
Abstract
Images are revolutionising the way we sense and characterise

the environment by offering higher spatial and temporal coverage
in ungauged environments at competitive costs. In this review, we
illustrate major image-based approaches that have been lately
adopted within the hydrological research community. Although
many among such methodologies have been developed some
decades ago, recent efforts have been devoted to their transition
from laboratories to operational outdoor settings. Sample applica-
tions of image-based techniques include flow discharge estimation
in riverine environments, clogging dynamics in irrigation systems,
and flow diagnostics in engineering infrastructures. The potential
of such image-based approaches towards fully remote observa-
tions is also illustrated through a simple experiment with an
unmanned aerial vehicle.

Introduction
Since the 1980s, high maintenance costs and limited resources

have contributed to decrease the spatial coverage of hydrological

observations and to prevent the implementation of dense monitor-
ing networks in difficult-to-access environments and developing
countries. In small hydrological catchments (less than 500 km2),
hydrometric observations are typically lacking and collecting data
may be unaffordable. To this end, empirical methods that do not
require calibration procedures are applied, often leading to signif-
icant uncertainty and subjectivity.

Such criticalities have been highlighted by a recent survey
conducted among 336 hydrologists (Blume et al., 2017). The
results of the questionnaire pointed out the need for new measure-
ment techniques and equipment, as well as for fostering field mea-
surement and monitoring campaigns rather than for new mod-
elling approaches. In this framework, in the latest years, a plethora
of initiatives have blossomed to promote advances in hydrological
measurements and environmental monitoring in general (Tauro et
al., 2018). In the realm of hydrological monitoring, stream flow
observations are essential for developing rating curves and cali-
brating rainfall-runoff models. Traditionally, experimental cam-
paigns for stream flow measurements are rare and involve the
deployment of expensive and bulky equipment in rivers. Thus,
measurements are hardly ever taken in challenging conditions,
such as during floods and in remote, small size streams with diffi-
cult topographies (Costa et al., 2000). Further, errors in water
level and velocity observations are major sources of uncertainties
in flow discharge estimations.Alternative to traditional stream
flow measurement approaches, such as, for instance, current
meters and acoustic Doppler current profilers, remarkable effort
has been devoted to the development of non-contact flow sensing
methodologies. Different from conventional sensors, images can
be non-invasively captured and processed to characterise the flow
current, thus minimising risk for operators and costly measure-
ment equipment, see Figure 1. Also, with respect to alternative
non-contact technologies, such as radars and coherent microwave
systems, images offer higher spatial resolution at minimal costs.
However, images are also highly sensitive to sunlight and illumi-
nation conditions and care must be taken in designing the experi-
mental setup and in post-processing data to extract meaningful
results. In latest years, the use of images has opened unprecedent-
ed capabilities to hydrologists by enriching their experimental
toolbox with novel hardware and software approaches. In this
review, we illustrate the major image-based techniques that have
been developed in the research community. Further, we report a
simple experiment on the use of images for fully remote surface
flow velocity estimations.

Image-based streamflow observations
Images afford automated and nonintrusive observations. Their

potential has been demonstrated in diverse realms of agricultural
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engineering, such as, the detection of dairy cows lying behaviour
(Porto et al., 2013), the determination of the size distribution of
wood chips (Febbi et al., 2013), the assessment of basal shear
stress in debris-flow mixtures (D’Agostino et al., 2013), and the
measurement of kinematic properties of granular flows (Gollin et
al., 2015). With regards to fluid flow monitoring, digital images
have been traditionally adopted in fluid dynamics laboratories as
powerful quantitative fluid visualisation techniques. Here, we
review the algorithms and procedures that are most commonly
applied to monitor stream flow in hydrological systems.

Large-scale particle image velocimetry
Large-scale particle image velocimetry (LSPIV) applies the

principles of the classical particle image velocimetry (PIV) tech-
nique to outdoor environments. PIV enables the estimation of the
instantaneous flow velocity field of seeded fluids. A similar
approach was utilised in Bettella et al. (2015) to measure the front
velocity of small-scale debris flows. LSPIV was originally intro-
duced by Fujita et al. (1997), whereby mappings of large-scale
flows covering surfaces from 4 to 45,000 m2 were provided. The
method was implemented on digital images of the free surface of
laboratory and natural water bodies, and the experimental setup
entailed a CCD camera oriented at an angle with respect to the
water surface and buoyant tracing particles moving in the flow.

LSPIV is based on a high-speed cross-correlation scheme
between an interrogation area (IA) in a first image (that is, an
image taken earlier in time) and IAs within a search region (SR) in
a second image (that is, an image taken at a time interval equal to
the inverse of the camera acquisition frequency). To this end, each
image is divided into a grid of IAs and the cross-correlation coef-
ficients between IAs and SRs are computed. The location of the
maximum value of the cross-correlation coefficient in consecutive
frames yields displacement vectors, and can be determined at sub-
pixel accuracy using fitting schemes. Based on the user-imposed

camera acquisition frequency, it is then possible to estimate the
instantaneous velocity from the displacement vectors. In laborato-
ry settings, PIV parameters are set such that tracing particles move
between consecutive images by at least a fourth of the IA. Also, a
minimum of four to five particles should appear in each IA.
However, the algorithm is independent on the presence of particle-
shaped objects in images. Specifically, it matches the distribution
of gray-level intensities in digital frames and, therefore, it has been
used to match flow patterns between successive images rather than
individual tracers. To improve surface velocity estimation in noisy
images, several modified cross-correlation schemes have been pro-
posed for LSPIV. For instance, in Dobson et al. (2014), a temporal
correlation-averaging algorithm has been introduced to merge cor-
relation surfaces in the time domain and the scheme has been cou-
pled with a signal-level indicator to remove noisy cross-correla-
tions from the velocity computation. In Osorio-Cano et al. (2013),
innovative image analysis encompassing image segmentation has
been tested in laboratory conditions, and in Ran et al. (2016), the
minimum quadratic difference algorithm was adopted to track sur-
face patterns.

LSPIV-based flow velocity estimation entails the following
phases: i) imaging of the field of view; ii) image ortho-rectification
through transformation schemes that rely on the known coordi-
nates of a minimum of six ground control points (GCPs) (in this
phase, photometric calibration and camera lens distortion removal
may also occur); and iii) image processing by high-speed cross-
correlation. In Tauro et al. (2014), an alternative setup has been
proposed to prevent distortions from angled cameras and GCPs
surveying. In this implementation, the camera optical axis is per-
pendicular to the water surface and medium-power lasers are
placed at a known distance on the sides of the camera. Lasers cre-
ate reference points in images at known distances, thus enabling
fully remote photometric calibration. This setup generally leads to
smaller fields of view where the resolution of both near and far
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Figure 1. (A) Traditional vs (B) non-contact stream flow measurement approaches. In (A), an operator deploys a current meter in the
Rio Cordon, Belluno, Italy. In (B), a portable apparatus is utilised to take pictures of the surface of the stream.
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field objects is acceptable. However, the use of lasers may be pre-
vented in case of excessive sunlight and if the camera is rather dis-
tant (more than 20 m) from the water surface. This alternative
experimental configuration circumvents time-consuming GCPs
surveying, which is sometimes impossible in difficult-to-access
natural riverbanks, and only requires lens distortions removal.

The accuracy of this approach is largely dependent on the
appearance of patterns on the water surface. LSPIV applications
have utilised naturally occurring debris, foams, ice floes, waves,
and boils as tracers. To this end, LSPIV implementations have
been frequently installed downstream weirs and falls. However,
the cross-correlation algorithm requires abundantly and continu-
ously seeded surfaces and, therefore, tracers such as wood chips
and leaves need to be manually added, see Figure 2. In case of
slow, unseeded, and shallow flows, in Muste et al. (2005), the vis-
ibility of the water surface has been improved through waves gen-
erated by a fan. By recording images with and without waves and
subtracting the velocity fields of both image data sets, the velocity
of the water body has been obtained. In spite of remarkable efforts
in surface seeding, the visibility of surface tracers is still an oper-
ating constraint to the technique, and it is typically enhanced
through the use of filters, polarisers, or via image-based enhance-
ment techniques. Although LSPIV has been widely adopted in nat-
ural environments, the absence of densely seeded surfaces has led
to consistent flow velocity underestimations in diverse natural con-
ditions (Tauro et al., 2014, 2015, 2016a, 2016b).

LSPIV has been demonstrated in a variety of experimental set-
tings. In Hauet et al. (2008), a permanent LSPIV system was
installed on the Iowa River to enable continuous discharge estima-
tions for 23 months. To facilitate image processing, an adaptive IA
approach was developed that allows adjusting the size of the IA
according to image distortion and to scale the obtained velocity vec-
tors. In Kim et al. (2008), a mobile LSPIV system was developed
including a mast-mounted camera and a heavy-duty pick-up to
enable rapid monitoring of riverine systems. These pioneering stud-
ies outlined illumination of the water surface, wind and rain effects,
PIV parameterisation for variable flow conditions, and stage mea-
surement as the key controls for accurate LSPIV-based flow dis-
charge estimations. Also, through a numerical study and a vast num-
ber of experimental tests, the major sources of LSPIV measurement
inaccuracy were attributed to surface seeding density, the acquisition
of GCPs, and the process of image ortho-rectification.

Since the introduction of LSPIV, surface flow velocity mea-
surements have been used to compute river discharge using stan-
dard velocity-area methods at selected cross-sections of known
bathymetry. In Creutin et al. (2003), LSPIV-based discharge was
found to be consistent with stage-discharge relationships, and the
method was proposed as reliable to establish rating curves at natu-
ral sites. Alternatively to the velocity-area approach, in Bradley et
al. (2002), LSPIV measurements were input to a hydraulic model
and to derive three-dimensional flow fields for discharge estima-
tion. In Hauet et al. (2009), LSPIV was complemented with pho-
togrammetry to map waterway characteristics, including surface
velocity, riverbank positions, flood plain edges, and erosion pat-
terns, in riverine environments. LSPIV has also been advantageous
to monitor high flow regimes that are typically not observable with
costly and intrusive equipment. In Jodeau et al. (2008), surface
flow velocities of a mountainous stream were measured during a
reservoir release and then utilised to infer discharge through a site-
specific velocity coefficient. A mobile LSPIV device was also
adopted to monitor surface velocity and estimate discharge during
a fast greater than 10-year return period flood and a reservoir flush-
ing release (Dramais et al., 2011). LSPIV was instrumental to esti-

mate discharge in flash-flood conditions (LeCoz et al., 2010),
whereby flow unsteadiness and image noise led to deviations rang-
ing from 30-80%. The uncertainty of LSPIV-based discharge esti-
mations was further discussed in LeCoz et al. (2012), where the
limitations of the velocity-area method were investigated.

Additional applications of LSPIV entailed flow diagnostics in
engineering applications. For instance, in Kantoush et al. (2011),
LSPIV was tested in several configurations, including river conflu-
ence and reservoirs during sediment flushing. Surface flow veloc-
ity measurements were instrumental to analyse the effects of basin
geometry on the flow characteristics of reservoirs where large two-
dimensional coherent structures are prevalent. The influence of
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Figure 2. Appearance of tracer-seeded stream surfaces for large-
scale particle image velocimetry and/or particle-tracking
velocimetry analyses. (A) and (B) display the surface of the
Brenta river, Trento, Italy, seeded with wood chips and vegeta-
tion, respectively; (C) depicts the surface of the Tevere river,
Rome, Italy, as captured through the gauge-cam described in
Tauro et al. (2017).
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reservoir geometry on sediment transport and deposition has been
extensively studied with LSPIV. In particular, the technique proved
effective in monitoring low velocity and shallow depth flow fields,
which often challenge traditional instrumentation. Additionally,
LSPIV was used to measure velocities during sediment flushing in
reservoirs, where incisive channels are formed in the deposited
material, thus controlling the time pattern of sediment released
back into downstream rivers.

LSPIV has been highly beneficial for automatically investi-
gating complex environments, where traditional approaches
either fail or lead to inaccurate data. For instance, the technique
was tested in large scale settings such as river estuaries, where
tidal fluctuations and river in-flows can challenge measurements
with alternative equipment. Also, the technique aided in charac-
terising two-dimensional flow structures in a stream confluence.
Shallow flows are also complex experimental settings that are
typically difficult to survey with traditional measurement
approaches and have been extensively studied with LSPIV.
Additionally, LSPIV has been applied to characterise surface
flows in vegetated rivers (Creëlle et al., 2018), small and irregu-
lar rivers (Gunawan et al., 2012), and mountain rivers (Stumpf et
al., 2016). Advanced applications of LSPIV also entail the visu-
alisation of particle motion in drip irrigation emitters to study and
prevent clogging effects (Liu et al., 2016).

LSPIV low-cost equipment and the use of commercial RGB
cameras for data generation support the diffusion of such a tech-
nique in environmental monitoring. Upon a short-time training,
most operators are capable of taking adequate experimental videos,
whereas post- processing phases such as image enhancement and
processing should be executed by experts. In poorly gauged sites,
the inherent simplicity of LSPIV acquisitions supported the use of
crowd sourced footage and video data. In LeBoursicaud et al.
(2015), a video of a flash flood taken from YouTube was analysed
with LSPIV to estimate discharge. In LeCoz et al. (2016), citizen
science projects in Argentina, France, and New Zealand entailed
citizens capturing videos of floods and uploading them onto web-
site platforms. The videos were then analysed with LSPIV and dis-
charge was estimated (the bathymetry of the sites was surveyed
after the events). Even if the accuracy of such measurements can-
not be clearly estimated, these initiatives were preliminary
attempts toward more dynamic and possibly wider measurement
networks.

Particle-tracking velocimetry
Particle tracking velocimetry (PTV) consists of particle identi-

fication and tracking. In the first phase, images are processed to
enhance the appearance of particles in the field of view (for
instance, by applying filters and thresholds) and the location of the
centroid of the particles in frames is recovered. In the tracking
phase, the centroid of the detected particles is identified in subse-
quent images to reconstruct particle trajectory. Several algorithms
have been developed for PTV analysis. In Brevis et al. (2011),
cross-correlation is implemented for both particle detection and
tracking. In addition, relaxation, heuristics based on a priori knowl-
edge of the flow, and Voronoï tracking scheme have been utilised.

PTV is designed for low seeding density flows and does not
require assumptions on flow steadiness nor on the relative position
of neighbour particles. Its applications in the literature are diverse
and involve dispersion in porous media (Moroni and Cushman,
2001), exchange processes between rivers and groynes (Yossef and
deVriend, 2011), and tidal patterns (Kimura et al., 2011). Since
PTV is dependent on the presence of round-shaped tracers, its use
for stream flow observations is less frequent than LSPIV, which
may be applied also without deploying objects in the current.

Advantages and disadvantages of LSPIV and PTV are reported
in Table 1. The experimental setup required for PTV is consistent
with LSPIV and relies on inexpensive cameras and, eventually,
lasers for remote calibration. If cameras are angled to the water
surface, similar to LSPIV, image pre-processing should include
ortho-rectification. On the other hand, different from LSPIV, PTV
typically mandates particles to be highly defined and is most com-
monly implemented with round-shaped floaters in case of in situ
studies. For a comparison between LSPIV and PTV, refer to Tauro
et al. (2017). Upon PTV processing, particle trajectories are recon-
structed based on velocity vectors that are randomly located in the
field of view. Surface flow velocity maps can be generated by
interpolating particle trajectories.

Alternative approaches
In addition to LSPIV and PTV, numerous image-based

approaches for flow observations have been developed in the last
decade. Most of them aim at extracting flow velocity based on the
transit of visible features in the field of view. For instance, the
space-time image velocimetry technique assumes that the bright-
ness distribution in images is dependent on surface velocity (Fujita
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Table 1. Experimental details and advantages and disadvantages of large-scale particle image velocimetry and particle tracking velocime-
try for hydrological applications.

                 LSPIV                                              PTV

Setup           -    Remote installation
                      -     May involve inexpensive cameras (such as GoPros) located at a few up to several hundreds of meters from water surface
                      -     Acquisition frequencies may vary from less than 10 up to 60 Hz depending on flow velocity
                      -    May involve image ortho-rectification
                     Advantage                                            Disadvantage                                          Advantage                              Disadvantage

Tracers              Patterns of any                                         Spatially homogeneous and                                   Randomly distributed                       Round-shaped particles
                            shape                                                 continuous in the field of view                                   in the field of view                    
Algorithm                                                                          Works well only with steady flows             Works well with unsteady flows as well  
Algorithm          Surface flow velocity                               Velocity vectors arbitrarily                       Tracer trajectories. Velocity vectors                                
outputs              maps                                                        assigned at the center                                      located at the location 
                                                                                                      of interrogation areas                                        of the particle tracers                 
LSPIV, large-scale particle image velocimetry; PTV, particle-tracking velocimetry.
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et al., 2007). The approach is utilised to measure the orientation
angle of patterns in images and leads to stream wise velocity dis-
tribution. This methodology is sensitive to noise and some algo-
rithms have been recently introduced to improve velocity estima-
tion. The appearance of surface features is crucial for accurately
estimating surface flow velocity. For instance, both LSPIV and
PTV are negatively impacted by excessive illumination and low
acquisition frequency. To this end, several alternative approaches
have been proposed. In Tauro et al., 2011, a cross-correlation based
PTV algorithm was proposed and combined with highly visible
tracers to recover the trajectory of severely deformed tracers due to
low shutter speeds. The approach has been tested in several set-
tings, including a mountainous stream. In Perks et al. (2016), the
Kanade-Lucas-Tomasi algorithm was applied to track surface fea-
tures during a flood event. This optical flow algorithm is indepen-
dent on the shape of the tracers and less computationally expensive
than cross-correlation. However, its use in hydrology is limited to
a few applications in rainfall monitoring and to proof-of-concept
experiments in river and ocean settings.

Integration of images and unmanned aerial system
technology

The presented image-based methodologies are frequently
implemented at permanent gauging stations (which are often locat-
ed nearby existing monitoring units) and through portable setups
(simple hand-held masts or mobile equipment integrated onto
trucks). Latest research has entailed the challenging combination
of image analysis and unmanned aerial vehicle (UAV) technology.
In agricultural engineering, UAVs are bridging the gap between
traditional aerial and satellite imagery and ground-based monitor-
ing toward more accurate and highly resolved geospatial data. For
instance, UAVs are expected to open novel avenues in the explo-
ration of calanchi erosion and landform evolution (Caraballo-Arias
and Ferro, 2016).

The integration of images and manned aerial surveys dates back
to more than a decade ago. The pioneering work by Fujita and Hino
(2003) demonstrated LSPIV on image sequences captured from a
helicopter in low flow and flood conditions. In Fujita and Kunita
(2011), aerial images of the 2002 flood of the Yodo River were pro-
cessed with LSPIV to reconstruct surface flow velocity maps.

The advent of UAVs has enabled flow observations in difficult-
to-access environments at low costs and with minimal equipment. In
fact, commercial UAVs offer good stability and controllability at
competitive prices. They can be easily retrofitted with sport cameras,
such as GoPros, which enable high-frequency and high-resolution
footage. Experimental tests are simple and can be executed by users
after minimal training. Specifically, the UAV can be navigated above
the water surface of interest and then station kept above it to record
stable videos of the flow. The platforms can be hovered for a few
minutes at acquisition frequencies ranging from 15 to 30 Hz to gath-
er video sequences of hundreds of images. The acquisition frequen-
cy should be tuned based on the water flow velocity. Buoyant tracers
may be deployed onto the surface depending on the appearance of
the water and on the adopted algorithm. Image post-processing is
consistent with conventional ground-based image approaches:
before applying velocimetry algorithms, frames are enhanced and
ortho-rectified if the camera axis is angled to the surface. Due to
UAV vibrations, image matching may be necessary to analyse con-
sistent fields of view in consecutive images. However, due to strong
winds, inaccurate station keeping may hamper image-based mea-

surements. Commercial UAVs offer limited hovering capabilities
(for instance, the DJI Phantom2 has a vertical hovering accuracy of
0.8 m and a horizontal accuracy of 2.5 m according to:
http://www.dji.com/). In Tauro et al. (2016b), an hovering assess-
ment conducted with a DJI Phantom 2 demonstrated that images
taken during light air wind conditions (2.19 km/h wind speed) dis-
played minimal changes and were, therefore, acceptable for stream
flow measurements. Finally, photometric calibration is performed by
capturing objects of known dimensions in the field of view (such as,
for instance, the river width) or by using laser pointers mounted on-
board the platform.

In Tauro et al. (2015), a simple UAV platform was built and
deployed to capture video data processed with LSPIV. In Tauro et
al. (2016a, 2016b), an off-the-shelf UAV platform was also char-
acterised to assess its suitability to capture image data and then
used to estimate surface flow velocity in a mountainous stream.
Flow estimations were in close agreement with benchmark data
and images offered improved quality with respect to traditional
ground-based LSPIV implementations. Similar experiments were
described by other authors (Perks et al., 2016).

Interestingly, besides stream flow observations, UAVs are
offering a variety of inexpensive data at sites that may be impossi-
ble to survey with traditional sensing instrumentation. For
instance, recent advances enable the acquisition of water level, sur-
face-groundwater interaction, and bathymetry. A limitation to the
pervasive use of UAVs in environmental monitoring practice lays
in current regulations to safely navigate such devices. Currently,
most countries require licensed pilots and only allow line-of-sight
navigation. However, continuous progress in the autonomy of
UAVs is expected to facilitate their use in science and engineering.

Fully remote stream flow measurements in an
ungauged stream reach

Here, we present a proof-of-concept experiment on the inte-
grated use of UAV technology and image analysis for surface flow
observations in an ungauged stream reach. The experiment was
executed on the Marta river, a few hundred meters downstream the
Bolsena lake, in September 2016. Both the LSPIV and PTV algo-
rithms were applied to estimate surface flow velocity.

Experimental site
The Marta river is the emissary of the Bolsena lake, Viterbo,

Italy. Its hydrological catchment has an area of 1090 km2 and a
total length of 60 km. The river has no tributaries for the initial 20
km, where its flow discharge is largely regulated by the Bolsena
lake. Two water gauge stations are located along the river.
According to the station located at Ponte della Cartiera (13 km
downstream the Bolsena lake), the average annual discharge is
2.42 m3/s. Close to the Bolsena lake, the river has an average width
of less than 10 m and a depth of 0.5 m.

Unmanned aerial vehicle platform and image processing
A low-cost DJI F550 hexacopter was assembled and retrofitted

with six E310 brushless motors (960 rpm/V), 3S 5200 mAh full
power LiPO batteries, and a DJI Naza-M V2 control board. Videos
were taken with a GoPro Hero 4 Black edition, mounted on a two-
axis gimbal and with its axis perpendicular to the water surface to
circumvent image ortho-rectification. Data were gathered by man-
ually taking off the UAV and then navigating it to the centre of the
river at less than 10 m above the water surface, see the sketch in
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Figure 3. Then, the UAV was flown in the hovering mode (the
device stability is continuously corrected via satellite signals). To
enhance flow appearance, wood chips (1 to 5 cm in diameter) were
manually deployed onto the water surface as buoyant tracers. The
tracers were homogeneously and continuously deployed onto the
surface to facilitate image processing through LSPIV. The GoPro
captured videos at 30 Hz acquisition frequency and full HD reso-
lution (1920×1080 pixels). Here, we report surface flow velocity
estimations obtained by analysing a sequence of 101 consecutive
frames (3.4 s). The sequence was selected based on tracer homo-
geneity in the field of view.

The image sequence was processed according to the workflow
in Figure 3: i) frames were converted to grayscale and lens distor-
tion corrected; ii) images were then stabilised to prevent the UAV
vibrations to yield slight changes in the field of view; iii) photo-
metric calibration was executed to assign metric dimensions to
image pixels; and iv) the sequence was processed through LSPIV
and PTV using the Matlab toolboxes PIVlab (Thielicke and
Stamhuis, 2014) and PTVlab (Brevis et al., 2011), respectively.
Even if UAV vibrations were demonstrated to be acceptable for

surface flow observations (Tauro et al., 2016b), the frame
sequence was stabilised to reduce eventual inaccuracies in velocity
estimations. To this end, a custom-built Matlab-based procedure
was developed that detects relevant features in images by applying
the FAST algorithm, and then maps consistent features in consec-
utive frames through the RANSAC approach. After vibration
removal, consecutive frames exhibited a mean squared error of
approximately 70 pixel2 as compared to an average value of 150
pixel2 before processing. The vibration removal correction aimed
at selecting consistent fields of view in consecutive images within
the video sequence. To this end, the procedure rotated and translat-
ed the images, thus eliminating the effects due to the UAV-mount-
ed camera. Photometric calibration was remotely executed by
automatically extracting the river cross-section width from images
and then relating such a distance in pixels to the metric width of
the river as measured from Google Earth (7.57 m at the experimen-
tal site). The automated extraction of the pixel width of the river
was performed by developing a custom-built procedure that
enhances contrast differences between the water surface and the
river width, and then applies Otsu’s segmentation approach to
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Figure 3. Sketch of the proof-of-concept experiment performed with the DJI F550 on the Marta river, Viterbo, Italy (left panel); image
processing from raw images to velocity maps (right panel). UAV, unmanned aerial vehicle.

Figure 4. (A) Time-averaged surface flow velocity map of the Marta river obtained through large-scale particle image velocimetry and
(B) through particle-tracking velocimetry.
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identify the pixels pertaining to water. This fully remote approach
was in line with the calibration conducted by taking pictures of a
meter stick in the field of view.

To execute LSPIV and PTV analyses, a region of interest
depicting the densest amount of tracers in the field of view was
selected in frames. PTV analyses were performed by preliminarily
enhancing the appearance of the tracers by subtracting the mean
grayscale intensity from images. Then, particle detection was exe-
cuted through cross-correlation with a Gaussian kernel (intensity
grayscale level set to 80, standard deviation to 7 pixels, and corre-
lation threshold to 0.5). Particle tracking was achieved by cross-
correlation (interrogation window set to 15 pixels, minimum cor-
relation threshold to 0.5, and similarity among neighbour particles
to 20%). Upon PTV analysis, a surface flow velocity map was
interpolated from particle trajectories.

For PIV analysis, a region of interest consistent to PTV was
selected, and image quality was enhanced through a Gaussian high
pass filter (10 pixels in size). Direct cross-correlation was applied
on the sequence of images by setting the interrogation window size
to 32×32 pixels and the grid size to 16×16 pixels. The 2×3-point
Gaussian fit was used as sub-pixel displacement peak estimator.
Data were validated by applying velocity upper and lower thresh-
olds. Thresholds were determined as u ̅ ±n*σu, with u ̅ the mean
velocity for each analysed frame pair, σu its standard deviation, and
n set to 1.5. Such a parameter was selected by assuming a Gaussian
distribution of measurement errors due to irregular changes in the
appearance of the water surface from light reflections. The velocity
field for the frame sequence was obtained by averaging in time the
velocity field computed for each frame pair.

Remote surface flow velocity estimation
Figure 4 displays PIV (A) and PTV (B) time-averaged surface

flow velocity maps for the analysed sequence. By computing the
average velocity of the map, PIV-based velocity was equal to 0.29
m/s with standard deviation equal to 0.055 m/s. PTV-based veloc-
ity was instead equal to 0.31 m/s with a standard deviation of 0.071
m/s. PTV velocities presented slightly positive skewness, whereas
the skewness of PIV data was negative and, therefore, velocities
smaller than the average were highly frequent. The PTV-based
map displays empty regions since values were interpolated only in
areas where the transit of particle tracers was observed. The
appearance of the maps is quite different since PIV captures the
average behaviour of the flow, whereas PTV is influenced by the
transit of individual particles.

Overall, both techniques were in close agreement and showed
potential to remotely estimate surface flow velocity in the
ungauged experimental site. Remarkably, the experiment was con-
ducted in less than two hours by three operators. Further, costs of
the tracer materials were minimal and the cost of the platform is
less than 1000€. Flow discharge estimations may be roughly
obtained by combining information on surface velocity with the
bathymetry of the stream reach. This simple experiment demon-
strates the simplicity of image-based approaches for environmental
monitoring and their transformative impact for hydrological and
agricultural applications.

Conclusions and future perspectives
In this review, we illustrated latest advances on optical sensing

approaches for stream flow observations. These relatively new
image-based approaches demonstrate potential towards low-cost

and rapid surveys of difficult-to-access and ungauged areas, thus
offering a viable alternative to costly and spatially-scattered tradi-
tional measurement stations. Although many of the presented
methodologies have been introduced several years ago, image-
based approaches still need a thorough assessment to be regularly
adopted in monitoring practice. Building novel sensing instrumen-
tation requires extensive calibration and validation, and sometimes
collaboration from local authorities to install novel equipment in
natural systems or at existing gauging stations. Future perspectives
on the use of optical sensing for environmental monitoring are
hardly imaginable. Technological advances have accustomed us to
extremely high quality videos at high speed frequency in the span
of a few years. In this framework, we expect that continuous tech-
nological progress may sensibly empower the capabilities and
cost-effectiveness of current optical sensors, thus shedding new
light on our comprehension of natural ecosystems. Thermal
imagery is most probably set to be at the forefront of environmen-
tal monitoring, by enabling less noisy acquisitions independently
on illumination conditions. Currently, thermal images have lever-
aged many applications in agricultural engineering, such as, for
instance, flow observations in streams (Tauro and Grimaldi, 2017)
and investigations on the resilience of plants to stress (Ludovisi et
al., 2017). In the near future, we expect thermal cameras to become
powerful yet affordable diagnostic instruments to rapidly and thor-
oughly unveil complex stream flow physics.
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