
Abstract 

This paper describes a device for monitoring the slurry level in stor-
age tanks. In particular, it describes the inference engine used within
the StorEyes software. This software was developed by the Authors to
interpret and manage data collected from measurements taken by
ultrasonic or pressure sensors mounted on slurry tanks for continuous
monitoring of the stored effluent level. The monitoring device consists
of a data-logger that uses a GPRS device for the wireless transmission
of data to a Farm Information System server, a buffer for the temporary
storage of data in case of malfunction of the farm network, and a GPS
receiver. The inference engine consists of a set of algorithms used to
derive from raw measurements (usually in V) intelligible information
about the loading/unloading events in storage facilities. The inference
engine has been tested and calibrated through two years of acquisi-
tions at two pilot farms with different slurry tank loading and unload-
ing management systems.

Introduction

Since the 1960s, the continuous expansion of the livestock sector
has led to the development of intensive livestock farms, characterized
by a high number of cattle per hectare and a high consumption of
extra-farm provenience forage.

This has inevitably led to an excessive production of zootechnical
effluent compared to the available farmland, thus transforming a pri-

mary source of nutrients for crops in a low-value material, to be dis-
posed of at the lowest possible cost (Mazzetto, 2009a). As a result,
incorrect management has led to a distribution of effluent in the field
that is not always sustainable and appropriate from an agronomical
point of view. The main consequence of this incorrect effluent distri-
bution is the pollution of surface water and groundwater, due to an
excess of nitrates (Sommer, 2004). As confirmation of this, the
European Environment Agency (EEA) has estimated that Italian agri-
culture accounts for over 60% of the release of nitrogen into surface
waters and it has identified a close correlation between nitrate con-
centration and the intensity of national agricultural activity (Provolo,
2008). This situation has forced public administrations to put in place
a strict preventive monitoring system of effluent distribution based on
the subdivision of the territory into areas characterized by different
levels of vulnerability. The first initiative of this kind was the Nitrates
Directive (EEC, 1991) and the subsequent national and regional laws.

Following completion of the Directive in 2006, the Regione
Lombardia (2007) passed a Regional Resolution, the Nitrate Directive,
to extend the areas of vulnerability to a large part of the Po Valley and
to the flood zones, as required by the hydro-geological plan for the Po
River Basin.

In addition to drawing up the Operative Plans (POA/POAs) and the
annual communication of PUAs/PUA by the farmers that were already
laid down by the previous regulations, the 2007 Resolution provides for
self-monitoring to verify the effective application of the aforesaid
Operative Plans. A penalty system was put in place to deal with cases
of misconduct on the part of the farmers. The framework highlights
the need for farmers to have a monitoring system on their farms that
allows for the automated collection of data related to the management
of livestock effluents and the subsequent storage of the data in suit-
able databases. To do this, farmers must adopt a Farm Information
System (FIS) able to store and process data related to the handling of
zoo-technical effluents on the farm (McGechan, 2000). 

The METAMORFOSI project, created by the Department of
Agricultural Engineering of Milan, aims to automatically produce
reports on slurry management using FISs and Territorial Information
Systems (TISs) that are connected by wireless networks.

In particular, StorEyes is a software program developed within the
framework of the METAMORFOSI Project (Mazzetto, 2009b,c) that
handles the control of nitrogen flows in a specific territory, starting
with monitoring the management of the animal effluents on the farm.
In compliance with the Nitrate Directive, the overall project deals with
the automatic monitoring on individual farms of both the storage facil-
ities for zoo-technical effluents and their related spreading activities.
In this way, extending the system to a congruous number of farms
within a single area, it is possible: i) to control the potential entry of
nitrogen from zoo-technical effluents in that territory through moni-
toring the storage facilities; ii) associate the withdrawals with the
areas where the effluents are spread through the monitoring of the
spreading machinery used.
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The project has, therefore, identified methods and related IT tools
that are capable of providing continuous monitoring of both the
amount of effluent present at any moment in the farm storage facilities
and the dynamics of the spreading machines. Nowadays, this is possi-
ble thanks to the remarkable advances achieved by the application of
wireless data transmission networks in agriculture (McKinion, 2004;
Wang, 2006). Complete and comprehensive control is only achieved
when it is possible to integrate information obtained independently
through these two monitoring initiatives. 

In particular, the potential for constantly recording the volume of
effluents present at each individual farm allows a very realistic esti-
mate to be made of the nitrogen flows which enter and leave the terri-
tory, and which are related to the volumes of incoming and outgoing
effluents at the individual farm storage points. Obviously, this is much
simpler if it involves liquid or semi-liquid effluents (slurry waste);
these are exactly the types of effluents that have been considered for
use with the monitoring system here described.

A continuous measurement of the slurry level in livestock storage
tanks also makes management of effluents easier in terms of planning
regarding spreading or tank loading/unloading. To ensure precise con-
trol, a data acquisition frequency of at least one measurement per
minute must be ensured. This is usually achieved through ultrasonic or
pressure sensors appropriately installed in each storage tank. This fre-
quency generates a relevant amount of data that will then be continu-
ously processed to automatically interpret and register all the opera-
tional events performed by the farmer in each tank. For both practical
and analytical reasons this cannot be done manually: in fact, variations
in levels are often strongly affected by a high measurement noise that
can hide actual events or propose false ones. 

In addition, the final slurry mass balance over a pre-defined time
period (even in terms of kg of N) must be derived from those measure-
ments as accurately as possible. 

The StorEyes was used to provide all the analytical tools required to
interpret these measurements. Therefore, the package provides the
answers to all possible queries on the historical events (or N flows)
occurring in the farm tanks. It also includes, first, an inference engine
to transform raw data into intelligible management information.

From this point of view, StorEyes can be said to belong to the family
of inventory management programs. 

Materials and methods

Monitoring systems for effluent storages 
A complete slurry waste tank monitoring system consists of: i) a

data-logger device to be mounted directly on the tank, also including
sensors to provide slurry waste level readings through different types of
measurements; ii) a set of computing and inferring procedures used to
produce information from the raw data collected; and iii) a user inter-
face to facilitate access and the use of information in the control activ-
ities that are related to the management decision-making processes.

The data-logger (Car Securer device 4.00, Media Systems Ltd.,
Bulgaria) is connected to the sensor to measure the level of slurry. It
consists of: i) a data recorder (two analog and four digital inputs); ii)
a GPRS device for the wireless transmission of data to the FIS server;
iii) a buffer for the temporary storage of data in case of malfunction of
the farm network; iv) a GPS receiver. In particular, the GSM module
allows: i) the connection via GPRS (max. speed 64 kbit/s) to the farm
server; and ii) communication with the user via SMS to fulfill specific
data requests or to signal possible malfunction.

The GPS receiver is only used to synchronize the data recorded
through the internal clock. In this case, measurements of the position
are, in fact, unnecessary.

The characteristics of the monitoring system depend on:
- the type of storage tanks (above ground tanks or tanks placed under

the slatted floor) and their spatial location (this affects the number
of sensors that can be managed by each data-logger);

- the type of sensor employed (ultrasonic or hydrostatic sensor).
The data-logger may be equipped with two types of sensors (Figure

1) depending on whether they measure: i) pressure by means of sen-
sors (Jumo, dTrans P90, Germany, output 0-10V) to be immersed in the
hydrostatic fluid to be measured so that the hydrostatic pressure acting
on a sensitive membrane generates a voltage signal that is proportion-
al to the effluent level (L, in m); and ii) distance (the distance between
the sensor and the slurry surface) by means of acoustic sensors (Sick,
UM 30, Germany, output 0-10V) placed above the free surface of the
slurry, and emitting an ultrasonic pulse that enables the flight-time to
be measured once the pulse is reflected by the slurry surface; this kind
of US-sensor, therefore, generates a voltage signal proportional to the
distance D (m) to be measured. As the distance HS is known, the final
level is then obtained by the formula L = HS – D (Figure 1). 

Both types of sensors require a preliminary on-site calibration.
Logged data are continuously and automatically retrieved (a single
measure per minute) via a wireless GPRS-transmission and transmit-
ted to a central server with StorEyes installed, together with the data-
bases (DB) relating to the basic farm resources (Res-DB = plant,
machines, farm structures and land, data-loggers) and recorded activi-
ties (Tank-DB and Operation-DB). It checks the presence of new meas-
ured data once a day. These data are then treated and the following
computations are then performed: 
measured data A)→ raw data B)→ inferred data C)→ use of information.
A procedures convert and filter data logged by sensors into intelligi-

ble (raw) data, i.e. the calibration equations are used first to convert
electric measurements into level measurements that are then aggre-
gated and cleaned up as much as possible to remove all forms of noise
prior to being definitively expressed in terms of effluent volumes; to do
this StorEyes recalls information on tank features from Res-DB. 
B procedures then perform inferences to provide final average hourly

volumes of slurry waste contained in the tanks and to identify effluent
uploading and downloading events. Such events can later be confirmed,
or not, by the user. 
C procedures enable the farmer to access the inferred data both in

table and graphic forms (volume vs time diagrams, at daily, weekly or
monthly scales; Gantt diagrams of events). The results of the inference
procedures that have to be kept are stored in the Inf-DB. A set of
queries is also provided to allow for a large series of surveys and to
investigate the above mentioned links between Tank-DB and
Operation-DB events.

The possible settings for the use of the information collected from
monitoring of the storage facilities for the zoo-technical effluents can

[Journal of Agricultural Engineering 2012; XLIII:e6] [page 37]

Article

Figure 1. Types of sensors used to monitor the slurry level in stor-
age tanks. (A) Pressure gauges (hydrostatic sensors). (B) Distance
gauges (ultrasonic sensors) and diagram of the data-logging
device for monitoring slurry level in storage tanks.
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be found both on the farm and throughout the territory. For the
moment, the principal analyses and assessments that can be performed
with StorEyes are targeted at farm use.

The inference engine: an overview
The B procedures transform raw data into intelligible data.

Therefore, they only represent the inference engine of this application.
The inference engine performs a sort of day by day interpolation

process treating each daily raw data set separately. The scope is to
reconstruct a simplified profile of the daily level pattern that includes
only a set of stabilized levels, also called benchmark levels. Such bench-
marks include a set of some level-values against which the measured
raw data are linkable with greater frequency; less than an acceptable
error variance. So, benchmarks aim to eliminate measurement noise,
proposing stable fitted levels with changes in discontinuous steps only
in the case of occurrence of loading/unloading events. In other words,
a change in a benchmark value can be caused only by a discrete, sudden
change in the actual effluent levels. Therefore, the daily benchmark
analysis only allows discontinuous events to be identified. A multiple-
day analysis must also be performed to be able to identify slow, progres-
sive variations in level values.

The single-day benchmark interpolation is not carried out through a
conventional statistic regression; in fact, this cannot meet the need to
identify loading/unloading events. It is rather based upon the following
calculation steps:
S1. identification of all the possible daily benchmarks, even filtered

with respect to the need to obtain stable profiles over time;
S2.replacement of each raw datum with its closest benchmark (identi-

fying preliminary discontinuities in the daily benchmark pattern);
and 

S3.application of a final filter to confirm (or reject) the previous
replacement on the base of a deviation test.
Discontinuity points are then forced to correspond to storage loading

or unloading events, i.e. to those processes that can be associated to
injection or withdrawal activities on slurry storage, respectively (Figure
2). The daily analysis also identifies presumed events. These could
occur during possible prolonged recording interruptions along the day,
resulting in some holes in the availability of raw data over time.

The subsequent multiple-days analysis aims to identify the so-called
compensatory events, i.e. an event that causes a slow and gradual
change in the tank level, not identifiable by instantaneous events. A
compensatory event, therefore, may be due either to activities related
to slow and continuous load fills (e.g. when the load is the result of the
daily periodic cleaning of the aisle housing), or to various phenomena
not directly linked to storage management activities, but rather to ran-
dom disturbing events (gas production by fermentation, convection,
growth of weeds on the effluent surface, etc.). 

The interruption of logging that occurs between two or more consec-
utive days is also treated as a compensatory event.

Details on the algorithms
The goal of the inference engine is to replace a sequence-set G0 of

original raw data (available over a period of D days) with a new
sequence set E of revised values according to which the storage man-
agement events can be inferred more clearly. A first single-day analysis
is performed iterati-vely for each day d ∈ D on a subset G0d ⊆ G0:

G0d = {g0dj | d ∈ D }

j = 1..NJ,    with   j ∈ N  and  g0dj ∈ R

The whole computation sequence foresees the steps mentioned
above:

(being Ed ⊆ E, as well)
(Daily raw data → benchmark levels → interpreted data → inferred

data).
All the elements of both G0 and E (and related subsets) are associat-

ed with time instants. As the system works on a discrete time basis, the
timeline set Td is simply expressed as:

Td = { j | j ≤ NJ = 1440·φ} ,  with   j ∈ N

where NJ = maximum number of daily measurements, and φ = fre-
quency (min–1). The experience of the 2-year project period highlight-
ed that a frequency φ = 1 min –1 is an appropriate compromise to obtain
satisfactory inferences without an excessive redundancy of data (NJ =
1440). S1-step performs the construction of the Cd set that is usually
composed of a small number of elements, such that:

Cd = {cdr | d ∈ D, cdi ∈ G’0d},

r = 1.. NC ,   with   r ∈ N  and  NC<<NJ.

In short: i) each element cdr identifies a benchmark storage level; ii)
the number of elements of Nc is generally very low depending ultimate-
ly on the number of management events that cause a change in level
during the day; iii) the elements cdr are not associated with time
instants (their link to Td will be performed in the following step); and
iv) the G0d set is empty only when a complete blackout in the recording
of data occurs. Of course, in such situations, it is not possible to apply
any form of inference; therefore, it will be Cd = {0}.

In case of partial blackout days (i.e. with still enough data to trace a
partial storage level pattern), and in those in which no loading or
unloading events occur, the inference calculates at least the bench-
mark-level cd1, that can, therefore, be seen as a sort of average daily
level.

The construction algorithm Cd performs a time-independent calcula-
tion based on the search for levels which occur with high frequencies

Article

Figure 2. Types of events occurring on the inferred level values of
an effluent storage. Values from L1 to L7 are benchmark levels. a,
loading; b, unloading; c, compensative, presumed loading; d, pre-
sumed unloading; e, compensative loading.
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over the day, together with the application of some filters for removing
outliers. The latter are first identified through the following test
applied between two adjacent measurements over time:

where ΔLREF is a warning level reference variation and k is a dimen-
sionless filtering coefficient. The other new variables depend on the
construction features of the storage facilities: A = surface of the stor-
age tank (m2); Qmax = maximum slurry flow rate (m3∙min–1) occurring
in loading or unloading events; RL = minimum resolution for reliable
level measurements (cm). By default, it is set k=3. In any case, the
higher the noise in the G0d set, the higher the k-value to be set up prior
to running the inference procedure. It was shown that a value of RL= 1
cm is a reliable resolution limit for the systems in hand. Therefore, for
example, in a plant with a storage surface of 200 m2 and a maximum
slurry withdrawal flow rate of 180 m3h–1 (i.e. Qmax = 3 m3 min–1) we
have ΔLREF=1.5 cm∙min–1; so each measurement with a deviation
greater than 3∙1.5=4.5 cm with respect to the previous one is replaced
by the latter. Such a test even performs a rounding procedure thus pro-
viding a final G’0d set with integer level values (in cm). A frequency
spectrum analysis of the daily levels is then carried out only on this new
set. In short, such an analysis: i) identifies the levels with a daily fre-
quency greater than a threshold dFREF (by default set to dFREF =2%).
These will be then eligible to be classified as benchmarks; ii) includes
all adjacent eligible values into a single group; and iii) assumes that
the level benchmark to be selected as representative for each group in

hand is the level with the highest frequency within the group itself. A
simplified example of the procedure is shown in Figure 3, where we
obtained Cd = {202, 250} with Nc=2  benchmarks. In the following S2-
step (Cd→Ead) each g0dj measurement is first converted into a new eadj
value (eadj ∈ Ead) derived from the benchmarks in Cd according to the
search for a minimum deviation:

The procedure is then repeated on time ranges extended to 5 min,
within which the benchmark with the higher frequency is selected to
be definitively associated to all the measurements belonging to the
same time range. This is to ensure that profile of the levels being
reconstructed have greater stability. At this stage of the inference, such
a profile is still limited to a sequence of horizontal lines: a change in
benchmarks highlights a discontinuity point in the storage level pro-
files. It can be then used to detect the presence of a loading/unloading
activity. Further logical filters check the consistency of points of discon-
tinuity before confirming each activity. In the final S3-step (Ead→Ed),
the inference is completed creating a new set of fitted measurements
Ed, that can fully reproduce a stable daily tank level profile, including
also the transitory phase of each loading/unloading activity. In proxim-
ity of the i-th discontinuity point, j=pi data are interpolated by a regres-
sion that describes the transitional phase through a linear variation of
the levels. A priority index (in the range 0÷100) is assigned to the data
that are being interpolated.  It gradually increases approaching sym-
metrically pi where it has the maximum priority value (100). The inter-
polation gives the slope of the transitional profile, together with the
estimate of the start and finish of the loading or unloading operation.
In order to optimize spaces of system memory, only a subset SEd (such
that SEd ⊆ Ed) is permanently stored in the Inf-DB:

SEd = {sedq | d ∈ D, sedq ∈ Ed} ,
q = 1..NE with   q ∈ N   and   NE<<NJ

NE = 2⋅Nc – 1

SEd is only composed of the elements required to reconstruct the daily
pattern of storage level throughout a linear interpolation between two
consecutive elements. SEd is ordered with respect to time (it is also
linked to Td,), so its elements refer to specific instants over the day and
are selected to correspond with: i) the first useful measurement for the
day in hand; and ii) any sudden change in level benchmarks.

In the example in Figure 4 we have:

SEd = {250, 250, 202},  NE = 2⋅2 – 1 = 3.
It is then possible to clearly identify the storage management events:
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Figure 3. Simplified example of the construction of the daily
benchmark set Cd. The upper panel provides the original meas-
urements G0d that for greater graphic clarity were limited to NJ
=120  φ= 12 min–1). Empty circles are here related to outliers and
the arrows indicate the replacements provided by the filtering
test. The related spectrum frequency analysis is presented below
with a threshold of dRREF=2%.

Figure 4. Example of interpolation of raw-data levels with bench-
marks (continued from Figure 3).
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(j1÷j2) : se1 = se2→ stationary trend : no activity
(j2÷j3) : se2 = se3→ decreasing trend : withdrawal
(j3÷jend) : se3 = seend→ stationary trend : no activity

Based upon the above parameters and the features of the effluent at
hand, the mass and nitrogen balance of the storage facility can then
finally be calculated and reported over a required time range.

Testing the algorithms at farms
The inference engine was implemented within the StorEyes soft-

ware package that was then applied and tested during a 2-year research
period carried out on two livestock farms in Northern Italy. They were
characterized by different methods of management of their slurry tank
facilities. 

The former (Farm 1) has two cylindrical 700m3-tanks (map diameter
16 m; max. storage height 3.5 m) managed through a moderate num-
ber of loading and unloading events. The tanks are annexed to a herd
of 100 dairy cows from which the liquid effluents (excrements mixed
with washing water) are temporary collected into small underground
storage tanks located at the head of the paddock areas. When these
tanks are full, the effluent is definitively pumped inside the main tank.
The withdrawal of slurry from the tank is usually driven by another
pump that delivers the effluent up to the fields by conveying it into an
underground pipeline. The distribution on the field is finally carried
out by a tractor coupled to a spreader equipped with a distributor pipe
(connected on-site to the underground pipeline) progressively rolled
out in the field. Only rarely a towed 10m3-slurry tank is also used for
spreading. 

The second farm (Farm 2) has a completely different management
situation: the slurry tanks are underground and placed below the feed-
ing area of the cowshed. This has a slotted concrete floor that allows
the passage of the manure produced by the animals directly into the
tank or through which the manure is scraped during cleaning. Here,
therefore, the tank is continuously and progressively filled without any
sudden uploading event. The storage facilities foresee two rectangular
300m3 tanks (max. storage height 1.5 m). These are periodically down-
loaded into two towed slurry tanks (10 and 12 m3, respectively) that are
used for finally spreading the effluent on the fields.

Results and discussion

Monitoring the levels of a liquid stored in a tank apparently seems
a very simple task; and this is actually true when the tank stores
homogeneous liquids, irrespective of the volumes stored and their
degree of viscosity. However, this task becomes very complex in prac-
tice when we have to deal with heterogeneous substances, often
semisolid and subjected to phenomena of both decantation and fer-
mentation, usually stored in environments that are in their turn
affected by a high organizational complexity. During the experimen-
tal test period, the main problems we found in this respect dealt
with: i) the difficulty of maintaining correctly function of the sensors
adopted for taking the measurements; ii) the frequent interruption
of the electricity supply in the cowsheds, with the consequent risk of
data loss; iii) the difficulty of ensuring regular inspection and main-
tenance interventions; iv) the presence of disturbing phenomena
that caused systematic fluctuations in the measurements to be taken
due to the presence of convective motions in the stored masses or of
weeds growing on their surface; and v) the disturbances that were
generated by excessive viscosity of the substrate, during the load-
ing/unloading activities, with further noise increase, and problems
in detecting the timing of the events. In this framework, the perform-

ances of the inference engine, together with the use of the whole
StorEyes package, were first tested to assess its reliability in detect-
ing all types of events related to the management of the storage facil-
ities, and in estimating the related mass balances with acceptable
accuracy. This, of course, implies the ability to interpolate appropri-
ately, even using a simplified and standardized pattern, the daily pro-
files of levels recorded.

In almost all cases, the StorEyes engine clearly identified the
events that actually occurred, while also giving additional details on
the way the event was performed. The case studies of the situations
detected is very broad and only some of the most important examples
can be discussed here.

Figure 5 reports some of the situations related to the activities
carried out on Farm 1. Figure 5A shows a daily distribution carried
out through the underground pipeline: the unloading event here
appears as a progressive reduction in levels that is usually prolonged
over time (up to 3-4 h per turn, with the operation that is executed
at a very low speed, <0.5 m/s). Figure 5B describes a similar situa-
tion but with slightly shorter withdrawal turns, each anticipated by a
loading event. Figure 5C shows a series of effluent distributions per-
formed by slurry tanks; here the unloading event is characterized by
a level pattern profile with shorter and more rapid variations over
time. The ability of the system to detect such short events is evident-

Article

Figure 5. Examples of daily inferences carried out on storage facil-
ities of Farm 1. Black lines show fitted results of the inference
engine.
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ly influenced by the noise disturbance of raw data. Despite the unfa-
vorable conditions shown here in Figure 5A and C, the inference
analysis was successfully performed.

Figure 6 provides similar case studies monitored on Farm 2.
Figure 6A refers to a typical day with no withdrawal activities and
shows the slight, progressive increase of the level in the tank. The
trend is fitted by a single horizontal line representing the only
benchmark identified for the day in hand. On such a farm, the mass
of the total slurry input can only be estimated by performing a multi-
ple day analysis providing the evaluation of compensatory loading
events over a given period. Figure 6B, on the other hand, describes a
withdrawal activity carried out in the early evening: this was actual-
ly two slurry tanks being loaded consecutively. However, the waiting
time between the two loads was too short (approx. 15 min) and as
such was not detected by the inference engine which grouped
together the two unloading events in a single activity. In this situa-
tion, the final total mass remains correct but the computation of the
time required to perform the operation is affected by errors. The
higher the variability of the original data and the shorter the inter-
val between two consecutive events, the lower the probability is of
being able to distinguish between the two events themselves.

However, apart from these circumstances, the StorEyes engine
proved itself able to interpolate more than adequately the original
data of storage levels. When comparing G0d vs Ed data sets (Figure 7),
we always find results with a slope and an intercept that are never
significantly different from 1 and 0, respectively (P99<0.01 for both). 

In addition, in almost all cases, StorEyes clearly identified the
events that actually took place, while also giving additional details of
the way the event was performed. The software package has also
been used in such a way as to provide the information to farm users
clearly and precisely (Figures 8 and 9).

Altogether, apart from the situations with prolonged blackout reg-
istration periods, satisfactory results were always obtained. Indeed:
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Figure 6. Example of daily inferences carried out on storage facil-
ities of Farm 2. Black lines show fitted results of the inference
engine.

Figure 7. Comparison between observed (G0d) and inferred data
(Ed) performed on a set of measurements taken on Farm 2 over 42
days in the summer (July-August 2009).

Figure 8. Example of monthly report provided by StorEyes
according to its inference engine. 1) Raw data. 2) Raw data fitted
by level benchmarks. 3) Report with event details for the period
considered. Data refer to activities carried out at Farm 1.
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a) all events were identified correctly; b) the values of the mass
transferred has been estimated by figures very close to reality; and c)
all changes in the level of accidental events not directly related to
management activities (such as convection of the stored mass, ris-
ing gasses, prolonged rain, etc.), which were in fact very rare, have
always been correctly interpreted and quantified as compensatory
events, thus not altering the final total mass.

During the research period, attention was also given to practical
issues such as the use of the software, also in combination with the
other management packages used within the project, and in particu-
lar with that developed to monitor the machines used for effluent
spreading. This allowed the total mass also to be combined with the
mass distribution maps based on land use. 

Although these aspects have not yet been subjected to a proper
method of scientific investigation, the day by day experience at the
two pilot farms allowed us to observe that the software: i) is able to
meet user needs through its easy user-friendly interfaces and com-
prehensive graphical supports; ii) is highly suitable for integration
into the current farm management routines; and iii) is an easy to
understand intuitive package which only needs a few hours training.
In fact, the computations performed are not particularly complicated. 

Conclusions

In conclusion, the algorithm employed by the inference engine usu-
ally produced very satisfactory results, being able to detect and quanti-
fy autonomously all the relevant events related to the management of
effluent storage facilities. The usefulness of these analyses is evident
both as stand-alone application (i.e. at each moment it is possible to
calculate and control the total effluent mass in a given time range), and
as an application that integrates such an analysis with on-field moni-
toring of spreading activities to be carried out by tractors equipped with
GPS and data-loggers. This solution allows field work registers to be
automatically recorded (farm work-books), thus allowing the effluent
mass transfers observed in the storage systems to be linked to the spa-
tial information related to their distribution. The most important prob-
lems encountered during our research on storage monitoring activities
were not directly due to the functionality of the inference engine, but
rather to the performance of the various hardware components used
(sensors, data-loggers, data transmission devices and server). Many
improvements were made to the algorithms of the inference engine in
order to overcome these hardware problems in an attempt to make the
quality of the inference calculation as independent as possible of hard-
ware component function. The ongoing research is now mainly concen-
trating on improving the reliability of all the hardware devices. 
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Article

Figure 9. Example of monthly report provided by StorEyes
according to its inference engine. 1) Raw data. 2) Raw data fitted
by level benchmarks. 3) Report with event details for the period
considered.  Data refer to activities carried out on Farm 2.
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