Optimisation of hot-water application technology for the control of broad-leaved dock (Rumex obtusifolius)

Roy Latsch, Joachim Sauter
Agroscope, Institute for Sustainability Sciences ISS, Ettenhausen, Switzerland

Abstract

In organic farming, the control of broad-leaved dock (Rumex obtusifolius) via hot-water treatment of the upper root region (hypocotyl) is a new alternative to the current standard control method involving manual digging-out of the roots. This comparative study looks at five different hot-water application techniques. The aim is to optimise the control method in terms of water and energy requirement to obtain a mortality rate of the treated plants of at least 80%. The studied parameters were the application, the amount of water, the water temperature, the soil moisture content and the soil type. In total, 813 plants of varying size were treated (120-225 plants per treatment). The success of each treatment was rated 12 weeks after it was applied. Based on the results, the preferred treatment in terms of water and energy requirement was a commercially available rotary nozzle. With this nozzle, for example, at 40 vol.-% soil moisture, 1.6 L of water at a temperature of 90°C was necessary for successful Rumex control. The rotary nozzle could be used as a non-contact system, and was therefore the most user-friendly of the application techniques examined.

Introduction

Throughout Europe, grassland areas managed according to organic-farming principles are increasing. The percentage of organically managed areas in the whole of the EU, for example, rose from 5,913,359 hectares (ha) in 2004 to 7,542,604 ha in 2008 (Köpke et al., 2011). In Switzerland, the percentage of these areas has remained practically constant over the last nine years and, at 116,188 ha in 2011, accounted for 11% of the total agricultural area (Bundesamt für Statistik BFS, 2012).

One of the greatest problems in organically managed grassland is posed by broad-leaved dock, Rumex obtusifolius (Zaller, 2004). Broad-leaved docks contain high levels of oxalic acid and oxalates, which can cause health problems in large doses (Brune, 1955; Roth et al., 2012). Avoided by grazing animals on account of the substances it contains, the plant causes reduction in livestock performance when present in conserved feed. Oswald and Haggar (1983) reckoned that a ground cover of 20-30% broad-leaved dock would reduce the vegetation volume of valuable fodder plants up to 20%. To avoid these negative effects, the dock stocking on grassland should be minimal.

Differing from other weeds, the physical control of broad-leaved dock is difficult because of the growth and the regenerative power of its taproots. The primary taproot of the dock develops in the first year after germination (Bond and Turner, 2003). In the second year, the plant produces secondary taproots (Pino et al., 1995). Thereafter, the taproot system increases and divides. The clonal growth of one plant can affect large weed-covered areas (Bond and Turner, 2003). The regenerative power of R. obtusifolius lies in the hypocotyl. It is about 0.1 m long and located in the first section of the partially very complex underground organs (Roberts and Hughes, 1939). Stored reserve materials enable the plant to resprout quickly after mowing. The hypocotyl part needs to be totally removed or killed to get rid of established plants.

Another unfavourable capacity or R. obtusifolius is its enormous production of seeds. One single plant can produce up to 60,000 seeds per year (Cavers and Harper, 1964; Foster, 1989; Sobotik, 2001), which can remain germinable up to 83% after 21 years (Toole and Brown, 1946). Hunt and Harkess (1968) found 5,000,000 seeds per acre (equals 1236 seeds per square metre) in the upper 15 cm of a pasture. The seeds need light to germinate. So wherever there is sparse plant cover, R. obtusifolius can move in (Bond and Turner, 2003). Moreover, if hay or grass silage is contaminated with dock seeds, these can be spread over all plots of the farm via the slurry cycle (Zaller, 2007).

To date, the standard method for controlling dock in organic farming is to dig up the roots by hand at a depth of about 0.1-0.15 m, and to remove the hypocotyl part from the grassland site. Although very effective, this method is time consuming and physically strenuous.
Moreover, the damage to the sward gives seeds a chance to germinate. In the literature, five different approaches to control dock plants can be distinguished: i) adapted grassland management procedures like non-tillage, grazing regimes, frequency of grassland use and fertilisation strategies (Niggli et al., 1993; Hopkins and Johnson, 2002; Briemle and Rück, 2006; Zaller, 2006; Starz et al., 2010); ii) bio herbicides like acetic acid, saline solution, citronella oil or pelargonic acid (Boller, 2006; Massuccati et al., 2009); iii) natural enemies of dock plants like pathogens and insects (Grossrieder and Keary, 2004); iv) mechanical treatment with different tools like mechanical grabbers or rotary tillers (Böhm and Finze, 2004; Pötsch and Griesebner, 2007; Sauter et al., 2012); v) and thermal treatments, which are relevant for this investigation. Therefore, only thermal treatments, such as laser application, microwave, flame treatment or steam/hot-water treatment, will be discussed.

As already specified, the key to controlling broad-leaved dock lies in the elimination of the hypocotyl tissue. Therefore, above-ground control techniques like laser application (Mathiassen et al., 2006), flame treatment (Bertram, 1996; Böhm and Verschwele, 2004) or steam/hot-water treatment of the sprout (Hansson and Mattsson, 2002; Sirvydas et al., 2002; Kerpauskas et al., 2009, Merfield et al., 2009), which do not affect the plant’s ability to resprout from its taproots, can be discarded beforehand. Thermal treatments that are able to reach the hypocotyl zone are microwave, infrared technology and soil disinfection through direct steam or hot-water application.

Microwave treatment was positively tested to control weed seeds and pathogens in soils (Gracia-López and Velázquez-Marti, 2002; Velázquez-Marti and Gracia-López, 2004; Velázquez-Marti et al., 2008). Although microwaves could be used to control broad-leaved dock, they are unsuitable because of the very high energy consumption (Dürr et al., 2005; Latsch et al., 2009; Latsch and Sauter, 2010).

With infrared gas technology, a metal spike heated to 600°C is driven into the dock root (Pötsch, 2001). This technology could not be established in practice. In our own investigations, we tested metal spikes of 25 mm diameter and 120 mm length. These spikes were heated in a muffle furnace to 600°C in one test series with 70 plants and to 800°C in a second test series with 100 plants. The mortality rate was less than 75% in every trial and therefore insufficient. In addition, the handling of the extremely hot spikes was unacceptable for practical use. Infrared technology was therefore rejected as a possible solution for dock control. Steam application is an appropriate procedure to disinfect soil. Mostly, this method is used for extensive areas. For better results, chemical additives with exothermic reactions like potassium hydroxide (KOH) or calcium oxide (CaO) are sometimes used (Barberi et al., 2002; Barberi et al., 2009). For example, the patented bioflash system uses a self-propelled machine to disinfect soil in greenhouses by incorporating steam and additives with a rotary hoe into tilled soil (Peruzzi et al., 2002; Peruzzi et al., 2011; Peruzzi et al., 2012). Neither in Swiss nor in European organic farming is the outdoor-use of such additives allowed. The prevailing lists of additives in organic farming only allow these additives as disinfectants in buildings for livestock (European Commission, 2008; Forschungsinstitut für biologischen Landbau FiBL, 2014). Hence, other ways to produce an adequate temperature are necessary. Until today, steam application was not used for the single plant control of root spreading weeds.

In an own laboratory pretest conducted in 2009, dock roots were plunged into water at an average temperature of 88°C. The aim was to heat the dock roots initially to 80°C (the melting point of nucleic acids) to irreversibly damage the DNA of the roots, thereby killing them. This test resulted in 100% mortality of the plants after just 10 seconds. The shortness of the necessary exposure time suggests that heating the outer root-cell layer capable of producing shoots is sufficient to control dock. The subsequent field trials in 2010 produced good results with a hot-water/steam mixture with temperatures up to 145°C (Latsch et al., 2011). To achieve the targeted mortality rate of at least 80%, an average of 2.4 dm³ heated water was required at a soil moisture of up to 30 vol.-% (Latsch et al., 2011).

A major advantage of this method is that the treated roots do not need to be extracted and disposed but can remain in the soil. In the 2010 field trials, however, the energy input for generating steam did not meet the demands of a method ready for practical application. The aim of this study was therefore to optimise the application technology in terms of its water and energy requirement.

Materials and methods

Site

The treatments were conducted in 2011 in plots on an experimental farm in Tänikon, Ettenhausen, Switzerland. Tänikon is located 540 m above sea level and has an average annual precipitation of 1200 mm. Five grassland sites served as experimental plots (Table 1).

Experimental vehicle

A commercially available high-pressure cleaner with a steam stage

<table>
<thead>
<tr>
<th>Experimental plot (No.)</th>
<th>Soil type</th>
<th>Date</th>
<th>Soil moisture (vol.-%)</th>
<th>No. of plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clay loam</td>
<td>24/06/2011</td>
<td>31.6</td>
<td>77</td>
</tr>
<tr>
<td>2</td>
<td>Clay loam</td>
<td>26/07/2011</td>
<td>38.6</td>
<td>165</td>
</tr>
<tr>
<td>2</td>
<td>Clay loam</td>
<td>02/08/2011</td>
<td>32.5</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>Clay loam</td>
<td>23/08/2011</td>
<td>36.1</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>Clay loam</td>
<td>24/08/2011</td>
<td>32.5</td>
<td>60</td>
</tr>
<tr>
<td>2</td>
<td>Clay loam</td>
<td>25/08/2011</td>
<td>32.5</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>Medium sandy loam</td>
<td>05/07/2011</td>
<td>36.8</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Medium sandy loam</td>
<td>06/07/2011</td>
<td>31.9</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>Medium sandy loam</td>
<td>06/07/2011</td>
<td>36.8</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>Weakly silty clay</td>
<td>11/08/2011</td>
<td>39.1</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>Weakly silty clay</td>
<td>18/07/2011</td>
<td>45.0</td>
<td>60</td>
</tr>
</tbody>
</table>
(type: HDS 9/18-4 M, Alfred Kärcher GmbH & Co. KG, Winnenden, Germany) was used to generate hot water. A trailer transported the high-pressure cleaner, the water tank, and an additional tank for recording the amount of fuel-oil (Figure 1). A mobile 380 V (15 kVA) generator supplied the unit with electricity (Latsch et al., 2011).

Application heads and procedure

Four different application heads (A-D) were designed to treat the plants with the hot-water/steam mixture. In addition, a rotation nozzle (E) (Kärcher 'Dirt blaster' type, Alfred Kärcher GmbH & Co. KG) was used (Figure 2). The hose was 10 m long. When we designed the appli-

![Figure 1. Scheme of the experimental vehicle.](image1)

![Figure 2. Sketches of the used application heads.](image2)

<table>
<thead>
<tr>
<th>Technical data</th>
<th>Unit</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance between spikes</td>
<td>mm</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spike diameter</td>
<td>mm</td>
<td>12</td>
<td>12</td>
<td>-</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>Nozzle bore</td>
<td>mm</td>
<td>9×1.0</td>
<td>3×1.2</td>
<td>3×1.4</td>
<td>9×1.0</td>
<td>1×1.8</td>
</tr>
<tr>
<td>Nozzle area total</td>
<td>mm²</td>
<td>7.1</td>
<td>3.4</td>
<td>4.6</td>
<td>7.1</td>
<td>2.5</td>
</tr>
<tr>
<td>Nozzle distance</td>
<td>mm</td>
<td>-</td>
<td>30</td>
<td>-</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>Flow rate mean±SD</td>
<td>dm³/60 s</td>
<td>9.0±1.3</td>
<td>8.9±0.2</td>
<td>9.6±1.5</td>
<td>8.8±0.4</td>
<td>8.9±0.5</td>
</tr>
<tr>
<td>Water injection to a depth of</td>
<td>mm</td>
<td>90</td>
<td>30</td>
<td>0</td>
<td>90</td>
<td>-</td>
</tr>
</tbody>
</table>

Experimental settings

<table>
<thead>
<tr>
<th>Duration of treatment</th>
<th>s</th>
<th>10, 15, 20, 25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature pre-selection(s)</td>
<td>°C</td>
<td>95/120</td>
</tr>
<tr>
<td>Water pressure</td>
<td>kPa</td>
<td>3200</td>
</tr>
<tr>
<td>No. of plants treated</td>
<td>units</td>
<td>153</td>
</tr>
</tbody>
</table>
cation heads (A-D), the primary concern was to bring the water as close as possible to the root section of the dock plants. Thereby the water flow rate per application head had ideally to be equal (Table 2). Another important aspect was the fault liability of the heads, which had to work in a muddy application field.

Treatment A was a refined version of the head used in 2010 (Latsch et al., 2011) with an optimised water flow rate. The idea was to encircle the taproot with three spikes that inject the hot water with nine spray holes into their centre to a depth of 90 mm.

Treatment B had shorter spikes than Treatment A with three vertical spray holes. The shortened spikes should prevent breakage in sticky soil. The bigger spray holes should guard against water flow blockade. With the spray holes directed downwards, the taproot should be totally enclosed with water.

With Treatment C, the construction of Treatment B was further reduced. The head had no spikes, but a ring that was pushed into the soil approximately 10 mm deep. It should keep the applied amount of water from escaping laterally and guide the water into the soil. The three vertical nozzles were placed above ground, so they had no contact with the soil.

Treatment D was driven directly into the middle of the dock shoot and conveyed the water through nine spray holes horizontally into the soil down to a depth of 90 mm.

Whereas the heads of Treatments A-D had to be hammered into the ground, Treatment E’s handling was different: the rotation nozzle was placed vertically on the ground and guided around and across the plant shoot. The rotating spot jet destroyed the soil structure, leaving behind an earth/water mixture that enveloped the root.

The hot water was applied in test series of 15 plants each. The treated plants were selected so that no other dock plants stood in striking distance and could potentially falsify the results. The planned duration of treatment was recorded with stopwatch, whilst the amount of water actually required was recorded with a water meter (Aquametro, type: Saphir, $d=0.0001 \text{ m}^2$, Basel, Switzerland) at the inlet of the device.

The adjusted pre-selection temperature of the high-pressure cleaner could not be measured. The water temperature at its outlet was recorded once with an accurateness of 5°C at the end of each treatment (thermistors type Kärcher). With Treatments A-D, the recorded temperature ranged from 70-150°C. As per the manufacturer’s instructions, Treatment E was not operated in hot-steam mode. Because the preselected temperature was 95°C, the recorded temperature range was lower than that in the other treatments.

For each test series, the quantity of fuel-oil required to heat the water was determined gravimetrically (Scale Ohaus, type DS10, $d=0.02 \text{ kg}$, Nänikon, Switzerland). Soil moisture was determined on a volume basis in undisturbed soil samples (0.1 dm3) taken from a depth of 0-0.1 m (dried at 105°C). The treated plants were mapped with an RTK GNSS (real-time kinematic Global Navigation Satellite System, Trimble R8, Sunnyvale, CA, USA) to aid in their relocation during the visual appraisal after 4, 8 and 12 weeks. This period should be long enough, according to Pino et al. (1995), who stated that the regeneration of subterranean plant parts takes 12 days.

The statistical analysis was conducted with Tibco Spotfire S+® 8.1 for Windows (Somerville, MA, USA). A logistic regression was performed with a generalised linear mixed-effects model. The influence of the application heads, water amount, water temperature and soil moisture on the resprouting of the dock plants was investigated.

Water distribution in the soil

In a separate trial at a site with clay loam soil, water distribution in the soil was determined by tracing water that had been dyed blue. In this test, three plants were treated with each application head with 2 dm3 of a 0.3% solution of the dye Vitasyn Blue (Clariant GmbH, Frankfurt/Main, Germany) according to the procedures described above. After the application, five vertical soil profiles were dug per plant and photographed with a digital camera (Nikon DS100, Nikon Corp., Tokyo, Japan). The profiles were positioned in the plane of the taproot, as well as parallel to this plane 0.05 and 0.1 m from it in both directions (Figure 3). The photos were analysed with an in-house software program (BMP tool; Anken et al., 1999). Here, the number of blue-dyed image pixels per unit area were counted. Based on the idea that with an optimal treatment the water should be concentrated directly around the root, the area measuring 0.1×0.1×0.1 m around the plant was examined. To determine whether the methods differed in the water distribution, three image planes were added up to a total result (Figure 3), and a one-factorial analysis of variance was performed with the software Tibco Spotfire S+®.

![Figure 3. Sketch of the experimental design with three section planes where water distribution was examined.](image)

![Figure 4. Mortality rate as a function of duration of treatment.](image)
Results

Water and energy requirement

A first overview (Figure 4) showed that the mortality rate did not increase with increasing duration of treatment in the same way for all treatment variants. Treatment A produced suitable and increasing mortality rates at 10 and 15 s, but at a longer duration of the treatment, the intended mortality rate of 80% was not reached. Treatments B and C showed increasing mortality rates when the duration of treatment increased from 10 to 25 s, with the exception of 20 s where the mortality rate was much lower than at shorter durations of treatment. Both treatments did not reach the intended mortality rate of 80% in any case. Treatment D achieved the goal with exposure of 20 s or more. Only Treatment E exceeded the aimed mortality rate when the treatment lasted 15 s or longer. All treatments occurred under field conditions at different sites that varied in the root sizes and habits, the positioning and functioning of the application heads, the water temperature and the soil conditions. This variability could explain why the mortality did not increase linearly with increasing treatment time or temperature.

In the logistic regression of the linear mixed-effects model (Eq. 1), fixed effects were: the treatment, the water temperature and the water amount (Table 3). Soil moisture was a random effect. Soil type was not taken into account owing to the low quantity of data. As already written, the outcome variable mortality rate was defined as 0.8.

\[
P_{\text{mortality rate}} = \frac{\text{logit}(0.8)}{\text{logit}(0.8) - 1} = 1 - \frac{1}{1 + \exp(-0.849 + 6.950T + 28.268(T - T_0) - 0.038M_{\text{soil}} - 0.028M_{\text{soil}}^2 + 0.180M_{\text{soil}}^3 + 0.071T + 0.046T^2 + 0.047T^3 + 0.016T^4 + 0.000T^5)}
\]

where:
- \(M_{\text{soil}}\) is the water-amount;
- \(T\) is the water temperature (°C);
- \(\theta\) is the soil moisture (m³ m⁻³);
- \(\beta Tr\) is the coefficient of treatment;
- \(\beta TrT\) is the coefficient of treatment:temperature;
- \(\beta TrT^*\) is the coefficient of treatment:water-amount;
- \(\beta TrTM\) is the coefficient of treatment:temperature:water-amount.

In the graphic representation of the statistical analysis (Figure 5), the different isolines correspond to a mortality rate of 80%, with the different line thicknesses symbolising soil moistures of 40 and 45 vol.-%.

Soil moisture of the complete dataset ranged from 31.6-45.0 vol.-%.

The thermal energy required to heat the soil rises with increasing soil moisture because the additional soil water must be heated. Here, the achievable temperature increase differs according to soil type and soil moisture content. With the same thermal-energy content, the amount of water applied and the water temperature are reciprocally proportional (Eq. 2).

\[
E_0 = c \times m \times \Delta T
\]

where:
- \(E_0\) is the thermal energy (kJ);
- \(c\) is the heat capacity (kJ kg⁻¹ K⁻¹);
- \(m\) is the mass (kg);
- \(\Delta T\) is the temperature difference (K).

With Treatments A and B, this dependency was clearly visible, and low water temperature could be substituted by an increased water amount, and vice versa. With the remaining treatments, this relationship was not clearly depicted. Especially Treatment C showed contrary characteristics. It is possible that the application head did not work as well as expected and larger amounts of water got lost in surface runoff, never reaching the taproot.

According to formula, the lower the required temperature increase in the water, the lower is the required energy for the same water amount. Treatments D and E showed that even at temperatures as low as 90°C, dock control was successful with a high mortality rate (Figure 5).

The conversion of the logistic regression formula allowed us to derive the required quantities of water at different soil moisture levels and water temperatures for each application nozzle. As an example, Table 4 illustrates the amounts of water leading to a mortality rate of at least 80%.

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Interaction</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>TrT</td>
<td>treatment</td>
<td>6.950</td>
<td>7.533</td>
<td>4.625</td>
<td>0.000</td>
<td>28.268</td>
</tr>
<tr>
<td>TrT*</td>
<td>treatment:temperature</td>
<td>-0.042</td>
<td>-0.055</td>
<td>-0.028</td>
<td>0.000</td>
<td>-0.284</td>
</tr>
<tr>
<td>TrM</td>
<td>treatment:water-amount</td>
<td>-6.857</td>
<td>-6.307</td>
<td>-3.922</td>
<td>0.000</td>
<td>-16.745</td>
</tr>
<tr>
<td>TrTM</td>
<td>treatment:temperature:water-amount</td>
<td>0.046</td>
<td>0.047</td>
<td>0.016</td>
<td>0.000</td>
<td>0.174</td>
</tr>
</tbody>
</table>

Table 3. Coefficients to formula (1) for each treatment.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A</th>
<th>B</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount of water per plant</td>
<td>dm³</td>
<td>3.7</td>
<td>2.6</td>
<td>3.8</td>
</tr>
<tr>
<td>Energy per plant</td>
<td>kWh</td>
<td>0.319</td>
<td>0.228</td>
<td>0.333</td>
</tr>
<tr>
<td>Fuel-oil requirement per plant</td>
<td>dm³</td>
<td>0.033</td>
<td>0.023</td>
<td>0.034</td>
</tr>
<tr>
<td>Fuel-oil requirement per L of water</td>
<td>y [fuel-oil] x [water 90°C]</td>
<td>dm³</td>
<td>y=0.0118x R²=0.77</td>
<td></td>
</tr>
<tr>
<td>Fuel-oil requirement per plant</td>
<td>dm³</td>
<td>0.044</td>
<td>0.031</td>
<td>0.045</td>
</tr>
</tbody>
</table>

Table 4. Water, energy and fuel-oil requirement at an assumed water temperature of 90°C and a soil moisture content of 40 vol.-%, determined by multiple regression.
least 80% at a soil moisture of 40 vol.-% and a water temperature of 90°C. Listing the treatments in ascending order of the amount of water required, we have Treatments E, D, B, A and C. If we assume that the water is heated from 15 to 90°C, it is possible to determine the theoretically required energy, and hence the theoretically required quantity of fuel-oil per plant (Table 4). In line with our expectations, the experimentally determined fuel-oil requirement for heating water was virtually the same for all treatments. Thus, we used a common regression equation for all collected data (regression equation in Table 4) to calculate the theoretical fuel-oil requirement per plant based on the theoretical quantities of water required per plant. Treatment E required the least amount of energy for a treatment success rate of 80%.

Water distribution in the soil-blue-dye tracing

The individual figures showed sometimes a clearly limited and sometimes a highly diffuse water-distribution pattern in the soil (Figure 6). Not even in the plane of the roots was a defined contour recognisable. Contrary to our expectations, a water distribution depending on treatments could not be identified by visual examination. The statistical analysis of the summed-up water distribution from three sectional planes (Figure 7) revealed no significant differences between the individual treatments (P=0.38). In other words, none of the methods had significantly more blue-dyed areas within the assumed 0.1x0.1x0.1 m cube.

Discussion

The goal of this study was to optimise the application technology and energy consumption for hot-water treatments to control broad-leaved dock. The analysis showed that temperatures above 100°C were not necessary to achieve a mortality rate of at least 80%. For Treatments D and E, suitable results were obtained with water temperatures as low as 90°C. Moreover, these two treatments required the lowest amounts of water and fuel-oil. Regarding energy requirements, Treatments D and E were the preferred treatments.

Soil moisture was an important treatment variable. The drier the soil conditions were, the less hot water was needed to get good mortality rates. It is important to note that the energy required for the heating of...
additional soil moisture lowered the efficiency of the treatment because this energy was no longer available for the heating of the dock roots. This fact was represented in the statistical model, where soil moisture appeared as a main effect and in interaction with the amount of water. It can be expected that the soil type also had an effect - probably in interaction with soil moisture. This has to be investigated in further trials.

The ease of handling during the treatments was a criterion for the practicability of the method. The hammering of the application heads A-D proved cumbersome. Particularly with very dry soils rich in skeletal material, this action was very time consuming. Furthermore, with Treatment A, the heavy mechanical load on the mandrels caused them to break twice. This problem was solved by pre-boring the holes with an ancillary tool with the same geometry. Treatment E compared favourably here. The contact-free treatment of the plants from above entailed no additional labour or loss of time. The 10 m long hose and the low weight of the trigger gun guaranteed maximal mobility to treat the dock plants.

Observations in the field during the studies showed that with all treatments, a certain proportion of the water ran off above-ground, thereby remaining unused. This effect was most obvious in Treatment C. It was not possible to explain the differences in effect between the treatments by the blue-dye tests. The observation that with Treatment E the soil structure around the root was destroyed, and that the hot mud took some time to drain through fissures, was not reflected in the photos of the soil profile. The Vitason Blue dye tracer did not allow us to quantify the amount of water, but only enabled us to determine the spread of the water. Besides the spread of the hot water in the soil volume, other factors such as impact on the soil structure and transfer of the heat to the plant roots will need to be examined to explain how the hot-water treatments control dock plants.

Coarse compounds like rust, sand or limescale, which can obstruct the nozzles, must be filtered out directly at the water intake. Another problem is posed by calcification inside the machine. When the equipment is not in use, calcium carbonate precipitates as the hot water cools down inside the flow heater. This limescale cannot be filtered out and obstructs especially the small nozzle diameters of Treatments A and D. In Swiss and European organic farming, permitted cleansers such as formic acid or acetic and citric acid may not be used as additives in outdoor areas. To prevent calcification of the nozzles, it is advisable to use rainwater with a lime content as low as possible.

At an average treatment time of approximately 12 s for Treatment E, the expected performance per hour on heavily weed-infested land was estimated at 150-180 plants per hour. Precise work-economics surveys on this subject have yet to be conducted.

Conclusions

The treatment of R. obtusifolius with hot water proved effective in the field trials. Treatment E emerged from the comparative study as the most efficient treatment. Based on a water requirement of approximately 1.6 dm³ per plant, an energy requirement of 0.02 dm³ fuel-oil per plant, an application time of approximately 12 s, and its ease of use, this method was rated as suitable and favourable for practical application. Assuming that 2000 plants per hectare are treated with Treatment E, this means an energy consumption of around 40 L of fuel-oil and a water consumption of 3200 L.

Future studies should further optimise the energy and water requirement of the method, as well as enable recommendations for different site characteristics. The population density at which the use of the method is suitable must also be determined. The aim is to provide practitioners with precise treatment recommendations for a variety of soil types, soil moisture contents and population densities. In addition, the time spent for manual Rumex control must be estimated so that practitioners can quantify work performance and process costs.
The described method of hot-water treatment is a solution for dock control in organic farming. Time will tell if this method could be suitable to control other root spreading weeds like creeping thistle (Cirsium arvense), bishop’s weed (Aegopodium podagraria), common couch (Agropyron repens) and ragwort (Senecio jacobaea) or even invasive plants like yellow nutsedge (Cyperus esculentus) or Japanese knotweed (Reynoutria japonica).

References

Peruzzi A., Raffaelli M., Ginanni M., Mainardi M. 2002. Development of...