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E-nose: a low-cost fruit ripeness monitoring system
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Abstract

All fruits emit some specific volatile organic compounds (VOCs)
during their life cycle. These VOCs have specific characteristics; by
using these characteristics fruit ripening stage can be identified with-
out destroying the fruit. In this study, an application-specific electron-
ic nose device was designed for monitoring fruit ripeness.
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The proposed electronic nose is cost-efficient and does not
require any modern or costly laboratory instruments. Metal oxide
semiconductor (MOS) sensors were used for designing the pro-
posed electronic nose. These MOS sensors were integrated with a
microcontroller board to detect and extract the meaningful fea-
tures of VOCs, and an artificial neural network (ANN) algorithm
was used for pattern recognition. Measurements were done with
apples, bananas, oranges, grapes, and pomegranates. The designed
electronic nose proved reliable in classifying fruit samples into
three different fruit ripening stages (unripe, ripe, and over-ripe)
with high precision and recall. Furthermore, the proposed elec-
tronic nose performed uniformly on all three fruit ripening stages
with an average accuracy of >95%.

Introduction

Monitoring and controlling fruit ripeness is an essential task in
fruit farming. The quality of fruit in the consumer market largely
depends on the fruit’s maturity or ripeness during harvesting, stor-
age, and market distribution. In the past, several techniques have
been proposed for fruit ripeness monitoring, however, these tech-
niques come with major disadvantages; i) the fruit samples are
often destroyed while analysing ripeness status, ii) some of these
techniques are not practical for farming and storage. Because of
these drawbacks, most techniques are unsuitable for fruit ripeness
monitoring; therefore, human involvement is required to obtain
fruit storage life and optimal harvest dates. Due to subjective inter-
pretation, an enormous quantity of fruits are reaped too early or too
late, reaching the markets in bad condition (Brezmes ez al., 2005).

Presently, there are two commonly used destructive methods
for fruit ripeness monitoring; i) the sensory-evaluation method
and ii) the physicochemical-indexes detection method (Singh and
Singh, 1994; Xu et al., 2016). The first method requires human
observation to evaluate the fruit ripeness using human vision,
taste, and smell. This method relies on human perception; there-
fore, it suffers from low evaluation speed and is highly influenced
by subjective factors (Zhaoqi et al., 2002). The second method
evaluates the fruit ripeness by extracting the fruit’s physical and
chemical features. It is an effective fruit ripeness detection method
because it does not require human intervention, but the operating
procedure of this method makes it non-ideal for fruit ripeness
monitoring for the massive fruit production industry. In this
method, sample fruits need to be damaged to extract the physical
and chemical features, and this method also suffers from low eval-
uation speed (Singh et al., 2010).

Furthermore, there are two non-destructive methods for fruit
ripeness monitoring: the near-infrared spectroscopy method
(Khodabakhshian et al., 2017) and the electronic nose detection
method (Chen et al., 2018; Voss et al., 2019; Tan and Xu, 2020).
The near-infrared spectroscopy method extracts the internal and
external features of a fruit sample. However, in this method, fea-
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ture extraction is very difficult during storage due to mutual shad-
owing among fruits, which makes this method inefficient for fruit
ripeness monitoring during storage. The biological olfaction pro-
cess influences the electronic nose fruit ripeness monitoring
method (Beghi ef al., 2017). It detects and analyses the volatile
organic compounds (VOC) emitted by the fruits during different
developmental phases, which makes this method more suitable for
fruit ripeness monitoring without being influenced by field angle
and subjective factors. Presently, the E-nose technology has been
successfully used in many research areas, such as quality monitor-
ing of vegetables (Giovenzana et al., 2014; Yang et al., 2020),
quality control of nuts (Yoshida et al., 2012), detection of meat
spoilage (Kodogiannis, 2017), and quality monitoring of milk
(Poghossian et al., 2019). Applying the E-nose technology can
offer a non-destructive practical method for real-time fruit ripeness
monitoring in mass production.

The electronic nose is a device that simulates the biological
sense of smell (Baietto and Wilson, 2015). The E-nose device is
developed to detect and differentiate among complex odorants
using an array of metal oxide semiconductor sensors. The sensor
array generates a distinctive electronic fingerprint under expo-
sure to an odorant stimulus (Ghasemi et al., 2011). The responses
of all the sensors in electronic fingerprints are recorded, and var-
ious machine-learning algorithms can be applied to these finger-
prints to discriminate among different fruit ripeness stages. These
characteristics of the E-nose substantially suggest using an elec-
tronic nose to provide a quick perception of the VOC (Tang et al.,
2010). A typical electronic nose mainly consists of three parts
(Pearce, 1997; Haugen and Kvaal, 1998; Yu et al., 2008): i) sam-
ple delivery unit; fruit samples are placed in this unit for a partic-
ular time to collect VOC emitted by the fruit samples; ii) sensor
unit; multiple sensors are placed in this unit to extract the infor-
mation from the VOC collected in the sample delivery system;
iii) data acquisition and computational unit; extracted informa-
tion from the sensor unit is analysed by the computational unit to
generate a smell fingerprint.

The motive of this study was: i) to design and integrate a low-
cost electronic nose device using a sensor array of five metal oxide
semiconductor (MOS) sensors and one digital temperature and
humidity (DHT) sensor to classify fruits into three distinct ripeness
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unripe, ripe, and over-ripe stages. Several research studies have
described the application of an electronic nose for fruit quality
identification and ripeness monitoring (Mavani et al., 2021);
though all these studies target a specific fruit, in our study, we have
performed our experiment on multiple types of fruits; ii) to evalu-
ate the performance of the developed electronic nose device cou-
pled with an artificial neural network.

Materials and Methods

Electronic nose design

In this paper, a portable electronic nose was designed using
five MOS sensors and one DHT sensor. All the sensors were inte-
grated with a microcontroller board (Arduino Uno). The open-
source Arduino Software (IDE) was used to write the program
code, and later these codes were uploaded to the microcontroller
board. Finally, the program interacted with the microcontroller
board to control the sampling process, read and interpret the sensor
responses, and store these responses in a file for later analysis.

The E-nose designed in this study comprises three main mod-
ules: sample delivery unit, sensor unit, and data-acquisition and
computational unit. Details for each of these components are
described in the following sections. The basic structure of an elec-
tronic nose is shown in Figure 1. The architecture of the designed
electronic nose in this study is shown in Figure 2.

Sample delivery unit

The sample delivery unit was a 1 cubic ft cylindrical iron
chamber equipped with one outlet valve at the top of the chamber,
connected with a 4.6 CFM REX 30 vacuum pump which was used
to remove the fruit aroma of the previous sample from the sam-
pling unit. One inlet valve was also present at the top of this cham-
ber to supply the fresh air inside the chamber. This chamber was
also equipped with a USB cable with the help of a rubber stopper;
one end of the USB cable was placed inside the chamber, and the
other end was placed outside the chamber to connect the sensor
unit to the computer.

Data
acquisition
Board &
measurement
circuit board

Figure 1. The basic architecture of an electronic-nose.
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Sensor unit

Five MOS sensors and one DHT sensor were used in this
study. All the sensors were symmetrically integrated on a bread-
board and connected to a microcontroller board. In this study, sen-
sors were selected based on their sensitivity to ensure the selectiv-
ity of the designed electronic nose. However, there are no specific
rules to determine the numbers or sensor selection criteria
(Schaller et al., 1998). The sensor unit was placed inside the sam-
ple delivery chamber and connected to a computer via a USB
cable. Table 1 lists the various sensors used in this study to design
an E-nose and describes their applications and detection limits.

MOS sensors function accurately at a specific temperature

(40°C). To acquire this temperature, MOS sensors have a heater
resistance built inside the sensor. The heater and measurement cir-
cuits need to be connected with a constant DC voltage across the
heater and measurement pins for a specific time (=48 Hr) before
data collection. The sensors get sensitive to a specific odor present
in the air at this raised temperature. Sensor conductivity changes in
the presence of this detectable odour, depending on the odour and
sensor type (Fine ez al., 2010). This change in the sensor conduc-
tance is measured by the measuring circuit in the form of a voltage
signal. Change in the sensor conductance in various conditions is
shown in Table 2. Figure 3 describes the measuring circuits for the
TGS26xx and MQ-x sensors, respectively. The TGS 26xx, MQ-4,
and MQ-5 sensors require one input voltage (5v) for both the

Sensor Unit

Figure 2. The designed electronic nose.

Table 1. Sensors used in this study to design the E-nose device.

S1 MQ-5 Natural gas, alcohol, and hydrogen 200-10000 ppm
S2 MQ-4 Methane 300-10000 ppm
S3 TGS 2620 Alcohol and solvent vapors 50-5000 ppm
S4 TGS 2610 LPG and component gases 50-5000 ppm
S5 TGS 2602 Air contaminants (VOCs and odorous gases) 1-30 ppm
56 DHT 11 Humidity and temperature sensor

LPG, liquefied petroleum gas; VOCs, volatile organic compounds.

Table 2. Change in sensor conductance in different conditions.

Conductivity decrease
Conductivity increase

n-type
p-type

Conductivity increase
Conductivity decrease
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heater circuit (Vi) and the measuring circuit (V¢). Sensor response
of TGS 26xx, MQ-4, and MQ-5 can be measured by applying 1
kQ, 10 kQ, and 20 k€ load resistance (Rr), respectively, across
Vout pin (Mamat ef al., 2011).

Data-acquisition unit

The data-acquisition unit comprises a microcontroller board
(Arduino Uno), an open-source Arduino Uno Software (IDE), and a
computer. First, the microcontroller board was connected to the com-
puter through a USB cable. Then, a program was written on Arduino
Uno Software (IDE) and uploaded to the microcontroller board to
read sensor voltage and to receive and transmit data to a file.

Data collection

Apples, bananas, oranges, grapes, and pomegranates fruits
were used in this study for fruit ripeness monitoring. These fruits
were chosen for this study based on the availability of unripe fruits
in the local market. To define the fruit ripeness stages, we relied on
human experience, and human observations, vision and smell were
used to define the ripe, unripe, and overripe fruits. Unripe bananas,
grapes, and apples are easy to find in the Indian consumer market
because these fruits are also used as vegetables and pickles.

However, finding unripe oranges and pomegranates was a
time-consuming task, and for that, we visited the consumer mar-
kets on multiple days and selected a few, sometimes limited to one
unripe fruit on a single day.

All the fruits, in two different categories, unripe and ripe, were
purchased from the local market on various days. For unripe and
ripe fruits, data collection was performed on the same day the fruit
was purchased. For overripe fruits, data collection was performed
when the available ripe fruits reached the overripe stage. For each
fruit, 30 samples (10 unripe, 10 ripe, and 10 overripe) were used.
In this study, experiments were carried out on five fruits (apple,
banana, orange, grape, and pomegranate), thus a total of 150 fruit
samples were used. For each fruit sample, 120 data samples were
recorded, thus 6000 data samples were collected in each category
(unripe, ripe, and overripe). To ensure the specificity of our
machine learning model, we included 6000 sample recordings of
non-fruit odor (negative data) in our dataset, thus our final dataset
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contained 24,000 (3 category*6,000 sample+6,000 non-fruit odor
sample) data samples.

The sensor array response curve to different states of fruit
ripeness and the sensor array response curve to multiple fruit types
in the same ripeness state are shown in Figure 4. In this study, we
considered the ripening state of fruits as an aspect, instead of the
fruit type. Every fruit emits some VOCs during its life cycle, some
VOCs (aldehydes, alcohol, ketone, efc.) are common to all fruits,
and some VOCs are specific to a fruit (El Hadi et al., 2013). Our
objective was to capture these common volatile organic com-
pounds to classify multiple fruits into their ripeness states. To
achieve this objective, multiple combinations of sensors were test-
ed, and the sensor array listed in this paper was able to capture the
common VOCs among the fruits. The sensor array response curve
for ripe apple, ripe banana, ripe grape, ripe orange, and ripe
pomegranate are shown in Figure 4B and E-H, respectively, and
the curve patterns of these graphs are very similar to each other
which indicate the ability of the designed E-nose to capture the
ripeness state of these fruits without considering the type of fruit as
an aspect.

Measurement protocol

The sensor unit was connected to a computer via a USB cable,
and all the sensors were heated in ambient air for 48 hours before
data collection to acquire a 40°C sensor temperature, thus produc-
ing sensitivity to a particular odour. Measurements were done for
each fruit sample by following these two steps.

Step 1: Cleaning phase — the measurement begins by conduct-
ing the baseline voltage correction for sensors. In this process, air
containing odour from the previous measurement was sucked out
for 360 seconds, followed by the release of fresh ambient air into
the chamber for 60 seceonds, thus obtaining a steady baseline volt-
age. The sensor voltage was recorded and saved in a file for later
use in data preprocessing.

Step 2: Sampling phase — to accumulate adequate odour con-
centration comparable with the sensor sensitivity, the fruit sample
was placed inside the chamber for 40 minutes, and then sample
recording was done for 200 seconds. Data sample recording was
repeated every 5 seconds; thus, each sampling phase contains 40

Ve
AC or DC
5V
Vour
Ry
\4

&
B

Figure 3. The measurement circuit for Metal oxide semiconductor sensors. A) TGS 26xx sensors measurement circuit; B) MQ —x sensors

measurement circuit.
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Figure 4. The sensor array response curve to different states of fruit ripeness. In sensor array response curve, sensor responses for first
60 seconds represents the baseline voltage corresponding to each sensor, and sensor responses for remaining 200 seconds are the sensor
responses in presence of fruit odors. A) Sensor response to unripe ?ple odors; B) Sensor response to ripe apple odors; C) Sensor

response to overripe apple odors; D) Sensor response to background odors; E) Sensor response to ripe banana odors; F) Sensor response
to ripe grape odors; G) Sensor response to ripe orange odors; H) Sensor response to ripe pomegranate odors.
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data samples. For each fruit sample, the cleaning and sampling
process was repeated 3 times; therefore, 120 data samples were
collected for each fruit sample. A total of 150 fruit samples were
used in this study; thus, the process defined above was repeated
450 times, and as a consequence, the fruit odour data comprise
18000 samples. The cleaning and sampling time for the measure-
ment process was obtained from sensor responses that were tested
before the data collection. It was observed that 420 seconds for the
cleaning phase and 40 minutes for odor accumulation was ade-
quate. To collect non-fruit odor data, the experiment was per-
formed over a long period of time in the open air without imple-
menting the cleaning process. During the experiment, the temper-
ature and humidity of the chamber were also recorded.

Data preprocessing

The prediction ability of machine learning algorithms largely
depends on the data quality to obtain a generalised prediction
model of the classification problem (Singh and Singh, 2019).
Many research studies have presented the significance of data pre-
processing to enhance the data quality and subsequently the classi-
fication performance of the machine learning algorithm. In these
studies, several techniques have been suggested for data prepro-
cessing in MOS sensors-based electronic nose (Sanacifar et al.,
2014). In our study, we applied the fractional normalisation
method to our dataset as shown in Equation (1). In this method, the
response for each sensor in the presence of fruit odor was subtract-
ed and then divided from the sensors’ baseline voltage reading
recorded before each batch of sampling, hence obtaining relative
responses of sensors. These relative responses of sensors were
used to train and test our machine-learning model.

Hidden layer
Input layer

iz,

cepress

Vo;— Vbl
Vs = Vb, (M

where the relative response of the i sensor is Vi, V,i represents
the i sensor’s response in the presence of fruit odour, and Vbi rep-
resents the baseline voltage of the it sensor.

Pattern recognition

This study used an artificial neural network algorithm to obtain
a generalised prediction model. The developed E-nose comprised
5 MOS sensors and hence collected 5 features for each fruit sample
at a time. These feature sets were applied to train our artificial neu-
ral networks (ANN) classification model to predict the ripeness of
fruit. An ANN model incorporates many layers of several process-
ing units known as artificial neurons. A basic ANN model has three
layers of artificial neurons: 1 output layer, 1 hidden layer, and 1
input layer. The number of hidden layers in a network can be
increased according to the requirement. Figure 5 describes the
architecture of this study’s designed ANN model, which performed
better than all the other models. The number of neurons in hidden
layers and the number of hidden layers were obtained by trial and
error. The ANN model was designed in Python (version 3.8.0) pro-
gramming language using Keras (version 2.3.0) neural-network
library, which was implemented using TensorFlow (version 2.0.0)
machine learning platform.

The designed artificial neural network model contains 1 output
layer, two hidden layers, and 1 input layer. Sensor array responses
were presented to the input layer of the network; hence the input
layer comprised 5 input neurons. The first hidden layer consisted
of 10 neurons, while the second hidden layer included 8 neurons.

. Output layer

: b X1
il
i "
X2
i2
—> & .
i : P
is
—> @& . —
. @ Non-fruit
s
b1 bi2 bo

Figure 5. Structure of the designed artificial neural networks model.
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The output layer included 4 output neurons; each neuron rep-
resenting a distinct class. The ANN model parameters used in this
study to train our feed-forward ANN model using the back-propa-
gation algorithm are shown in Table 3.

The presentation of the entire training dataset to the
feed-forward ANN model is known as one epoch while the pres-
ence of one set of features to the model is termed as iteration.

Equation (2) represents the k™ neuron’s actual value in the neu-
ral network.

N& = B8y x] wy + by )

where wix is the weight between neuron i and neuron k. b; repre-
sents the weighed sum of the bias node, n represents the number of
inputs presented to the ih neuron. This study used the ReLU and
Softmax activation functions for hidden and output layers, respec-
tively. The output value of neurons in hidden layers and output lay-
ers are given in equation (3) and equation (4), respectively.

0y = max(0,N}) 3)
P(y =j|6% =
):j;'c:n eﬂg) (4)
where © = WoXo + WiX; + WoX2 +........ + WiXk + bj= WTX. P

is the probability of j™ class over all possible target classes. O is
the network’s predicted output, which can be obtained by calculat-
ing the net value of the output layer and the net values of all the
hidden layers. Equation (5) represents the error in the network,
which is calculated by subtracting the obtained output (Om) from
the expected output (Oe) for that iteration. Total error and mean
squared error (mse) are defined by equation (6) and equation (7),
respectively.

Em= 0, - Oy (5)
Etorar = %ZmzlErzn (6)
mse = %22:1 Erotar O

where Ep, is the error in the network for the it iteration. The back-
propagation algorithm using a gradient descent approach, aims to
minimise the error given by Eq. (5). The back-propagation algo-
rithm updates the network weights based on the error rate obtained
in the previous epoch. First, it calculates the weight changes, and
then network weights and thresholds are updated [Equation (8)-
(10)] (Adak and Yumusak, 2016).

Ok = Ox(1— 0x)Em (®)
AW, = L6pxy + pAwj ™" ©)
*.,'LIJ,-’}c = w}?};i + AW}}C (10)

where Jy is the error rate for the k™ node in the output layer of the
network, Oy represents the output for k' neuron, Awj represents

OPEN 8ACCESS

the weight optimization rate between the jh and k™ neurons. To
prevent the network from settling in a local minimum, a momen-
tum (p) hyperparameter was used. While the learning rate (/r)
decides how quickly the network learns in each iteration. In this
study, the total number of epoch was set to 1,000, and the dataset
collected from the fruit odour was presented to the ANN model.

Performance evaluation parameters

Various statistical and graphical measures were obtained to
evaluate the performance of our classification model. To obtain
these statistical scores, the predicted output of every test set needs
to be labelled as true-positive, true-negative, false-positive, and
false-negative. Each test sample is placed into one of these cate-
gories in a binary classification problem based on their actual class
level and predicted class level. To obtain these levels for all class-
es, a multi-class classifier applies the one vs. all (OVA) or one vs.
one (OVO) approach (Yang et al., 2013). In this study, the OVA
approach was implemented. The OVA strategy splits a multi-class
classification problem into one binary classification problem per
class. Following the defined approach, true-positive (TP), true-
negative (TN), false-positive (FP), and false-negative (FN) predic-
tions were calculated for all the individual classes. In this study, the
following statistical measures were obtained to assess the classifi-
cation ability of the ANN model.

Precision — Precision is the ratio between correctly predicted
positive observations and the total predicted positive observations,
as shown in equation (11).

0N _ TP
recision = wo——m 11)

Recall is the ratio between correctly predicted positive obser-
vations and the total predictions in the respective class, as shown
in equation (12).

ol =t
e = TP Y EN (12)

Fl-score — fl-score is calculated as the harmonic mean
of precision and recall, as shown in equation (13).

2 * (Precision * Recall)
(Recall + Precision) (13)

F1 — score =

Table 3. Artificial neural networks parameters used in this study.

The hidden layers activation function ReLU
Output layer activation function Softmax
Learning rate 0.000001
Decay le-6
Momentum 0.9
Optimizer SGD
Batch size 10
Validation split 0.20
Stopping rule (epoch) 1000
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Accuracy — the ratio between correct predictions and the total
number of test sets is known as accuracy, as described in equation

(14).

TP+TN

Accuracy = Total Samples (14)

Results and Discussion

A fruit aroma dataset comprising 24,000 sample sets was col-
lected from the designed electronic nose,

following which a pre-processing technique was applied to this
entire dataset as previously described. The obtained dataset was
divided into two parts. The ANN model was trained using the first

model accuracy

— ftrain
094 — test

0.8

0.7 1

accuracy
-]
(-

05 1

0.4 1

0.3 4

0 200 400 600 800 1000

80% dataset and the remaining 20% was used as the test dataset.
The ANN model using the back-propagation algorithm was trained
for 1000 epochs. Training and test cases were replicated 20 times.
The training accuracy and loss, and test accuracy and loss were
obtained at the end of the 20 run, as shown in Figure 6. The per-
formance of the designed ANN model to predict fruit ripeness
stages is displayed in Table 4. The designed ANN model was able
to classify all samples into their respective classes with an average
accuracy of 95%.

However, according to Wijaya et al. (Wijaya et al., 2017),
accuracy alone is not a good performance evaluation measure for
a machine learning model; therefore, precision, recall, and f1-score
were also obtained for all four corresponding classes. Table 5 illus-
trates the statistical scores corresponding to all classes for the
designed ANN model.

Table 5 shows that our model was able to differentiate non-

model loss

149 — wam
— test
12

0.4 4

02

epach

Figure 6. The performance curve of the designed artificial neural networks (ANN) model. A) Training and test accuracy curve of the
designed ANN model; B) Training and test loss curve of the designed ANN model.

Table 4. Artificial neural networks classification results.

Fruit type Predicted as Success rate (%)
Test samples Class 0 (unripe) Class 1 (ripe) Class 2 (overripe) Class 3 (non-fruit)

Unripe 1335 1205 130 0 0 90.26

Ripe 1296 105 1191 0 0 91.89

Overripe 1314 8 0 1306 0 99.39

Non-fruit 1249 0 1 0 1248 99.91

Table 5. Performance evaluation based on statistical scores.

Class 0 (unripe) Class 1 (ripe) Class 2 (overripe) Class 3 (non-fruit)
Accuracy (%) 90.26 91.89 99.39 99.91
Precision (%) 91 91 100 100
Recall (%) 90 92 99 100
Fl-score (%) 91 91 100 100
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fruit odors from fruit odors with high accuracy (>99%). Similarly,
it was able to differentiate overripe fruits from non-overripe fruits
with high accuracy (>99%). At the same time, our model was able
to classify ripe and unripe fruits into their respective categories
with slightly low accuracy (>90%). The precision-recall and
receiver operating characteristic (ROC) curves were also obtained
to assess the classification ability of the ANN model.

Receiver operating characteristics analysis
Receiver operating characteristics (ROC) curve depicts the
relationship between true positive rate (sensitivity) and false-posi-
tive rate (1-specificity), where true positive rate and false positive
rate were plotted on the y-axis and x-axis, at various thresholds,
respectively (Wang et al., 2006). The true positive rate defines the
true-positive outcomes out of total positive samples while the false
positive rate defines the false-positive outcomes out of total nega-

tive samples (Karami et al., 2020). In ROC analysis, the area under
the curve (AUC) represents the test accuracy, i.e., the accuracy is
directly proportional to the AUC. The diagonal line [coordinates
(0, 0) to (1, 1)] represents the random classification. Hence, the
ROC curve should be above the diagonal line to accept a gener-
alised classification model. In this study, the ROC curve corre-
sponding to all four classes was obtained using the sklearn
‘roc_curve, auc’ package (Pedregosa et al., 2011). Figure 7 depicts
the ROC curve with AUC (>0.98) corresponding to all four class-
es. In Figure 7, the ROC curve of the overripe class and non-fruit
class were overlapping with each other; therefore, the overlapping

section was zoomed and extracted (Figure 7b).

Precision-recall curve analysis
The precision-recall curve depicts the relationship between
precision and recall, where precision and recall are plotted on
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Figure 7. Receiver operating characteristics (ROC) curve analysis of the designed artificial neural networks model in this study: A) The

ROC curve; B) Zoomed view of the ROC curve.
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Figure 8. The precision-recall curve analysis of the designed artificial neural networks model.
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Y-axis and X-axis at various thresholds, respectively. The greater
area under the curve constitutes a high precision and high recall,
where high recall indicates a low false-negative rate, and high pre-
cision indicates a low false-positive rate (Semwal et al., 2021).
Therefore, the area under the precision-recall curve should be close
to 1 square unit to obtain a good classifier. In this study, the preci-
sion-recall curve was obtained wusing the sklearn
‘precision_recall curve, auc’ package (Pedregosa et al., 2011)
with AUC (>0.93) corresponding to all four classes as depicted in
Figure 8. Further, the micro average precision-recall curve was
also plotted to demonstrate the average behaviour of the classifier
(Figure 8).

Conclusions

This study presents an electronic nose system designed using
five MOS sensors. The designed E-nose system was able to moni-
tor the changes in odour fingerprints during the ripening of
bananas, apples, grapes, oranges, and pomegranates. To ensure
specificity, non-fruit odour data were also recorded.

The ANN machine learning model was used to discriminate
fruits into three different ripening stages. Several statistical and
graphical measures were taken into consideration to evaluate the
classification model’s performance. Results suggest that the
designed E-nose could classify these dedicated fruits into their
respective ripeness category with a high fl-score and an average
accuracy of 95%. Furthermore, the in-house designed low-cost E-
nose device has the potential to be used in the fruit storage facility
to monitor the fruit ripeness and remove the overripe fruit before
they damage other fruits.

The overall development cost of the E-nose device, excluding
the sample delivery unit, was only USD 65. The developed
Electronic-nose device is a prototype that has been tested in the
laboratory in a closed environment hence, it can be categorised
into technology readiness level 4. In the future, research can be
done to choose a much more sophisticated sensor array to monitor
fruit ripeness of all other fruits.
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