1. Introduction

In the past many efforts were made to advance the knowledge of the hydrologic response at the hillslope scale. Horton [1933, 1938] was one of the first proponents of the concept of the infiltration excess mechanism for which overland flow occurs. Particularly, Horton’s mechanism is the main mechanism of runoff production in arid and semi-arid regions, generally characterised by high rainfall intensity and by hillslopes with poor vegetation cover; in this case runoff occurs when the rainfall intensity exceeds the soil infiltration capacity. Agnese [2001, 2007] founds an analytical solution for the non linear storage model of hillslope response, valid for all flow regimes; the proposed solution is initially developed for simple planar slopes and then extended to hillslopes of complex topology. Agnese [2006] combined the analytical solution of the overland flow equation with the Green [1911] infiltration model to derive the response on an infiltrating hillslope. The non-linearity of the hillslope response has also been described by the kinematic wave approximation of the De Saint-Venant equations [1871]. Firstly, Lighthill [1955] gave the theoretical background of kinematic waves, which has since been a subject of much discussion in hydrologic literature and has been applied to a multitude of environmental and water resource problems. Henderson [1964], and Woolhiser [1967], developed an analytical solution for the kinematic wave model. Cundy [1985] and Luce [1992] derived an analytical solution of the kinematic wave equations when the infiltration rate is described by the Philip two-terms formula. Mizumura [2006], by approximating Manning’s formula by a polynomial of second order, found an analytical solution of the kinematic wave model for time-varying excess rainfall of sinusoidal functions. Giráldez [1996] analytically integrated kinematic wave equations in the case in which the infiltration process is described by the model of Smith [1978]. Woolhiser [1996] studied the effect of spatial variability of saturated hydraulic conductivity on hortonian overland flow. Also this paper focuses on an analytical solution of the kinematic wave model which, despite being limited to special cases, is very successful on understanding the dynamics of the hillslope response; this item is also asserted by Giráldez [1996], which highlighted that the usefulness of analytical solution helps the insight of the problem prior to the application of time-consuming numerical methods. Following the same approach suggested by Giráldez [1996], in this work the analytical solution of the kinematic wave model with the Green [1911] infiltration, is derived; the solution is valid for the transitional flow regime, intermediate between laminar and turbulent regime. A transitional regime can be considered a reliable flow condition when, to the laminar overland flow, is also associated the effect of the additional resistance due to the raindrop impact (disturbed laminar flow, Brutsaert, 1972).

2. Green-Ampt infiltration model

The incoming of the Hortonian runoff is related to the evidence of free water on soil surface, and thus to the presence of a thin saturated soil layer; this implies that the rainfall intensity has to be greater than the infiltration rate capacity. According to the Green and Ampt model, under the simplifying hypotheses of constant rainfall intensity, one-dimensional infiltration in a homogenous, non hysteretic and non swelling soil, lacking of macropores, with constant initial water content along the soil profile, the time to ponding, \(t_p \), is given by [Smith 2002]:

\[
 t_p = \frac{t_i K_s}{(i - K_s)}
\]

where \(K_s \) is the saturated hydraulic conductivity and \(t_i \)
is a characteristic time-scale of the infiltration process, called the sorptivity time scale. \(t_c \) is associated to the macroscopic capillary length, \(\lambda_c \), as:

\[
(2) \quad t_c = \frac{\theta_s - \theta_i}{K_s - K_i} \rho
\]

where \(\theta \) is the volumetric water content, \(K \) is the hydraulic water conductivity, and the subscripts, \(s \) and \(i \), are referred to the saturated and initial condition, respectively [White 1987].

The infiltration rate \(f \), according to the Green and Ampt model, is given by:

\[
(3) \quad f(t) = \frac{\theta_s - \theta_i}{K_s - K_i} \rho
\]

where the dimensionless function \(\Psi \) has the following expression:

\[
(4) \quad \Psi = \ln \left(\frac{\theta_s - \theta_i}{K_s - K_i} \rho \right)
\]

The cumulative depth of rainfall excess at any instant \(t \), \(R(t) \), is defined as:

\[
(5) \quad R(t) = \int_0^t i(t) - f(t) \, dt
\]

where \(r(t) = i(t) - f(t) \) is the instantaneous rainfall excess. By using a simple change of variable, eq. (5) can be written:

\[
(6) \quad R(t) = \left(\frac{t - t_p}{t_f - t_p} \right) \int_0^{t_p} i(t) - f(t) \, dt
\]

By substituting (3) in (6) and by integrating:

\[
(7) \quad R(t) = t_c \left(1 - \frac{t - t_p}{t_f - t_p} \right) \rho
\]

Eq. (7) let to determine the temporal variation of rainfall excess, very useful for hydrologic applications:

\[
(8) \quad \frac{r(t)}{i} = 1 - \left(\frac{t - t_p}{t_f - t_p} \right) \left(\frac{\rho t / t_c + 1 + \rho \ln \left(\frac{\theta_s - \theta_i}{K_s - K_i} \rho \right)}{\rho - 1} \right)^{-1}
\]

where \(\rho = i/K_s \) is the ratio between rainfall intensity and saturated hydraulic conductivity. Eq. (8) agrees with that one differently derived by Agnese [2006].

3. Kinematic wave equations

Lets consider a plane hillslope, in which the flow is rigorously downslope (Fig. 1).

It is known that kinematic wave equations can be derived by the so-called shallow water equations [Brutsaert 2005], expressing the conservation of mass and momentum, respectively:

\[
\frac{\partial h}{\partial t} + L \frac{\partial q}{\partial x} = (i-f)
\]

\[
\frac{\partial q}{\partial t} + u \frac{\partial q}{\partial x} + g \frac{\partial h}{\partial x} = q (S_0 - S_f) \frac{u}{h} (i-f)
\]

where \(h \) is the mean depth of flow, \(t \) is the time, \(L \) is the hillslope length, \(q \) is the unit area discharge, \(x \) is the downslope distance from the top of the hillslope, \(u \) is the flow velocity, \(g \) is the acceleration due to gravity, \(S_0 \) is bed slope, \(S_f \) is friction slope. Under the assumption that the inertia and diffusion effects are negligible with respect to that of gravity and of friction, the momentum conservation equation (10) simply reduces to \(S_f = S_0 \). Physically, this equivalence states that the friction slope is assumed to be equal to the bed slope; therefore, by using the same notation of Agnese [2001], the Manning equation can be written as a function of \(S_0 \):

\[
q = k_s h^m
\]

where \(m \) accounts for the flow regime (\(m \) is usually taken to be equal to 5/3 for turbulent flow, to 2 for transitional flow and to 3 for laminar flow) and \(k_s \), parameter, describing hillslope “geometry” (length, slope and roughness), has the following expression:

\[
k_s = \frac{S_0}{n L}
\]

where \(n \) is the Manning friction factor.

By assuming the common initial and boundary conditions of null water depth:

\[
h(0,t) = h(x,0) = 0
\]

eqs. (9) and (11) lead to:

\[
\frac{\partial h}{\partial t} + m k_s L h^{m-1} \frac{\partial h}{\partial x} = (i-f)
\]

Equation (14), which describes the kinematic wave approximation, can be solved by the method of characteristics [Courant 1962], which converts the (14) to a pair of ordinary differential equations, expressing the time variation of water depth:

\[
\frac{\partial h}{\partial t} = r(t) - i + f(t)
\]

and the characteristic curve:
The unique relationship between \(q \) and \(h \), expressed by (11), together with (15) and (16) allows to state that an imaginary observer moving in \(x-t \) plane at a speed equal to the kinematic wave celerity would see the flow rate increases at a rate equal to the lateral inflow \((i-f) \).

In the simplest case that overland flow occurs on an impervious hillslope, so that lateral inflow rate is equal to the rainfall intensity, the relationship for the time to equilibrium, \(t_{eq} \), (i.e. the time that the observer, starting from the top of the hillslope, requires to achieve the bottom of the hillslope) is available. By integrating (16) along the hillslope from 0 to \(L \), according to the notation we used, is:

\[
t_{eq} = k_s^{-1/m} \frac{f(i-m)}{m} \tag{17}
\]

For the impervious hillslope, if the duration of rainfall, \(t_r \), is greater than \(t_{eq} \), a hydrograph for the kinematic wave model (KW), can be obtained:

\[
q = \begin{cases}
q = i & \text{if } t \leq t_{eq} \\
q = i - m k_s^{1/m} \frac{i}{m} (m-1)(m-1) & \text{if } t > t_{eq}
\end{cases} \tag{18}
\]

Fig. 2 highlights a good agreement between the normalised hydrograph derived by KW (eqs. 18), with the experimental measurements of Izzard [1944] carried out on an impervious plane covered with turf, for several experimental combinations, namely rainfall intensities \(i = 91.4 \) and \(45.7 \) mm h\(^{-1}\), slopes \(S_0 \) = 0.01, 0.02, 0.04 and plane lengths \(L = 22, 15, 7.3 \) and 3.7 m, in the case of a turbulent flow regime \((m = 5/3) \). In the same figure the hydrograph derived by the non-linear storage model (SM), according to the solution obtained by Agnese [2001], is also represented. As it can be observed, the SM model does not really produce a good fitting of Izzard’s experimental overland flow measurements, therefore the SM model does not provide a close approximation to the exact solution. However, the SM model has an intrinsic diffusion capability compared to the KW model [Ponce 1997]. Therefore, the SM model should perform better in environmental conditions different from those investigated by Izzard, for which the effect of water storage on the hillslope could be so relevant to determine a slower hydrologic response.

Conversely to the KW model (eq.17), the equilibrium condition for the SM model can not be rigorously attained in a finite time. Notwithstanding, the Authors defined a time to equilibrium as the time necessary so that \(q \) attains a value very close to \(i \) \((q = \alpha i; \text{with } \alpha \text{ close to } 1)\):

\[
t_{eq} = \frac{1}{m} \frac{1}{m+1} \sum_{m=0}^{\infty} \left(\frac{m}{m+1} \right) \tag{19}
\]

It is interesting to observe that eqs. (17) and (19) are equivalent for a particular value of \(\alpha \), \(\alpha^* \), that slightly depends on the flow regime:

\[
\alpha^* = \frac{m}{m+1} \tag{20}
\]

For \(m = 5/3, 2 \) and 3, \(\alpha^* \) results equal to 0.83, 0.82 and 0.8 respectively.

4. Water depth and characteristics in the different integration domains

The characteristic curves may be grouped in several domains, recognisable in a \(x-t \) plane, depending on their origin: the distance axis at the time to ponding for the first domain, the part of the time axis from \(t_p \) up to the duration of rain, \(t_r \), for the second domain and the rest of \(x-t \) plane for the third domain (Tab. 1). In the following kinematic equations they will be integrated in these three domains [Giráldez 1996].

4.1 Domain 1: Characteristic originating at \((0 < x < L, t = t_p)\)

For the first domain, at the time to ponding, characteristics, originating at any section distant \(x_0 \) from the top of the hillslope, are defined as:

\[
\int_{x_0}^{x} \frac{dx}{t} = \frac{m k_s h^{m-1}}{m k_s h^{m-1}} dt = \frac{h^{m-1}}{m k_s h^{m-1}} \tag{21}
\]

![Fig. 2](image-url) - Comparison between the kinematic wave model (KW) and the non-linear storage model (SM) with the experimental measurements of Izzard [1944]. \(q^* \) is the discharge \(q \) normalized with respect to \(L \), and \(t^* \) is the time \(t \) normalised respect to \(t_{eq} \) (modified from Brutsaert, 2005, pag. 205).
To integrate (21), one could change the variable h with f. At this aim, since according to (15) $h=R$, by deriving (7) with respect to f, we obtain:
\[
\frac{dh}{dt} = t_c \frac{K_s^2}{f^2 f_{K_s}} \frac{(f - i)}{f(K_s - f)} \frac{df}{f(K_s - f)}
\]
(22)
Then, by substituting (22) in (21) one can obtain:
\[
\int_{y_i}^{y_f} dx = -m k L t_c K_s^2 \int_{f(K_s - f)}^{f(K_s - f)} \frac{dh}{dt} \frac{df}{f(K_s - f)}
\]
(23)
in which h is given by eq. 7.
For $m = 2$, the integral on the right-hand side leads to an analytical solution of the characteristic:
\[
\frac{x - x_0}{x_t} = \frac{t_c K_s^2}{f(K_s - f)} \left[(f - i) f_i f_0 - f_i f_0 (f - i) f_i f_0 \right]
\]
(24)
where Ψ is the function defined by (4). It could be observed that for the first domain, characteristics can be normalized respect to $t_c^3 k_c$.

4.2 Domain 2: Characteristic originating at $(x = 0, t_p < t < t_r)$
To analytically derive the characteristic curves of the second domain, originating at any time $t_o > t_p$, it is firstly necessary to express the water depth h as a function of t_o (through f_0):
\[
h = \int_{y_i}^{y_f} dx = (f - i) f_i f_0 - f_0 f_0 (f - i) f_i f_0
\]
(25)
where f_0 is the infiltration capacity at the time t_o.
As an example, for $K_s = 3.33$ mm/h and $t_c = 0.1$ h, Figure 3 reports the infiltration capacity curve according to the Green Ampt model, where the pair (t_o, f_0) is indicated.
In order to integrate (25), one could modify eq. (3) by replacing the pair (t_p, i) with the pair (t_o, f_0):
\[
t - t_o = \int_{f(K_s - f)}^{f(K_s - f)} \frac{K_s^2}{f^2 f_{K_s}} \frac{(f - i)}{f(K_s - f)} \frac{df}{f(K_s - f)} + \Psi_0
\]
(26)
and obtain:
\[
h = t_c \frac{K_s}{f(K_s - f)} \left[f_0 - f_0 f_0 f_0 - f_0 f_0 f_0 \right] + i \Psi_0
\]
(27)
where Ψ_0 function is defined by:
\[
\Psi_0 = \int_{f(K_s - f)}^{f(K_s - f)} \frac{df}{f(K_s - f)}
\]
(28)
Eq. (27) could also be obtained by using twice eq. (7) to evaluate the difference $h_i - h_0$ with h_i and h_0 water depths corresponding to f and f_0, respectively.
Finally, to derive characteristics, eq. (27) can be used for the integration of (16):
\[
\int_{0}^{x} dx = m k L \int_{t_0}^{t_r} \frac{df}{f(K_s - f)}
\]
(29)
Only for $m = 2$, an analytical solution can be determined:
\[
\frac{x - x_0}{x_t} = \frac{t_c K_s^2}{f(K_s - f)} \left[f_0 f_0 f_0 f_0 - f_0 f_0 f_0 f_0 \right] + \frac{f_0 f_0 f_0 f_0}{f(K_s - f)} \Psi_0
\]
(30)
Also in this case, characteristics can be normalized respect to $t_c^3 k_c$.

4.3 Domain 3: Characteristic originating at the end of the rainfall up to zero water flow ($i = 0, t > t_r$)
For t greater than the rainfall duration t_r, $i = 0$ and the water depth decreases with time:
\[
\frac{dh}{dt} = -f
\]
(31)
Analogously to (25), eq. (31) can be rewritten by introducing the infiltration capacity at the end of the rainfall, f_r, and the water depth h_r at any position x_r for time t_r:
\[
h - h_r = \int_{t_r}^{x_r} f_r dt - \int_{f}^{f} f_r dt - \int_{f}^{f} (f - i) f_i f_0
\]
(32)
Thus, by replacing t_o with t_r in (26) and then substituting in (32), the integration yields:
\[
h - h_r = -K_s^2 t_c f_r f_r f_r f_r - f_r f_r f_r f_r
\]
(33)
which highlights the decreasing water depth from the end of the rainfall. By putting $h = 0$ into (33), the value of infiltration capacity when water depth goes to zero, f_{zw}, can be determined:

Fig. 3 - Infiltration capacity according to the Green Ampt model, for $K_s = 3.33$ mm/h and $t_c = 0.1$ h. In the figure the same typical values of the infiltration capacity with the corresponding times, and cumulative depth of rainfall excesses, defined by eq. (7) and eq. (27) are also indicated.
Analogously to the other domains, characteristic curves in the third domain are defined as:

\[
f_{2w} = K_5 \left(f_r \left(h_0 + K_5 t_c - h_0 K_5 \right) \right) \tag{34}
\]

The differential of water depth can be obtained by putting \(i = 0 \) into eq. (22):

\[
\frac{dh}{dt} = \frac{t_c K_5^2}{(f - K_5)^2} \tag{35}
\]

By substituting eq. (36) in eq. (35), for \(m = 2 \), an integrable form of the characteristics can be obtained:

\[
\int dx = -2 K_5 L \int h \frac{t_c K_5^2}{f (f - K_5)^2} df \tag{37}
\]

which yields:

\[
x = x_0 + \frac{k_5 t_c}{K_5 (f - K_5)} \left(2 f_r (f - f_r (K_5 - f_0)) + K_5 (f_r - f) + 2 K_5^2 \right) \tag{38}
\]

where the dimensionless function \(\psi_r \) is defined as:

\[
\psi_r = \ln \left(\frac{f_r (f - K_5)}{(f_r - K_5)} \right) \tag{39}
\]

Contrary to domains 1 and 2, characteristics of the third domain can be normalized only respect to \(k_5 \) and not respect to \(t_c \). By putting \(h = 0 \) and \(f = f_{2w} \) into Eq. (33) and by substituting into Eq. (38), the position \(x_{zw} \) of the zero water depth normalized with respect to \(L \) can be obtained:

\[
\frac{x_{zw}}{L} = x_0 + \frac{k_5 t_c}{K_5 (f_r - K_5)} \left(2 \psi_{zw} f_r (f_r - K_5) + (f_r - f_{2w}) K_5 \right) \tag{40}
\]

where

\[
\psi_{zw} = \ln \left(\frac{f_r (f_r - K_5)}{(f_r - K_5)} \right) \tag{41}
\]

5. Applications

Towards the aim to compare the analytical solution of the kinematic wave here presented with the hillslope response derived by Agnese [2006], an application has been carried out for the same parameters used by the Authors (Tab. 2). The table also reports time to ponding, \(t_p \) (eq. 1), times to equilibrium without infiltration, \(t_{eq} \) (eq. 17) and with a GA infiltration, \(t_k \).

![Fig. 4 - Characteristic curves in the three domains for parameters of Tab. II. Distance is normalised with respect to the length of the hillslope. Time is \(t_p \) shifted and normalised with respect to the sorptivity time scale. Zero water depth and normalized rainfall duration are also shown.](image)

Table 2 - Parameters used for the comparison between the kinematic wave model and the storage model by Agnese [2006].
time can be defined as the time \(t_e \) for which the characteristic, starting from the top of the hillslope, achieves the bottom of the hillslope. By putting \(x_0 = 0 \) and \(x/L = 1 \) into (24), the infiltration capacity \(f_k \) associated to the time to equilibrium \(t_k \) can be derived as:

\[
 f_k = \frac{1 - \frac{(1 - K_s) f_k}{f_k + 2 K_s}}{K_s^2} \left(\frac{1}{k_e t_e^2} - i \psi_k \right)
\]

where

\[
 \psi_k = \ln \left(\frac{f_k - K_s}{f_k - 1} \right)
\]

As expected, it could be shown that for \(k_e \to 0 \) characteristics never reaches the bottom of the hillslope and \(f_k \) attains its limiting value \((K_s) \).

Once \(f_k \) is known from eq. (42), time to equilibrium can be evaluated by putting \(f = f_k \) into eq. (3). Figure 6 shows time to equilibrium \(t_k \) vs \(k_e \) with rainfall intensity as parameter, for \(K_s = 3.33 \) mm/h and \(t_e = 0.1 \) h.

As expected, for fixed rainfall intensity, \(t_k \) decreases with increasing \(k_e \), while for fixed \(k_e \), \(t_k \) decreases with increasing rainfall intensity.

To compare time to equilibrium \(t_k \) with time \(t_{eq} \) corresponding to an impervious hillslope (eq. 17), Fig. 7 reports the ratio \(t_{eq}/t_k \) vs. \(k_e \), for different values of rainfall intensity.

The figure shows the effect of infiltration on the hillslope response: for any fixed hillslope geometry, with increasing rainfall intensity, the ratio \(t_{eq}/t_k \) increases too. In fig. 8a and 8b, for parameters of Tab. II, the effect of rainfall intensity (fig. 8a) and of saturated hydraulic conductivity (fig. 8b) on the hydrograph, has been investigated.

As expected, the resulting hydrograph approaches to that corresponding to the impervious hillslope (eq. 18), with increasing rainfall intensity, or with decreasing saturated hydraulic conductivity. In the same figures, the discharge corresponding to the time to equilibrium, \(q_{eq} \), is also represented; interestingly, this relationship, obtained by using eqs. (7), (11) and (41), can be well-fitted by a power law function.

For the parameters reported in Tab. 2, Fig. 9 synthetically reports hydrographs normalized with respect to the asymptotic rainfall excess, \(i - K_s \), for different values of the hillslope length \(L \) (0.5 < \(L < 40 \) m). It can be observed that response is quicker and quicker with decreasing \(L \), at the first domain as well as at the third domain; while at the boundary between the 1st and the 2nd domain, the time to equilibrium, \(t_k \), and the corresponding discharge, \(q_k \), decreases with \(L \).

By using eqs. (34), (38) and (40), the position, \(x_{zw} \), at which zero water depth occurs, is also represented in Fig. 9. One can observe that time to zero water depth, \(t_{zw} \) (no overland flow) increases with the length of the hillslope \(L \).

6. Conclusions

This paper focuses on the analytical solution of the kinematic wave model coupled with the well-known
Green-Ampt infiltration model. The solution has been carried out, for the case of a transitional flow regime, following the same approach suggested by Giráldez [1996]. Characteristic equations, derived for each domain, depend on parameters related to rainfall, hillslope geometry, and soil. For one soil an application of the proposed solution useful to understand the dynamics of the hillslope response, was carried out. The effect of the rainfall intensity and the effect of the saturated hydraulic conductivity on the hillslope response was also investigated. The presented solution agrees, for the case of an impervious hillslope, with that originally derived by Woolhiser [1967].

References

Cundy T.W. and Tento S.W., Solution to the kinematic wave approach to overland flow routing with rainfall excess given by Philip’s equation, Water. Resour. Res. (1985), 21, 1132-1140.
Liu J., Zhang J. and Feng J., Green-Ampt model for layered

SUMMARY

This paper deals with the analytical solution of kinematic wave equations for overland flow occurring in an infiltrating hillslope. The infiltration process is described by the Green-Ampt model. The solution is derived only for the case of an intermediate flow regime between laminar and turbulent ones. A transitional regime can be considered a reliable flow condition when, to the laminar overland flow, is also associated the effect of the additional resistance due to raindrop impact.

With reference to the simple case of a impervious hillslope, a comparison was carried out between the present solution and the non-linear storage model. Some applications of the present solution were performed to investigate the effect of main parameter variability on the hillslope response. Particularly, the effect of hillslope geometry and rainfall intensity on the time to equilibrium is shown.

Keywords: hydrologic response, infiltration, analytical solution, kinematic wave equations.

List of symbols

- \(f \): infiltration capacity
- \(f_r \): infiltration capacity at the end of the rainfall
- \(f_{w*} \): infiltration capacity at the zero water depth
- \(f_0 \): infiltration capacity at the time \(t_0 \)
- \(g \): acceleration due to gravity
- \(h \): water depth
- \(h_s \): water depth at the time \(t_s \) at the position \(x \)
- \(i \): rainfall intensity
- \(f_r \): rainfall intensity normalised with respect to saturated hydraulic conductivity
- \(k_s \): saturated hydraulic conductivity
- \(K_s \): hydraulic conductivity corresponding to the antecedent soil moisture condition
- \(m \): exponent of water depth in the Manning equation
- \(n \): Manning friction factor
- \(q \): specific discharge
- \(q^* \): normalized specific discharge
- \(r \): rainfall excess
- \(r_s \): rainfall excess normalised with respect to rainfall intensity
- \(r_{w*} \): asymptotic value of the rainfall excess
- \(S_0 \): bed slope
- \(S_f \): friction slope
- \(t \): time
- \(t_{c*} \): time to equilibrium according to the non-linear storage model
- \(t_{eq} \): time to equilibrium according to the kinematic wave model with no infiltration
- \(t_k \): time to equilibrium according to the kinematic wave model with infiltration
- \(t_p \): time to ponding
- \(t_r \): duration of rainfall
- \(t_0 \): time at which characteristic starts from the top of the hillslope
- \(t_\infty \): time to equilibrium
- \(u \): flow velocity
- \(x \): downslope position from the top of the hillslope
- \(x_w \): position at the condition of zero water depth
- \(x_s \): position corresponding to water depth \(h_s \) at the time \(t_s \)
- \(x_0 \): distance from the top of the hillslope
- \(\alpha \): correcting factor of the asymptotic time to equilibrium for the non-linear storage model
- \(\alpha_{w*} \): Value of \(\alpha \) for which \(f_{w*} = t_{eq}^{\infty} \)
- \(\lambda_s \): macroscopic capillary length scale
- \(\theta \): volumetric water content
- \(\theta_{w*} \): volumetric water content at the field capacity
- \(\theta_{i} \): initial volumetric water content
- \(\theta_{r} \): residual volumetric water content
- \(\theta_s \): saturated volumetric water content
- \(\rho \): rainfall intensity normalised with respect to saturated hydraulic conductivity
- \(\psi \): matric potential
- \(\psi_w \): matric potential at the wetting front
- \(\psi_{w*} \): dimensionless function of \((f_r, f, K_s) \)
- \(\psi_{r*} \): dimensionless function of \((f_r, f, K_s) \)
- \(\psi_{s*} \): dimensionless function of \((f_r, f, K_s) \)
- \(\psi_{w*} \): dimensionless function of \((f_r, f, K_s) \)