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Using Landsat 8 imagery in detecting cork oak (Quercus suber L.)
woodlands: a case study in Calabria (ltaly)
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Abstract

In the Mediterranean basin, cork oak (Quercus suber L.) woodlands
are characteristic and widespread forestry ecosystems. Though pre-
senting significant economic potential as a renewable resource, they
are not adequately valorised, in spite of a growing market demand for
cork and cork-based products, which are appreciated, today, for their
use in sustainable building. In this respect, cork meets the needs of
the building industry in responding to the growing demand for quality
products, which are eco- and energy-friendly and hygienically safe.
Moreover, European cultural and biodiversity value has been attributed
to cork oak woodlands and their most significant examples have been
included in the Natura 2000 framework. So far, in some countries like
Italy, the territorial distribution and characterisation of cork oak wood-
lands have not been adequately investigated. This study provides a
method for mapping the actual presence of cork oak woodlands and for
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assessing their potential distribution. Special attention was given to
the characterisation of cork oak spectral signature. To this end, Landsat
8 satellite images, digital photointerpretation and in situ surveys were
implemented. The work carried out allows assessing the effectiveness
of GIS and remote sensing techniques coupled with ancillary data and
tools, and their applicability for the development of a comprehensive
mapping and monitoring system of cork oak woodlands in
Mediterranean ecosystems. Such techniques are vital to develop a
detailed management strategy and to assist restoration activities and
the economic assessment of semi-natural habitats. A case study, car-
ried out in two different locations in Calabria (Italy), is provided.

Introduction

Cork oak (Quercus suber L.) woodlands define a characteristic
Mediterranean landscape type whose ecological and economic value is
largely recognised. Cork oak is widespread in the western
Mediterranean Basin (Figure 1) covering an area roughly estimated at
2.7 million ha in 2006 (WWF MedPO, 2006), 2.5 million ha in 2009
(Aronson et al., 2009; Catry et al., 2012a, 2012b) and 2.2 million ha in
2013 (FAO, 2013), mainly in seven countries: Portugal, Spain, Algeria,
Morocco, Tunisia, Italy and France. Cork oak forests are semi-natural
ecosystems that, today, provide significant income for more than
100,000 people and support one of the highest levels of biodiversity
among forest habitats (MedPO, 2006; FAO, 2013). Cork oak ecosystems
are recognised as unique habitats worthy of conservation at European
level and consequently included in Annex I of the so-called Habitats
Directive of the Council of Europe (European Commission, 1992). As
a matter of fact, in Mediterranean areas these ecosystems play a sig-
nificant role in the implementation of ecological networks aiming at
the reduction of landscape fragmentation in the framework of environ-
mental conservation strategies (Fichera et al., 2015).

Cork is the main product obtained from Q. suber L.; it is a renewable
and biodegradable material, which has been mainly extracted so far to
obtain bottle stoppers for the wine industry. As to cork production,
inconsistent data can be found in literature: recently, Bugalho et al.
(2011) have reported an annual production of approximately 300,000 t
in the Mediterranean Basin, 70% of which transformed into bottle
stoppers; APCOR (2015), citing FAO statistics, has reported a produc-
tion of 201,000 t. Globally, cork is the sixth most important non-timber
forest product (Bugalho et al., 2011; FAO, 2013), the second in the
western Mediterranean, even though, recently, a world market devalu-
ation of cork has been recorded (Aronson et al., 2009). In recent years,
materials other than natural cork have been increasingly used for the
production of bottle stoppers. In contrast, a new demand for cork-based
materials and components has emerged from the building industry,
which is currently searching for healthy and sustainable technical
solutions: cork has therefore been used for producing glue-free walling
blocks made of compressed cork granules; flooring and roofing sheets;
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wall coating sheets; water resistant and insulating (thermal, acoustic)
panels. Furniture and interior design are also giving further and inter-
esting contribution to the valorisation of cork, even recognising the
public’s appreciation for its aesthetic qualities.

On the one hand, this new demand for cork supply requires new
approaches to the management of cork oak woodlands in order to
explore their production potential and make their exploitation fully
compatible with their important environmental and ecological func-
tion. On the other hand, since several factors (overharvesting, over-
grazing, wildfires, efc.) have contributed and are still contributing to
the degradation of cork oak forests (FAO, 2013), the restoration of the
degraded sites should represent a major target for the conservation of
biological diversity in the Mediterranean area (Modica et al., 2015). In
this regards, it is important to notice how in the Mediterranean area
widespread agricultural lands, evergreen woodlands and maquis shrub-
lands are the result of anthropogenic disturbances that deeply modified
the landscapes especially in the last decades (e.g., Modica et al., 2012).

To that purpose, Modica et al. (2015) proposed a forest degradation
index for identifying a threshold value below which a forest can be
termed as degraded, applied and validated also in cork oak forest types.
It is clear that precise and updated knowledge of the territorial distri-
bution, consistency and state of cork oak woodlands is needed for both
production-enhancement and nature-conservation purposes.

This work is intended to offer a contribution towards this objective
by making reference to Italy and, in particular, to the Calabria region,
where cork oak has significant importance.

As highlighted before, in Italy, and in a few other Mediterranean
countries, cork oak distribution is not precisely known. According to
Vessella and Schirone (2013), in Italy, cork oak can be found along the
peninsular Tyrrhenian coast (from Liguria to Calabria), in the islands
of Sicily and Sardinia and in small nuclei along the Apulian coast.
Figure 1 shows two of the most referenced maps of cork oak distribu-
tion. Rossi et al. (2009) detected cork oak woodlands by means of satel-
lite images (Ikonos and Landsat Thematic Mapper 5) in sample areas
of the Latium Region (Italy). Recently, an ecological-niche modelling
approach has been proposed to map the potential distribution of cork
oak in Italy (Vessella and Schirone, 2013).

Detailed mapping of forest types based on the analysis of high reso-
lution remotely sensed imagery can still be considered a challenging
work due to the confusion caused by forest landscape heterogeneity
(Rogan and Miller, 2006) that, especially in the Mediterranean ecosys-
tems, can lead to a misidentification of forest types.

Regarding the Landsat family products, they were applied in deter-
mining land cover (LC) of oak forest types in few researches (Wang et
al., 2007; Zhu and Liu, 2014). On the other hand, Landsat thematic
mapper imagery was applied to estimate the canopy cover (Carreiras et
al., 2006) and the canopy density (Godinho et al., 2014) in cork and
holm oak woodlands. A comprehensive description of the Landsat fam-
ily can be retrieved at the following website, http:/landsat.usgs.gov/
index.php (accessed: 20 May, 2016).

This study provides a method for mapping the actual consistence of
cork oak woodlands in the Calabria region and for assessing their
potential territorial distribution. The proposed methodology was
applied to Calabria (South of Italy), where cork oak woodlands are
widespread and mixed with non-native species. Moreover, so far, their
territorial distribution and characterisation has not been adequately
investigated taking into account the main features determining their
productivity. Different methods have been used but they have not pro-
duced a comprehensive picture of the species and its habitats. The first
stage of the study focuses on the characterisation of cork oak spectral
signature compared to other potentially similar land uses.

[page 206]

Ppress

Materials and methods

Study areas

The study was carried out in two sample areas in Calabria: i) Mount
Scrisi (Scr), which is part of Reggio Calabria province and extends over
42.6 km? at 400500 m a.s.l., on the Tyrrhenian side of the Aspromonte
massif; ii) Angitola (Ang), which is part of Vibo Valentia province and
extends over 49.2 km? at 100150 m a.s.l. with a predominantly north-
ern aspect (Figure 2).

Referring to the main goal of this paper, the forest cover of the Scr
study area is characterised by a thermo-mesophilous woodland domi-
nated by cork oak (Q. suber L.) with a meso-Mediterranean sub-humid
bioclimatic type. The mean annual rainfall ranges between 700 and
1000 mm, while the mean annual temperature ranges from 14 to 16°C.
From the phytosociological point of view, it refers to a variant of the
Helleboro-Quercetum suberis (Signorello, 1984) with Cytisus villosus
Pourret and a shrub layer of Erica arborea L. and Arbutus unedo L.

The Ang study area is characterised by a mesophilous woodland
dominated by cork oak (Q. suber L.), sometimes mixed with holm oak
(Quercus ilex L.) and Quercus virgiliana Ten. From the phytosociologi-
cal point of view, it refers to the Helleboro-Quercetum suberis
(Signorello, 1984) and is related to humid meso-Mediterranean biocli-
matic conditions (an average annual rainfall over 1000 mm and annual
mean temperatures ranging from 14 to 16°C). These two study areas
were chosen mainly because of the need of a continuous canopy cover
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Figure 1. Distribution maps of cork oak (Quercus suber L.)
according to: A) EUFORGEN 2009 (www.euforgen.org); and B)
Pausas, Pereira & Aronson (2009) [Reproduced from Aronson ez
al. (2009); Copyright © 2009 Island Press. Reproduced by per-
mission of Island Press, Washington, DC].
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sufficient to well characterise cork oak’s spectral signature as well as
considering their different bioclimatic conditions. Both sites were
geolocated on the basis of available information (personal information
from experts, bibliographic sources, etc.), and of a series of preliminary
in situ surveys. Moreover, the Scr study area was chosen also consider-
ing the recognised natural value of its cork oak woodlands that, in 1995,
motivated its designation as a site of community interest in the frame-
work of the Habitats Directive. Figure 2 shows a first picture of the ter-
ritorial distribution of cork oak woodlands of at least 5 ha.

Satellite data

Landsat 8 archives

Launched in February 2013 (data available from May 2013), Landsat
8 satellite is the latest member of the Landsat data continuity mission,
which began in 1972. Landsat 8 is equipped with two sensors: the oper-
ational land imager (OLI) and the thermal infrared sensor (TIRS).
They provide data at a spatial resolution of 30 meters for visible, near
infrared (NIR), and short-wave infrared bands, and of 15 meters for
panchromatic bands (Table 1). All bands are collected at 12-bit, and
that, if compared with Landsat 7 enhanced thematic mapper plus
(ETM+) data (8-bit), can significantly improve the detection of tempo-
ral variation and spatial diversity of vegetation. As highlighted by Roy
et al. (2014), the OLI and TIRS are push-broom sensors, which, thanks
to the on-board GPS, allow obtaining images with an improved geomet-
ric fidelity in comparison with the previous Landsat images. Moreover,
compared to the ETM+, the new OLI sensor should be more sensitive
to the surface reflectance variability and less influenced by atmospher-
ic conditions (Ke et al., 2015).

As largely recognised by scholars, the Landsat program strength lies
in its continuity (e.g., Fichera et al., 2011, 2012; Di Palma et al., 2016).
Moreover, the Landsat OLI and ETM+ sensors have proven to be a reli-
able source of data for land use (LU)/LC monitoring for the following
characteristics: a relatively high spatial resolution (15+30 m); a wide
swath (the approximate scene size is 170 km North-South by 183 km
East-West); a frequent repeat cycle of 16 days that can be potentially
increased combining the data of the two sensors, thus reaching a the-
oretical repeat cycle of 8 days. In the operational contexts, such a revis-
itation period is far to obtain, mainly due to cloud cover and to the fact
that the data acquisition gives priority to scenes for the USA. Moreover,
limitations of Landsat data also include the fixed acquisition schedule
that makes difficult to acquire imagery, for a particular place at a par-

ticular time especially if smoke or clouds occur frequently over the area
of interest. This could be overcome using other satellite imagery, such
as Sentinel-2, which every week offer an outlook over the planning
period providing a Google Earth KML file with detailed information on
the image segments.

Data acquisition and pre-processing

For both investigated study areas, all available cloud-free OLI
imagery (path 188, row 33 of the Landsat worldwide reference system-
2, WRS-2) were obtained at level 1 terrain-corrected (L1T) with univer-
sal transverse Mercator (UTM) map projection, datum world geodetic
system84 (WGS84). The Landsat 8 L1T data processing includes radio-
metric calibration and geometric and precision corrections.
Considering the specific aim of this work and the given geolocation
uncertainty of less than 12 m of circular error for LIT data product
(Irons et al., 2012), it was not necessary to improve the geographic
location of the Landsat 8 imagery. Anyway, the geolocation of these
images was visually checked through overlapping with the regional
numerical topographic map (CTR, which stands for carta tecnica
regionale) produced at 1:5000 nominal scale.

A total of 6 OLI images for years 2014 and 2015 (22 May, 23 June, 25

Figure 2. Geographical location of the two study-areas: 1 - Scrisi
Mount (Scr); 2 - Angitola (Ang). Green-points in the map show the

presence of Quercus suber L. woodlands extended at least 5 ha.

Table 1. Band comparison of Landsat 8 operational land imager and thermal infrared sensor with the Landsat 7 enhanced thematic
mapper plus. Unless otherwise denoted, all bands have 30 m native resolution.

Band 1 - Coastal aerosol 0.43-0.45 - -

Band 2 - Blue 0.45-0.51 Band 1 - Blue 0.45-0.52

Band 3 - Green 0.53-0.59 Band 2 - Green 0.52-0.60

Band 4 - Red 0.64-0.67 Band 3 - Red 0.63-0.69

Band 5 - Near infrared 0.85-0.88 Band 4 - Near infrared 0.77-0.90

Band 6 - Shortwave infrared 1.57-1.65 Band 5 - Shortwave infrared 1.55-1.75

Band 7 - Shortwave infrared 2.11-2.29 Band 7 - Shortwave infrared 2.09-2.35

Band 8 - Panchromatic (15 m) 0.50-0.68 Band 8 - Panchromatic (15 m) 0.52-0.90

Band 9 - Cirrus 1.36-1.38 - -

Band 10 - Thermal Infrared (100 m) 10.60-11.19 Band 61 - Thermal Infrared (60 m) 10.40-12.50 (high gain)
Band 11 - Thermal Infrared (100 m) 11.50-12.51 Band 62 - Thermal Infrared (60 m) 10.40-12.50 (low gain)

OLI, operational land imager; TIRS, thermal infrared sensor; ETM+, enhanced thematic mapper plus. Source: http:/landsat.usgs.gov/band_designations_landsat_satellites.php Accessed: 20 May 2016.
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July, 10 August, 26 August for year 2014; 23 April for year 2015) were
downloaded from the United States Geological Service (USGS)
EarthExplorer service (http:/earthexplorer.usgs.gov accessed: 20 May,
2016). From the original 11 OLI-TIRS bands, only multispectral (MS)
bands 1-7 were selected and sharpened with the panchromatic (Pan)
band 8. Image pan-sharpening (or data fusion) algorithms were
applied in order to increase the spatial resolution of the MS bands 1-7
(30 m) using the higher spatial resolution Pan band (15 m), allowing
for smaller LU/LC features detection. Currently, a number of algorithms
are being proposed and implemented in software packages and several
scholars have been investigating and comparing their performances in
pan-sharpening different imagery. In this study, the hyperspherical
colour space (HCS) resolution merge algorithm, recently proposed by
Padwick et al. (2010), was used to sharpen the OLI images. HCS is a
procedure originally designed for WorldView 2 sensor 8§ band data but
widely used in pan-sharpen MS data with at least three bands. The pro-
posed HCS method has two modes: naive and smart mode. The latter,
which is similar to the smoothing filter-based intensity modulation
technique (Liu, 2000), was implemented in the ERDAS Imagine suite.
HCS was chosen because it generally preserves the original spectral
contents of the image, as also demonstrated by Dahiya et a/. for Ikonos
imagery (2013), and allows obtaining a good spatial improvement of
the original MS 1-7 bands. Boundaries in the pan-sharpened images
were clearer and smoother than those on the former MS images. As
suggested by Padwick et al. (2010), a 7x7 smoothing filter was applied
while the sharpened output images were resampled by means of the
nearest neighbour interpolation algorithm. Then, to better investigate
smaller LU/LC features detection, a subset of the L8 sharpened output
images was performed, for both the study areas.

The raw quantised calibrated pixel values of the original MS images
(digital numbers, DNs) must be converted into top of atmosphere
reflectance. Moreover, in order to improve the quality of qualitative and
quantitative analyses, topographic correction is necessary for imagery
obtained from optical or passive remote sensing and covering mountain-
ous areas. All the pan-sharpened OLI images were atmospherically and
topographically corrected to surface reflectance using all selected bands
(1-7) by means of the ATCOR3 module for Erdas Imagine® 2015. ATCOR
belongs to the semi-empirical correction methods and provides a good
compromise between general performance, computational simplicity,
and physical-structural basis (Balthazar et al., 2012; Vanonckelen and
Lhermitte, 2014). Atmospheric corrections implemented in ATCOR con-
vert the original DNs into spectral radiance at sensor’s aperture (L;)
using the calibration parameters and gain and offset (or bias) values
provided in imagery metadata. In formula (Eq. 1):

L,=DN-gain+offset [W m=2 sr-! um-!] M

ATCOR algorithm is based on the MODTRAN atmospheric radiative
transfer code and incorporates a compiled database containing the
results of the radiative transfer calculations for a wide range of weath-
er conditions and solar zenith and azimuth angles. In this study, a rural
aerosol model for spring and summer atmospheric models was applied.
As to the visibility, a distance of 15 km and 59 km was applied to the
study area of Scr and Ang, respectively. Starting from L, surface
reflectance values were obtained removing atmosphere disturbances.

The topographic correction in ATCOR3 is based on a modified
Minnaert topographic correction using a set of empirical rules (Richter
et al. 2009). ATCOR3 accounts for rugged terrain effects obtaining four
terrain files (slope, aspect, sky view, and shadow cast) from a digital
elevation model (DEM) (Richter, 1997; Richter, 1998). Since areas of
low illumination are normally associated with steep slopes, an inade-
quate spatial resolution of reference DEM will strongly affect the topo-
graphic correction (Richter, 1998). To obtain a good compromise, it
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would be desirable to have a DEM with a spatial resolution of 0.25 times
the pixel size of the corrected image or better (Goodenough et al., 1990;
Richter, 1998; Richter, 2008). Therefore, in this study, a 2.5%2.5 m
DEM, obtained by interpolating the original contour lines and the ele-
vation points of the numerical CTR (Figure 3), was used.

Finally, an anomaly detection (AD) process was carried out through
the Spectral Analysis Workstation of ERDAS imagine. AD is the process
of searching an input image to identify pixels that have a spectral sig-
nature that deviates markedly from most other pixel spectra in the
image (the background spectra). The output of AD is an anomaly mask,
depicting areas in the input image, that are markedly different from
their surroundings that was used during classification as input infor-
mation for unclassified pixels. In this study, the orthogonal subspace
projection was chosen as detection method.

Data processing and image classification

As highlighted in the Introduction section, this study was focussed
on the characterisation and separability of the spectral signatures of
cork oak woodlands in different seasonal periods. Signature separabil-
ity is a statistical measure of the spectral distance between two signa-
tures. To this end, a group of land uses was defined obtaining their
spectral signatures from a set of 55 ground control points (GCP) -
ground truths — collected by means of differential global navigation
satellite system with accuracy £0.5 m (Table 2). As shown in Table 2,

Table 2. Ground control points - ground truths - collected in the
two study-areas, Scrisi Mount and Angitola.

Urban settlements (Ur) 3
Roads (Ro) 2 9
Crops (Cr) 5 8
Coniferous woodlands (Cw) - 3
Cork oak woodlands (Co) 4 10
Other broadleaves woodlands (Bw) 3 -

Inland waters (Iw)
Marine waters (Mw) =
Total 14 41

LU/LC, land cover/land use; GCP, ground control points; Scr, Scrisi Mount; Ang, Angitola.

Figure 3. Example covering the Angitola (Ang) study area and
showing the Landsat 8 image 10 August 2014 (path 188, row 33).
A) The pan-sharpened at 15 m of spatial resolution; B) the same
image after atmospheric and topographic corrections performed by
means of the ATCOR3 algorithm. Both images are visualised in
true colour (RGB 431 band combination).
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their number is three times greater for the Ang study area, due to its
higher vegetation diversity compared to the Scr study area. According
to other scholars (Arcidiacono and Porto, 2012; Arcidiacono et al., 2012)
it depends on both class importance and variability of its information.
Moreover, GCPs were utilised to obtain the spectral signatures of the
defined LU/LC classes for the image classification. Spectral signatures
from each class were collected and their area of interest (AOI) was
used first to calculate the spectral separability of the cork oak wood-
lands and then as training set to perform the image classification.
The separability of the classes, based on the field analysis, was
graphically analysed by comparison of histogram plot of the pixel values
in the AOI signature of each OLI bands. Each individual histogram plot
distribution curve was evaluated in order to verify if the signature may
have two distinct classes of pixels and may need to be divided into two
classes. Analysing the univariate statistics of each band of the AOI sig-
nature helped in making evaluations and comparisons. Moreover, the
separability and consistency of the training sets can be evaluated by
means of specific numeric indexes. In this work, Euclidean distance
(ED) and divergence (D) were applied to measure spectral signatures
separability and a contingency matrix (CM) was used to evaluate the
consistency of the defined training sets. ED provides the spectral dis-
tance in a bi-dimensional spectral space between the mean vectors of
each compared pair of signatures. If spectral distance is not significant,
then they may not be distinct enough to produce a good classification.
CM measures the percentage of the sample pixels that are actually clas-
sified as expected, classifying all of the pixels in the selected AOIs, and
comparing the results with the pixels of a training sample. D measures
the statistical distance between signatures and determines the band
subsets that maximise the classification. GCP, coupled with other ancil-
lary data, were selected as training samples to perform a supervised
classification. In this stage of the study, a first classification was per-
formed for both study areas for all the image datasets. A maximum like-
lihood classification (MLC) and minimum distance (MD) algorithms
were applied in order to choose the best option for the areas under
investigation. Using MLC requires the assumption that both the train-
ing data and the classes themselves display multivariate normal
(Gaussian) frequency distributions (Lillesand et al., 2008; Campbell
and Wynne, 2011). In order to reduce the salt and pepper effects, a fuzzy
convolution algorithm, followed by a focal majority filter, was applied
for both classification procedures (for both operations, a 3x3 pixels’
kernel matrix was adopted). Prior to the satellite image interpretation,
a classification method was designed for both study areas including the
following 8 LU/LC classes: urban settlements (Ur); roads (Ro); crops

25000
5 ——122/05/2014
Angitola (Ang)
——23/06/2014
20000 - 25/07/2014
——10/08/2014
% 15000 ——26/08/2014
§ ——123/04/2015
s ]
& 10000
5000
0 " " T R " "
04 0.6 08 1 12 14 16 18 2 22

Wavelength [um]

(Cr); coniferous woodlands (Cw); cork oak woodlands (Co); other
broadleaves woodlands (Bw); inland waters (Iw); marine waters (Mw).

Accuracy assessment

In order to evaluate the user’s and the producer’s accuracy, a confu-
sion matrix was applied to the classified images (Congalton, 1991;
Congalton and Green, 2009). Four significant indexes metrics that
express the accuracy in terms of omission/commission errors (i.e., pix-
els of the ground truth incorrectly classified) were derived: overall
accuracy, user’s accuracy, producer’s accuracy, and the Kappa coeffi-
cient (K). To that purpose, a set of 30 randomly distributed sample
points was defined in each of the two study areas.

Results and discussion

At the present stage of the research activity, suitable OLI images for
the autumn and winter seasons are not available for the two investigat-
ed study-areas. This is due to several reasons: an excessive cloudiness
covering the study areas; unavailability of scenes due to sensors anom-
alies in the first operational year and currently under reprocessing pro-
cedures. In the near future, as soon as relevant scenes will be made
available, it will be interesting to explore also the autumn and winter
conditions to better characterise the cork oak’s spectral signature. The
use of such images could avoid classification and on-screen interpreta-

1 Scrisi(Ser)

Figure 4. Example of the Landsat 8 image 23 April 2015 and 23 June
2014 (path 188, row 33) covering the two study-areas [1 - Scrisi
Mount (Scr); 2 - Angitola (Ang)] siown in false colour emphasising
the three infrared bands (RGB 567 band combination).

i | ——22/05/2014
Scrisi (Ser) ——23/06/2014
20000 ——25/07/2014
——10/08/2014
15000 ——26/08/2014
g ——23/04/2015
% 10000
o
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Ffu.re 5. Comparison of typical spectral profiles of Cork oak woodlands in the two study-areas [Scrisi Mount (Scr) and Angitola (Ang)] and
T

i
eferring to the six Landsat 8 OLI images.
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tion problems (e.g., in the accuracy assessment stage) also reducing
noise due to other broadleaves species. Moreover, the classification of
cork oak forests can take advantage from the use of winter scenes
thanks to the evergreen habitus of this species. Figure 4 shows the
Landsat scene 23 April 2015 for the Scr study area and the scene 23
June 2014 for the Ang study area, highlighting the three infrared bands
(5-7) that recorded the maximum reflectance for the cork oak wood-
lands. In all the examined periods, the analysis of the spectral profiles
showed a higher reflectance in the infrared area, particularly in band 6
(Shortwave infrared, 1.57-1.65 m) (Figure 5). It can be noticed as the
greatest number of pixel is distributed between band 5 and 6 (near
infrared and shortwave infrared wavelength) (Table 3). As to the Scr
study area, a better spectral separability was obtained for the image 22
May 2014; while, in the case of the Ang study area, better results were
obtained for the image 26 August 2014. It means that, despite the geo-
graphical proximity of the two study areas, the different yearly rainfall
amounts characterising them, which are higher in the Ang study area,
had different effects on the phenology, and then on the reflectance val-

_\epress

ues and on the general behaviour of the cork oak’s spectral signature,
during the periods under investigation.

The results of the spectral separability analysis show that the high-
est values of spectral separability can be found on the image of 23 April
2015 for the Scr study area and of 23 June 2014 for the Ang study area.
In particular, the values of spectral separability obtained comparing Co
with Cw and Bw are worth mentioning. Actually, the latter two LU/LC
classes are spectrally narrower than Co. Spectral discrimination
between Bw and Cw was very successful, but this is not surprising,
owing to the marked difference between these two groups in the near-
infrared reflectance region (Aardt et a/., 2001) and despite the signifi-
cant spectral variability recorded inside the Bw class. These results
indicate the existence of inherent spectral differences (leaf-on)
between the deciduous and coniferous species studied, confirming the
spectral separability of these two groups at an operational level (Nelson
et al., 1984; Frank, 1988; White et al., 1995). Spectral discrimination
between Co and Bw proved less accurate but was still significant for
both study areas. What emerges is a consistent confusion between Q.

Table 3. Univariate statistics of cork oak’s area of interest spectral signature for each Landsat 8 operational land imafer band that rep-
resent the average amount of spectral reflectance from oak trees in the scene (expressed in number of pixel per band).

1 188.80 96.91 126.49 120.51 119.54 69.05 75.05 43.15
2 190.31 88.59 127.67 110.99 125.08 60.25 80.79 36.90
3 39173 118.34 322.43 131.59 372.24 77.10 292.64 4731
4 306.92 107.70 221.15 133.29 212.079 56.31 162.35 36.02
5 2763.85 444.89 2922.35 525.06 3248.12 326.13 3122.05 379.89
6 1477.88 382.17 1544.65 393.06 1354.95 113.91 1267.98 110.22
7 667.73 194.42 652.53 215.26 534.19 63.76 466.09 51.95
Total 59872 1433.6 9917.3 1629.7 5966.2 766.5 5466.9 705.4

Mean, mean value for the respective band; Std. dev., standard deviation value for the respective band. *Scene for which most accurate classifications were obtained; °scene for which less accurate classifications

were obtained.

Table 4. Synthesis of the spectral separability analysis performed for both study-areas, Scrisi Mount and Angitola.

22 May 2014 Co-Cr 1468 835 149 167
Co-Cw - 1027 - 107
Co-Bw 2591 401 81 29
23 June 2014 Co-Cr 748 1347 51 308
Co-Cw - 884 - 104
Co-Bw 1157 934 12 92
25 July 2014 Co-Cr 732 1758 37 684
Co-Cw - 739 - 142
Co-Bw 1500 989 11 133
10 August 2014 Co-Cr 1266 1510 58 586
Co-Cw - 625 - 224
Co-Bw 1266 591 11 140
26 August 2014 Co-Cr 988 1721 90 141
Co-Cw - 1052 - 60
Co-Bw 1186 1764 10 496
23 April 2015 Co-Cr 686 680 99 69
Co-Cw - 469 - 80
Co-Bw 832 563 28 59

LU/LC, land cover/land use; Cr, crops; Cw, coniferous woodlands; Co, cork oak woodlands; Bw, broadleaves woodlands. Higher values of Euclidean distance and lower values of divergence mean the best spectral

LU/LC class separability.
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suber L. and Q. ilex L., which might have been expected since they
belong to the same genus.

Moreover, considering that the three LU/LC classes are rather close
to each other, a consistent number of training sets must be included in
the analysis in order to perform a good image classification. With a
view to better presenting the results obtained from the spectral separa-
bility analysis, those considered as more significant were summarised
in Table 4.

The map accuracy of single-date Landsat classifications strongly
depended upon the temporal sampling of each scene. Referring to the
main objective of this research activity, i.e., to assess the potentiality of
OLI sensor in mapping cork oak woodlands, the most accurate classifi-
cations were obtained on the images of 23 April 2015 and of 23 June
2014 for Scr and Ang, respectively (Tables 5 and 6). The overall K
ranged from 0.87 to 0.95 and from 0.53 to 0.95 for Scr and Ang, respec-
tively, revealing a good level of classification in the case of MLC and a
non-satisfactory accuracy of MD classification. Applying MD algorithm,
the highest overall accuracy was 63.3% for Scr and 60.0% for Ang (over-
all K 0.12-0.50 for Scr, and 0.21-0.54 for Ang). These results are perfect-
ly in line with what is largely accepted by scholars. In fact, MLC is a
powerful classification technique, yet it should be considered that it is
sensitive to variations in the quality of training data even more so than
most other supervised techniques (Campbell and Wynne, 2011). The
best overall classification accuracy achieved was over 85%, a level uni-
versally considered as acceptable by practitioners (Congalton and
Green, 2009). Moreover, it is within the range of overall accuracies

achieved by using high-resolution airborne data in the classification of
other highly heterogeneous landscapes in Mediterranean climate
zones (Coulter et al., 2000; Koetz et al., 2008; Sluiter and Pebesma,
2010). It should also be noted that the classification accuracy values
obtained were also based on reference data that, whilst as accurate as
possible, may themselves attribute erroneous labels to validation sites
and cannot be completely relied upon as ground truth (Congalton and
Green, 2009). The good discrimination of cork oak can be explained by
late spring-summer peak differences from the other tree species and
the shrub layer. In fact, at this time of the year, the understorey has a
very light colour, which is due to the presence of dry vegetation and
soil. The tree canopy of cork oak is darker and when tree canopy cover
increases, the reflectance of the pixel unit (MS band 4-Red) decreases,
because the soil reflects solar radiation and the chlorophyll absorbs it.

The same situation can be noticed in the MIR, but the absorption is
due to the presence of water in the living tissues. In the NIR (MS band
5), crowns are highly reflective, as well as the understorey of bright
soils and dry grass, such as in the Scr and Ang study areas. Satellite
imagery acquired in the late summer maximises the spectral contrast
between the evergreen tree crowns and the dry herbaceous back-
ground. However, the study areas are still characterised by an extreme-
ly variable understorey. According to Huete (1989), areas with signifi-
cant soil brightness, changes arising from moisture differences, rough-
ness variations, shadow, or organic-matter differences, show soil-
induced influences on the vegetation indices values. These effects are
predominant in partially vegetated canopies.

Table 5. Scrisi Mount study-area. Accuracy assessment (%) at pixel level for both the classification methods used and referring to the

whole classified L8 imagery dataset.

Ur 100 50 - - 100 100 - - - - 100 50
Ro 75 100 75 75 100 100 50 100 100 100 75 100
Cr 100 91.31 100 88.89 88.89 88.89 7143 4545 100 90 100 100
Co 50 100 100 100 100 100 80 100 100 100 100 100
Bw 100 100 80 100 80 80 100 90.91 100 100 100 100
Iw 100 100 100 100 100 100 - - 33.33 100 100 100
Mw 100 100 100 100 100 100 100 100 100 100 100 100
Overall accuracy 93.33 93.33 93.33 90.00 93.33 96.67
Kappa coefficient 09114 0.9163 0.9167 0.8705 0.9151 0.9512

Ur - - - - - - - - - - - -
Ro 0.00 0.00 - - 0.00 0.00 - - - - - -
Cr 25 3333 66.67 44.44 33.33 57.14 7143 4545 54.55 66.67 36.36 44.44
Co 28.57 100 33.33 100 11.11 50 25 100 25 33 2222 66.67
Bw 7143 50 75 37.50 50 25 50 75 33.33 40 25 10
Iw - - 100 100 0.00 0.00 - - - - - -
Mw 80 100 85.71 100 100 100 100 100 100 100 100 100
Overall accuracy 43.33 60.00 30.00 60.00 56.67 36.67
Kappa coefficient 0.308 0.5021 0.1274 0.4760 0.4388 0.2061

LU/LC, land cover/land use; UA, user’s accuracy; PA, producer’s accuracy; Ur, urban settlements; Ro, roads; Cr, crops; Co, cork oak woodlands; Bw, broadleaves woodlands; Iw, inland waters; Mw, marine waters.
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Always referring to the goal of this paper, the analysis of the best
image classification obtained for Scr (23 April 2015) and Ang (23 June
2014) showed that the detected cork oak woodlands occupy an area of
453 ha for the Scr and 291 ha for the Ang study area (9% and 6% of the
examined scene, respectively) (Figure 6). As to the classification accu-
racy, Co was detected with an accuracy of 100% [for both User’s and
Producer’s accuracies (UA and PA)] in the Scr study area, while 100%
UA and 75% PA were obtained in the Ang study area. Figure 7 shows the
land distribution according to LU/LC classes among the L8 images with
the best and the worst overall accuracy obtained.

The Landsat 8 OLI panchromatic band has a band-pass narrower
than the one of previous Landsat sensors (Roy ef al., 2014) and this
results in images presenting greater contrast between vegetated and
bare surfaces, thus enhancing classification training and validation
data collection. Findings suggest that Landsat 8 imagery can success-
fully support an overall accurate detection of cork oak woodlands.
Despite the limitation of spatial resolution, Landsat products are usu-
ally used to map vegetation at community level (Xie et al., 2008). It is a
challenging task to use Landsat 8 images for mapping at species level,
especially in a heterogeneous environment like the Calabria region.

This study suggested that, when these images integrate with other
ancillary data, it becomes possible to map species as well as to carry out
other studies (Doma and Siizen, 2006) to produce regional scale vege-
tation maps with a high overall accuracy. Moreover, ancillary data,
including field samples, topographical features, environmental charac-
teristics and other spatial data layers, seems to be very helpful to get a
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more satisfactory result and increase classification accuracy (Xie et al.,
2008). However, this is not always true, especially in cases like those
presented in this paper in which a study area is covered with vegeta-
tion of complex forms that, at different seasonal stages, either present
similar spectral responses between different vegetation groups or gen-
erate spectral variations for the same vegetation group (Sha et al.,
2008). This might have been an important factor, since the effect of the
sensor spatial resolution is directly related to the spatial heterogeneity
of the remotely sensed area (Marceau et al., 1994). However, that con-
firms the challenge to use Landsat family images because they provide
the fine-grained data necessary for detecting the high level of spatial
heterogeneity expected in the Mediterranean environments
(Fernandez et al., 2010).

All examples corresponding to the categories Mw and Iw were classi-
fied correctly (100% for both UA and PA for each study area). As high-
lighted by Rodriguez-Galiano et al. (2012), the most difficult categories
to classify are those with high intra-class variability, such as urban set-
tlements and, with reference to this study, woodlands. When mapping
vegetation under such circumstances, various difficulties are often
encountered, hence it could be better to adopt more advanced image
classification methods, such as sub-pixel analysis (Lee and Lathrop,
2005). Another solution could be to choose higher resolutions of
imagery so as to increase distinguishability in image classification.
However, higher resolutions of imagery will most likely increase the
cost.

Table 6. Angitola study-area. Accuracy assessment (%) at pixel level for both classification methods and referring to the whole classified

L8 imagery dataset.

Ur 100 100 100 100 - - 100 100 100 100 100 100
Ro 100 100 100 100 100 75 100 100 80 100 100 100
Cr 100 100 100 100 80 100 28.57 33.33 100 80 100 100
Cw - - - - 100 100 - = - - - -
Co 100 33 100 75 - - 25 100 33.33 100 - -
Bw 60 100 90 100 100 87.5 66.67 46.15 100 75 100 77.78
Iw - - - - 100 50 100 100 - - 66.67 100
Mw 100 100 - - 100 100 100 100 100 100 - -
Overall accuracy 93.33 96.67 93.33 63.33 86.67 93.33
Kappa coefficient 0.9007 0.9535 0.9140 0.5346 0.8246 0.8997

Ur 100 100 100 100 60 60 100 100 42.86 60 - -
Ro 100 66.67 > > 0.00 0.00 100 100 50 33.33 50 50
Cr 85.71 66.67 7857 7857  55.56 62.50 28.57 33.33 7143 41.67 66.67 76.92
Cw 100 100 - - - - - - - - - -
Co 33.33 40 33.33 50 33.33 50 25 100 - - 14.29 100
Bw 40 ST14 5714 36.36 50 33.33 66.67 46.15 0.00 0.00 100 28.57
Iw - - - - 100 50 100 100 - - 66.67 100
Mw 100 100 - - 100 100 100 100 100 100 - -
Overall accuracy 63.33 63.33 50.00 63.33 33.33 53.33
Kappa coefficient 0.5429 0.4608 0.3878 0.5346 02157 0.3769

LU/LC, land cover/land use; UA, user’s accuracy; PA, producer’s accuracy; Ur, urban settlements; Ro, roads; Cr, crops; Cw, coniferous woodland; Co, cork oak woodlands; Bw, broadleaves woodlands; Iw, inland waters;

Mw, marine waters.
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Figure 6. The best (A, B) and the worst (A, B’) results obtained in detecting cork oak woodlands are shown for the two study-areas [A, Scrisi
Mount (Scr) - B, Angitola (Ang)]. All classified images are produced applying the maximum likelihood classification algorithm followed by fuzzy
convolution and a focal majority filter. LU/LC, land cover/land use.
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Figure 7. Land distribution according to land cover/land use (LU/LC) classes referring to the best (A, B) and the worst (A’, B’) image classification
used for detecting of cork oak woodlands [A, Scrisi Mount (Scr) - B, Angitola (Ang)].
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Conclusions

In this first step of the research activity, a set of multi-temporal
Landsat OLI imagery for years 2014 and 2015 was implemented in order
to assess the potential performance of this new sensor in detecting the
presence of cork oak woodlands. Particular attention was paid to the
evaluation of the spectral separability of cork oak woodlands in 1-7 MS
OLI bands on atmospheric and topographic corrected images. To this
end, ED and D indexes were applied in order to quantitatively measure
spectral signature separability, while the consistency of the defined
training sets was assessed by means of CM.

As it could be expected, at medium and small spatial scales (1:50,000
or smaller), OLI sensor provides good results thanks to its improved
spectral resolution depth compared to the previous Landsat family sen-
sors. Moreover, the main advantage, which determined its choice in
this research activity, can be found in the free availability coupled with
a high revisitation period (theoretically, Landsat 8, in conjunction with
Landsat ETM+, can reach a revisitation period of 8 days).

To better investigate the spectral separability of cork oak woodlands,
a more complete group of training sets, including eight LU/LC, was
defined. Therefore, an exemplificative supervised classification for
both study areas was included in this paper.

Finally, one of the recognised challenges in mapping cork oak popu-
lation is that the species’ spectral response is quite similar to that of Q.
ilex L., a widespread species in the Mediterranean basin that is often
found near or mixed to Q. suber L., as well as to that of olive groves
(Olea Europea L.). To this end, future research direction will deal with
the analysis of satellite images with different geometric and spectral
characteristics (i.e., WorldView-2 and 3, and the MS data from the
Sentinel-2 mission launched on 23 June 2015 in the framework of the
Europe’s global environmental monitoring programme Copernicus
(www.esa.int/Our_Activities/Observing_the_Earth/Copernicus
Accessed: 26 May, 2016).
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