 2.8 nm in the range between
400 and 1000 nm (Römer et al., 2012).

A deterministic method to analyse data was introduced, named
simplex volume maximisation (SiVM). The applicability of this
matrix factorization technique was tested for the first time in plant
sciences; it was also a new approach for unsupervised learning of
relevant patterns. With regard to the corn experiment, plants were
grown in an experimental field with two different irrigation regi-
mes (rain-fed and full irrigation) and nitrogen availability. In addi-
tion, several vegetation indices (VIs), including the normalised dif-
ference vegetation index (NDVI) and the photochemical reflectan-
ce index (PRI), were tested. The results have shown that SiVM
divided the four treatments into three well separated clusters.
Regarding the VIs, the PRI detected a difference in nutrient treat-
ment, but was not able to detect water, while the NDVI detected
drought, but was not able to detect nutrient treatment. A combined
assessment with PRI and NDVI was effective in successfully
detecting all four clusters. In summary, SiVM has given conside-
rable better results than the use of a combination of vegetation
indices. In the corn plots, although the effect of the treatments on
the foliar and canopy traits was reduced, SiVM managed to sepa-
rate them (Römer et al., 2012).

Weeds detection and management
Ground-based remote sensing techniques (GBRST) provide

interesting utilisations for precision agriculture (Huang et al.,
2016). Crop production and yield are influenced by the presence of
weeds, and the use of herbicides implies high costs and environ-
mental impact. A method based on machine learning, developed by
Pantazi et al. (2016), was used to discriminate between corn and
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weed species considering differences in spectral reflectance;
Herrmann et al. (2013) developed a hyperspectral imaging (HSI)
system to separate weeds from wheat.

Pantazi et al. (2016) obtained hyperspectral images from a HSI
system (ImSpector V9, Specim, Spectral Imaging Ltd., Oulu,
Finland) mounted on a robotic platform (autonomous platform and
information system). This HSI system consisted of a prism-gra-
ting-prism (PGP) line spectrograph with a spectral resolution redu-
ced to 19 nm and a spectral range between 435 and 834 nm, inte-
grated with a monochromatic camera. Subsequently, four discrimi-
nation wavebands were selected using a stepwise variable selec-
tion. Four novelty detection classifiers have been implemented,
based on one-class classification constructed on neural networks:
SVM, autoencoder, mixtures of Gaussians (MOG) and self-organi-
sing maps (SOM). The best results were obtained using the SOM
and MOG classifiers. The crop recognition performance was 100%
for both MOG and SOM classifiers. For the MOG classifier, the
correct recognition of the different weed species ranged from 31%
to 98%. For the SOM classifier, the correct recognition rate ranged
between 53% and 94% (Pantazi et al., 2016).

Herrmann et al. (2013) adopted a ground-level image spectro-
scopy, characterised by high resolution at spatial and spectral level,
in order to increase efficiency in weed control in wheat fields.
Hyperspectral images were obtained by a push-broom type hyper-
spectral camera (ImSpector V10E, Specim, Spectral Imaging Ltd.,
Oulu, Finland) mounted on a tripod. The hyperspectral camera
works in the NIR and visible regions, with a spectral range betwe-
en 400 and 1000 nm and a spectral resolution of 2.8 nm. PLSDA
was applied to classify four categories and not for specific species
of weeds: i) category BLW (broadleaf weeds) included the species
Chenopodium, Mallow and potato; ii) category GW (grass weeds)
included Lolium rigidum and Hordeum plaucum, the third and
fourth categories corresponded to iii) wheat and iv) soil. The
models developed considered a combination of some or all of the
categories, even if the spectra were obtained from sunlight pixels
and shaded pixels. The best model was the one that included the 4
categories described, but without discriminating between sunlight
and shaded pixels. This model was chosen by comparing the cross-
validation confusion matrices in terms of variances and the
Cohen’s Kappa values: K was 0.79 and the total accuracy was
85%. In addition, it was found that the red edge is the most impor-
tant spectral region for vegetation classes through the application
of the variable importance in projection method. The authors con-
cluded that due to high spectral and spatial resolutions it was pos-
sible to obtain a separation between wheat and weeds on the basis
of their spectral data. This approach could lead to a reduction in
herbicides needing and consequently to an improvement both from
an environmental and economic point of view so, without dimini-
shing weed control efficiency, to a benefit for farmers and consu-
mers. In addition, reduction of herbicides amount can limits the
development of weed resistance to herbicides (Herrmann et al.,
2013).

Regarding weed management, it is also useful to detect lesions
caused to crops by the spread of a herbicide in the fields next to the
one treated, as in the case of dicamba, or the differentiation betwe-
en resistance and sensitivity to herbicides in weeds, in the case of
glyphosate (Huang et al., 2016). For this purpose, Huang et al.
(2016) adopted three instruments: i) a handheld spectroradiometer,
to quickly measure in-field plant canopy spectra; ii) a push-broom
hyperspectral camera (Resonon Pika II, Resonon, Bozeman, MT)
with two lamps as a light source for laboratory use, and iii) an on
the go hyperspectral camera, the same used in laboratory, mounted
to a 3 point hitch installed on the back of a standard tractor, for 

in-field study of plant canopy. The hyperspectral camera works in
the range between 400 and 900 nm, providing 240 wavelength
bands. The in-field hyperspectral system allowed obtaining an over
90% accuracy on glyphosate-resistant (GR) and glyphosate-sensi-
tive (GS) weeds differentiation. Wind interference on the linear
scanning sensor and sensor overheating due to intense solar irra-
diation had affected in-field experiment. According to this, the
authors reported the needing to remove data artefacts and minimi-
ze environmental and systemic interference (Huang et al., 2016).

Reddy et al. (2014) reported that some populations of Palmer
amaranth (Amaranthus palmeri S. Wats.), weeds present in the
southern United States, have developed resistance to glyphosate.
Spectra of GR and GS plants were recorded, and the potential of
hyperspectral sensors to differentiate GR from GS plants were
explored. The study was conducted both in greenhouse and in the
field. In greenhouse, a push-broom type hyperspectral camera
(Resonon Pika II, Resonon, Bozeman, MT) was mounted on a
stand, and two incandescent light bulbs were used as artificial light
source. In the field, the same hyperspectral camera was mounted
on a three-point hitch, with the capacity to move horizontally and
vertically, and with the sun acting as a natural source of light; in
turn, the tripod was installed on a tractor. Spectral data were ran-
domly assigned to training and testing groups, and sensitive hyper-
spectral bands were selected using a forward selection algorithm.
Fisher’s linear discriminant analysis (FLDA) was used to reduce
the dimensionality of the sensitive bands related to the plant set
and the maximum likelihood (ML) to classify the plants. Finally,
amaranth plants were classified with confusion matrix with predic-
tive accuracy, through leave-one-out validation. Authors observed
that four distinct regions of the spectrum (400-500 nm, 650-690
nm, 730-740 nm and 800-900 nm) were able to separate GR from
GS plants. Considering fourteen wavebands within or close to
these four spectral regions, the validation accuracy of the field
model classification was 96.4% and was comparable with that of
the greenhouse model, which was 93.8%. In conclusion, it can be
stated that hyperspectral imaging has a potential application to dif-
ferentiate between GR and GS Palmer amaranth plants, without
subjecting them to a glyphosate treatment. For this reason, the
technique described could have future implications for glyphosate
resistance management (Reddy et al., 2014).

No tillage in conservative agriculture
Among basic principles of conservation agriculture (CA) are

included zero tillage and permanent soil organic cover, which con-
tribute decreasing soil degradation and increasing fertility (Chen et
al., 2017; FAO, 2017).

Chen et al. (2017) reported that in North China Plain, where
annual maize wheat rotation is commonly implemented, the stan-
ding maize stubble, and consequently their extensive root system,
stays in the field. These materials can hardly decompose during the
short period between maize harvesting and wheat sowing, causing
the block of the next no till sowing. To address the above problem,
a vision-based guide was developed. It consisted of a HSI system
mounted on a pedestal. The HSI system comprised a spectrograph
(1003B-20001 Micro-Hyperspec VNIR A-Series, Headwall
Photonics Inc.) with a spectral range between 347.4 and 952.8 nm
(VIR-NIR) and a spectral resolution of 1.846 nm, thus providing
329 wavebands; the spectrograph was coupled to a CCD camera, a
zoom lens and a tilt-shift motion control system (PTU-D48E,
FLIR). The HSI system was positioned forward during wheat
sowing to avoid the standing maize stubble and consequently the
underground root system. From the hyperspectral images of the
standing maize stubble left in the field, three images with optimal
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wavebands (484, 561 and 580 nm) were selected by PCA. The
three selected images were then enhanced by means of median fil-
ter, Sobel filter, Gaussian lowpass filter, band fusion method. In
summary, the enhanced images demonstrated the capacity of the
selected optimal wavebands to detect maize stubble (Chen et al.,
2017).

Canopy monitoring under uncontrolled conditions
Rodriguez-Moreno et al. (2016) tested the quality of spectral

images acquired under uncontrolled and consequently not optimal
circumstances.

Multispectral images were acquired from a multispectral
camera (DuncanTech MS3100 camera, Auburn, CA, USA) moun-
ted on an on-ground platform without a system to control: i)
lighting; ii) the geometry existing between the sun, the target and
the sensor; and iii) interferences (dew, dust, etc.). Multispectral
images were compared with spectral data obtained from a field
radiometer and with hyperspectral images acquired by an airborne
hyperspectral sensor. In this way, it was possible to measure the
error occurring in crop reflectance as well as to evaluate the con-
sequences of the uncontrolled conditions. It was observed that the
error in estimation of crop reflectance was compatible with a pro-
per agronomic interpretation of the images using thresholds, linear
functions or combination of both (Rodriguez-Moreno et al., 2016).

Conclusions
Hyperspectral imaging technology for non-destructive analysis

by means of high resolution proximal sensing of plants directly in
the field is currently not widely adopted, but promising. HSI can
be considered in the field of precision agriculture: it is useful for
high-throughput phenotyping, for determining the ‘harvest maturi-
ty’ of fruit, for monitoring the physiological state of the plant, para-
site attacks, weeds, and consequently for the estimation of the pro-
duction yield. Some factors complicate the analysis, such as varia-
tions in the level of intensity of sunlight, the angle of inclination of
the incident solar radiation, overheating of the sensor due to inten-
se solar radiation, the plant architecture that includes the inclina-
tion of the leaves and specular reflection, the wind. 

Future researches should focus on studying solutions to these
problems and on automating the process of acquiring and proces-
sing the enormous amount of data obtained from the analysis.
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