
Abstract
The olive tree is well known for being adapted to the arid con-

ditions of the Mediterranean basin. However, prolonged drought
periods which are expected to become more frequent because of
climate change could result in severe water stress. In order to map
the spatial distribution of drought stress in the olive groves in the
arid regions of southeastern Tunisia (governorate of Médenine),
we made recourse to the HidroMORE model (based mainly on
FAO56 ET, NDVI from Sentinel 2 images and other physical
parameters) to compute the water balance in a GIS environment.
The outputs were compared to in situ soil water content measure-
ments in four selected sites representing the various agro-ecologi-
cal zones (mountains, piedmont, inner plain and coast) of the
study site during the observation period from January 2016 to
December 2019. The model outputs performed relatively well (the
overall correlation coefficient R2=0.72; index of agreement
IA=0.76). The simulation results show that during normal years or
average droughts, the water stress is least in the mountain and
piedmont zones because of the additional runoff water supplied by
the traditional water harvesting structures (Jessour and Tabias)
and in the coastal zone, thanks to the higher air humidity and rain-
fall. In contrast, the olives in the inner plains are the most affected.

Nevertheless, in case of severe droughts, the stress is generalised.
Thus, the model could be used as a decision tool for prioritizing
areas of intervention for drought control and mitigation (supple-
mental irrigation for trees safeguard, etc.)

Introduction
Largely believed to be originated in the Mediterranean basin,

the olive tree (Olea europaea L.) has been cultivated for more than
6500 years. Nowadays, it represents one of the most strategic sec-
tors in the agricultural production system of the European Union
and Tunisia, being respectively the first and the second producer
of olive oil in the world (Langgut et al., 2019; Fraga et al., 2021).
Moreover, the sector is experiencing a rapid increase in the num-
ber of plantations influenced by the constantly growing demand
for the main products (olive oil and table olives) (Fernández-Uclés
et al., 2020). Throughout centuries, farmers have overcome
numerous obstacles and adapted to various changes. However, in
recent years the cultivation of this species has been facing a new
set of challenges related to climate changes. Those challenges are
unprecedented and are coming at a high pace, making adapting to
them more demanding and problematic (Estrada et al., 2020).
Increase in temperature, decrease in precipitation, change in rain-
fall patterns, and more frequent extreme weather events such as
prolonged episodes of drought and heatwaves are some of the
expected changes (Vogel et al., 2021; Yves et al., 2020; Mimeau
et al., 2021). Olive orchards do not only play an essential econom-
ic role, i.e., they are a major source of income for rural house-
holds, in fact; i) they also play a social role as they slow the rate
of urban migration and offer work opportunities for the marginal
areas (Fraga et al., 2021; Nasr et al., 2021) and ii) an environmen-
tal role since by combating desertification and erosion via the
installation of traditional water harvesting techniques (namely
Jessour and Tabia) they limit the effect of wind and water erosion
(Soula et al., 2021). Remote sensing data have been extensively
used to estimate plant evapotranspiration (Zhang et al., 2016).
This approach is advantageous because it allows the monitoring of
the tree growth and annual cycle (Spyropoulos et al., 2020)
besides offering data on the current state of the orchard (Khanal et
al., 2020). However, assessing olive orchard evapotranspiration is
particularly difficult for several reasons: first, it is common for
olive orchards to be located on steep hilly slopes (Schiettecatte et
al., 2005) where various types of soil conservation and/or water
harvesting techniques are installed. Those structures are capable
of increasing the amount of available soil water for the trees,
which can make the difference in the survival of the trees, partic-
ularly in arid environments (Ouessar et al., 2008, 2009; Ouessar,
2017). Second, different cropping systems are used in olive
orchards: the traditional and the intense (Sbitri and Serafini,
2007). From a crop management standpoint, those systems differ
as much as an entirely different crop species (Fernández-Escobar
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et al., 2013). Third, the domesticated olive tree (olea europaea) is
unique among all fruit-bearing tree species because it is the only
one domesticated separately on several occasions throughout
human history (Besnard and Bervillé, 2000). Therefore, olive pos-
sesses a great genetic variability, which makes studying olive-tree
behaviour a challenging task. Because it affects several key pheno-
typical features of the tree, such as the tree vigour, resilience to
drought, yield productivity, and adaptability to poor soils.
Furthermore, the olive-tree management practices vary significant-
ly across the regions and the available resources, affecting all the
tree management components namely: soil management, irrigation
(including rainfed), fertilization, pruning, and fruit harvesting
(Vossen, 2007; Fernández-Escobar et al., 2013). Consequently,
special attention must be given to the model parametrisation and
model input. It is possible to estimate the evapotranspiration, either
by using the surface energy balance (SEB) approach or the soil
water balance (SWB). The former relies on the surface temperature
provided by the satellite data as a primary input to estimate the sur-
face latent heat flux (Wagle et al., 2017; Senkondo et al., 2019;
Ortega-Salazar et al., 2021), and the latter is based on the spectral
vegetation indices (Santos, 2018; Huang et al., 2021). These
indices are particularly useful in conveying an accurate assessment
of the plant’s potential transpiration under water stress conditions
(Ferreira, 2017; Zhang et al., 2017). Throughout the last few
decades, the scientific community has been well-aware of the
specificity of the olive-tree water balance. This led to the develop-
ment of a plethora of models to address this issue. Some are gener-
ic, whereas others are specifically tailored for olive trees. WABOL
and the model developed by Moriondo et al. (2019) are process-
based models specific to olive trees relying on a relatively small set
of inputs and providing robust results (Abazi et al., 2013; Gómez
et al., 2014; Piras et al., 2021). However, they are not spatially dis-
tributed, and they cannot take remote sensing data as inputs. Other

models such as AquaCrop and SWAT, which are based on the
water availability as the limiting factor, are effective and have been
used successfully to model water balance in many olive cropping
systems (Ouessar et al., 2009; Raes et al., 2009; Napoli and
Orlandini, 2015). However, they rely on the assumption that the
ground cover is homogeneous. This can significantly affect their
performances in sparse plantations conditions, characterizing the
traditional olive tree orchards in arid environments.

On the other hand, models such as SVAT, SAMIR and SPARSE
are based on the surface energy approach, which can use the remote-
ly sensed data (Cammalleri et al., 2010; Saadi et al., 2015, 2018).
This is of great use for the sparse, vast, and hard-to-access olive
orchards. Additionally, it is easier to separate evaporation from tran-
spiration when this method is used. Nevertheless, parametrizing
models that use this approach is more complicated. Also,
parametrization of such models is often zone limited thus it may be
a hurdle when applying the model to extensive olive groves.
Therefore, we have a gap in models that can use remote sensing data
on large heterogenous areas to produce results in a simple spatial for-
mat that can be read and interpreted easily by farmers. The main
objective of this study is to develop a decision support system able
to exploit remote sensing data combined with field measurements
for the spatial assessment of drought-affected olive groves in the arid
areas of southern Tunisia. This system can help identify vulnerable
areas and optimize mitigation interventions.

Materials and methods

Study area description
The study area covers entirely the governorate of Médenine,

located in the southeast of Tunisia (Figure 1). According to the

                             Article

Figure 1. Overview map of the study area, including olive orchards type distribution, weather stations positions, and soil water content
measurement locations.
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Köppen-Geiger classification system, it is located in low latitude
desert climate (BWh - Dry Arid Low Latitudes) (Peel et al., 2007).
For the most part, the study area has a constant slope toward the
Mediterranean Sea, and it covers an area of 8588 km2. The surface
drainage has an intermittent flow regime because of prolonged
drought periods. A hot and arid climate characterises the region.
The precipitation is irregular, both inter-annual and intra-annually.
The average annual rainfall ranges between 240 to less than 150
mm. Due to the rarity of rainfall, the evaporation rate is approxi-
mately 1170 mm/year, and it considerably exceeds precipitation
for most of the year. In summer, the air circulation is conditioned
by the North Atlantic High to the north and the presence of high
pressure over the Sahara Desert to the south. In winter, it is gov-
erned by the occurrence of North Atlantic highs, Saharan highs,
and Mediterranean lows. The mean annual temperature is around
23°C. As for precipitation, the region is characterised by a great
fluctuation temperature. During the summer, the maximum tem-
perature can exceed 50°C, and during winter, the minimum tem-
perature can fall below –4°C (Ouessar et al., 2006; Latos et al.,
2018). For the study site, the CRDA-Médenine (2019) estimated
that the total available water resources amount to 155.74 million
m3/y, of which 99.08 million m3/y are actually used for different
purposes (mainly (more than 80%) for drinking). Besides, 91% of
the land is used in agricultural activities where 28.7% is cultivable,
84% (around 200,000 ha) of which are used to grow olive trees
(Sghaier and Ouessar, 2013). As shown in Figure 2, Médenine gov-
ernorate is characterised by a wide range of soil types. It is mainly
covered by isohumic soils (23% of the total area) developed by
various climate and vegetation bio-climatic factors (Duchaufour
and Duchaufour, 1982). This soil has a relatively high organic mat-
ter content with well-developed humus and coarse texture, repre-
senting a sandy to sandy-clay texture. It may occasionally have a
calcareous crust (Mtimet, 2001). Moreover, we notice the spread-
ing of the poorly evolved alluvial soils. They are rather deep soil

with poor organic matter and good drainage, as they have a silty-
loam to a sandy texture. The salinity of the soil varies between 0.5
to 3 mS/m according to the specific location, but in general, it
appears from bottom to upper layers (Bouaziz and Gloaguen,
2010; Boulbaba et al., 2012; Dhaou et al., 2014). When the water
supply is available, these soils are used for agriculture, more
specifically to create an oasis (Mtimet, 2001; Gallali et al., 2011).
Furthermore, the raw mineral soils types are present predominantly
in the Daher plateau and on the slopes of the mountainous chains
of Chareb and Matmata. They are hard pebbly plateaus with small
traces of organic matter, where most of the sand has been removed
by deflation (Latham, 1982). These soils can be either Lithosols or
Regosols, depending on the texture. Apart from the scarce desert
plants, they are largely deprived of any vegetative cover. They are
also used as rangeland (Ayed et al., 2018). 

Soil water balance modelling 

Model description
The HidroMORE model was used to compute the water bal-

ance in the olive orchards of the study site. It has been developed
to perform a remote sensing-based soil water balance. The model
is particularly well adapted to analyse water balance with great
spatial variation on large areas. Fundamentally, the calculation of
the evapotranspiration in HidroMORE is based on the FAO-56
double-crop coefficient methodology (Allen et al., 1998). The cal-
culation treats evaporation (E) and transpiration (T) differently by
assigning different coefficients for each component Ke and Kcb,
respectively, as seen in Equation (1). 

                                                    
(1)

Where ET0 is the reference evapotranspiration, Ke is the evap-
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Figure 2. Soil type distribution in the study area.
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oration coefficient, and Kcb is the basal crop coefficient. Kcb is
either introduced to the model as daily table input or interpreted
from the NDVI map. If interpreted, a linear relation is used to
make the estimations, as shown in Equation (2). In this study, we
used this equation based on the study of Bausch and Neale (1987)
for Kcb. Since it used both covered and bare soil to parametrize the
equation, it used different plant species and was previously used to
estimate Kcb for olives in the study area (Hachani et al., 2017). 

                                                    
(2)

The model uses both weather station position and daily tem-
perature data from these weather stations to produce an ET0 map
using the inverse of the distance to make spatial interpolations on
a daily basis. 

The model uses the estimated evapotranspiration to calculate
the adjusted evapotranspiration (EtcAdj). It is calculated by intro-
ducing a coefficient (Ks) to the transpiration component. This
coefficient reduces the evapotranspiration proportionally to the
water availability (Equation 3). 

                                                    
(3)

Ks is equal to 1 if the depletion for the day i-1 is inferior or
equal to the readily available water at the soil root depth (RAW)
and calculated following the Equation (4) if it is superior to RAW.

                                                           
(4)

Where Dri-1 is the depletion (mm) for the day i-1 (Torres and
Enrique, 2010) and TAW is the Total Available Water which is cal-
culated as demonstrated in Equation (5).

                                   
(5)

Where Zr is the root depth (m), θFC is the volumetric water
content at Field Capacity (mm), and θWP is the volumetric water
content at Wilting Point (Garrido-Rubio et al., 2019). 

The model uses the water balance Equation (6). It estimates
water balance independently pixel by pixel. It uses NDVI images
as input to estimate data related to the plant (such as plant height,
Kcb, green cover, and root depth). Furthermore, it extrapolates tab-
ular data in dbf file format (precipitation, maximum root depth,
irrigation, fraction of vegetative cover, soil characteristics and soil
use, and plant height) to produce spatial information in the image
format used input layer to the model. 

                                
(6)

Where Dri is the depletion (mm) for the day i (Torres and
Enrique, 2010), Dri-1 is the depletion (mm) for the day i-1, DP is
deep percolation (mm), Etc is the evapotranspiration (mm), RO is
the runoff (mm), P is the precipitation (mm), and I is the irrigation
(mm). This equation is applied for each pixel with a timestep of
one day. 

Deep percolation was calculated based on the soil data, runoff,
and precipitation. The first is given to the model via a map detail-

ing the distribution of soil types across the study area and a table
that describes in detail the soil types characteristics. The latter is a
map showing the precipitation amount in every pixel. The model
produces the map via spatial interpolations using the same method
deployed in ET0. Finally, runoff is calculated using the precipita-
tion map, depletion for the day i-1, and the curve number (CN)
map. The latter is produced by a module integrated into the model.
Both spatial and characteristics related to soil type and land use are
used to calculate the CN map. Specifically, the hydrologic soil
group is determined based on field expertise and knowledge
according to the guiding principles adopted by the USDA Soil
Survey (Neitsch et al., 2011). Worth noting that the model esti-
mates the runoff, but it does not take into account any horizontal
movement between pixels. Therefore, only direct runoff is consid-
ered by the model.

The model calculates the depletion in Equation (6) in the vol-
ume defined by the pixel area and root depth. The value is consid-
ered homogeneous across both the vertical and horizontal axis. 

If a specific pixel result was requested from the model at the
start of the simulation, a text file would be generated that provides
detailed information about the water budget internal variables at
the daily level for the selected pixel. The model provides the volu-
metric soil water content (SWC) among those variables. It is cal-
culated following the Equation (7).

                                         
(7)

Where θFC and SWC are in (m3/m3), and Dri is in (mm).
The model has been applied in various studies. The model was

applied to estimate irrigation requirements at the river basin level
and large irrigation areas in Spain. The model provides spatial and
temporal distribution of the estimations helping with water man-
agement and monitoring (Ortega et al., 2019; Garrido-Rubio et al.,
2019, 2020a, 2020b). In particular, the model was applied to a rain-
fed olive tree in an arid area (Hachani et al., 2017). 

Model parameterisation
We used the soil map (at 1/200,000 scale) produced by the

MAHR (2002). However, in order to account for the additional
runoff water collected by the traditional water harvesting tech-
niques resulting in deep soil layers formed behind those structures,
we added two specific soil types: Soils behind Jessour and Soils
behind Tabias. For these soil types, the available water capacity,
bulk density, and saturated hydraulic conductivity (Table 1) have
been parametrised using data from (Ouessar et al., 2008, 2009).
The readily available water was derived from the water retention
curve using data collected by (Taamallah, 2003). Furthermore, the
wilting point of these soils has been adjusted from 10 to 6% by vol-
ume, considering that in this arid environment, olive trees can
extract water from the soil at potentials as low as 7 Mpa (Ennajeh
et al., 2006). The remaining soil water parameters were estimated
using the Saxton soil water characteristic calculator (Saxton and
Rawls, 2005). This calculator evaluates soil water characteristics
from regression equations developed using readily available vari-
ables of soil texture and organic matter from the USDA soil
database (Saxton et al., 1986; Saxton and Rawls, 2006).

The olive orchards distribution map of the study area is based
on the map produced by Sghaier et al. (2010). It was further
refined and updated by visual interpretation of high-resolution
images provided by Google Earth in QGIS. This map classifies
four olive orchards types according to the climatic characteristic
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and the agronomical practices in the region:
i) Olives in the coastal plains region: This area relatively has

the most suitable climate for the olive tree, for it has the most pre-
cipitation and has a colder temperature in the summer and warmer
in the winter due to its proximity to the coast (Dhiab et al., 2017).
In this region, the tree’s canopy is kept moderately sized to
enhance olive productivity (Katar et al., 2021).

ii) Olives in the piedmont region: This region has the typical
Mediterranean weather with a rainy season that lasts from
September to April. The rainy days are scarce but with high inten-
sity (Ben Fraj et al., 2016). That is why we have abundant use of
Jessour to help collect the precious rainwater (Castelli et al., 2019).
Under this system, farmers tend to keep the tree’s canopy as large
as possible to mitigate evapotranspiration by creating a humid
micro-climate under the canopy (Calianno et al., 2020). 

iii) Olives in the mountainous region: This zone has a similar
climate to the piedmont region with slight differences. That can be
summarized in the higher maximum temperature in the summer,
caused by the dry Saharan winds and a higher average annual rain-
fall because of the higher altitude of the plateau. Most olive plan-
tations are very limited in size and separated due to the rugged
topography (Ouessar et al., 2009). Almost all of them are under
traditional water harvesting techniques called Tabia, which has a
similar purpose and functionality as the Jessour. Hence, similar
pruning techniques to those used in the piedmont region are used.
However, due to the steeper slopes in this region, more water is
collected. So, farmers maximize the tree frame to a greater degree
sometimes they fuse several trees into one canopy to reduce evap-
otranspiration even more (Ouessar et al., 2009). 

iv) Olives in the inner plain region: This zone has a harsher cli-
mate due to its position far from the sea and the low elevation. It
recorded the highest temperature by a substantial margin during
summer and has the lowest average annual rainfall (Mraidi et al.,
2018). Soil is sandy loamy with high porosity, which limits runoff.
Due to the unsuitable and hostile climatic conditions, the tree
canopy is reduced to a bare minimum, and the trees are 25-32 m
spaced (Magdich et al., 2015). 

Evaluation of model performance
An evaluation of the model was performed where we ran the

model using the 2016 data to initialise the model parameters and
estimate the stored water in the soil at the beginning of the follow-
ing year. Then, to evaluate the results, we compared the model out-

puts to the measured water content and three consecutive years of
campaigns (2017-2019) in the four sites. The targeted results were
isolated in time by selecting the correspondent date and location by
selecting the appropriate pixel and day. The statistical parameters
calculated in order to analyse and compare the results of the soil
water content are the minimum (Min), maximum (Max), standard
deviation (σ), root mean square error (RMSE), regression coeffi-
cient (R2), and Index of Agreement (IA), which are commonly
used in hydrological model evaluations. Each soil moisture mea-
surement was compared to the corresponding pixel in the daily
output simulation results. These simulations were taken with a
delay of one day to account for any changes occurring on the mea-
surement day.

Model simulation 
Water balance simulation using HidroMORE has been per-

formed for the entire olive land-use area of the governorate of
Médenine based on the observed inputs for the study period, from
January 2016 to December 2019. Data from 2016 were disregarded
and considered warming up period for the simulation.

Field collected and satellite data

Soil moisture measurement data
In order to validate and assess the performance of the

HidroMORE model, soil moisture data were taken from four rainfed
olive orchards within Médenine governorate: Zarzis, Dar Dhaoui,
Ksar Jedid, and Zammour (Figure 1), representing respectively the
main agro-ecological zones of the study site: coast, inner plains,
piedmont, and mountains. The soil moisture measurements were
performed over four years with no data for 2018 (2016, 2017, and
2019) at a monthly frequency and after each rainfall event.
Sometimes, the measurements became less frequent due to field lim-
itations that did not allow more frequent readings. For each refer-
ence site, 60 soil samples were taken every 20 cm over a depth of 1
m using the gravimetric method (Myhre and Shih, 1990). Then,
these collected samples were weighed and placed in the hot-air oven
and dried at 105°C temperature for 24 hours (Aniley et al., 2018).
Finally, the change in soil weight before and after drying was used
to calculate the water content of the soil volume. The value for each
reference site was the average of the 12 measurement points within
6 m radius around 3 selected olive trees (Figure 3). 

                             Article

Table 1. Description of the soil inputs parameters used by the model.

Parameter   Description                                           Estimation method description                                                 Reference 

REW                   Readily available water in soil                           Derived from the water retention curve                                                         Taamallah, 2003
Ze                       Depth of the evaporation active layer soil    Data were extracted from the soil map                                                           MAHR (2002)
Pr_limitan        Limiting depth for roots                                    Data were extracted from the soil map and adjusted to more                 MAHR (2002)
                                                                                                             depth in the Tabia and Jessour soil type                                                         
WP                      Wilting point in volumetric humidity               Derived from the water retention curve and adjusted to consider         Ennajeh et al., 2006 and 
                                                                                                             the capability of olive trees of extracting water from lower soil              Taamallah, 2003
                                                                                                             at potentials                                                                                                           
Fc                       Field capacity                                                       Estimated using the Saxton soil water characteristic calculator*           Saxton and Rawls, 2005 and 
                                                                                                                                                                                                                                                Ouessar et al., 2008, 2009
Sat                      Saturation point                                                   Estimated using the Saxton soil water characteristic calculator*            Saxton and Rawls, 2005 and 
                                                                                                                                                                                                                                                Ouessar et al., 2008, 2009
K                         Saturated hydraulic conductivity                     Estimated using the Saxton soil water characteristic calculator*            Saxton and Rawls, 2005 and 
                                                                                                                                                                                                                                                Ouessar et al., 2008, 2009
*Parametrised using data from Ouessar et al. (2008, 2009) for soils behind Jessour and Soils behind Tabias.
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Climatic data
Except for the Médenine weather station owned by the

National Institute of Meteorology (INM), daily climatic data
(namely precipitation and temperature) were collected from the
IRA’s climatic network. The network has a grid of weather stations
in and around the study area. This study used data from eight
weather stations located in and around the study zone (Figure 1). 

Satellite data
18 cloud-free Sentinel-2 images, acquired between June 2016

and December 2019 over Médenine governorate, were used (one
image for each season). Both level-1C and Level-2A images were
downloaded from the Copernicus Open Access Hub (https://sci-
hub.copernicus.eu/dhus/#/home) and the USGS Earth Explorer
platform (https://earthexplorer.usgs.gov).

The L1C products were atmospherically corrected based on the
Sen2Cor plugin of the SNAP Software to obtain the surface
reflectance L2A product (Louis et al., 2016). According to the
requirement of this research, the normalized difference vegetation
index (NDVI) was computed, with band 4(RED) and band 8 (NIR)
of Sentinel 2 data, using the Equation (8).

                                        
(8)

Results

Meteorological context and significant rainfall events
The hottest day of the year occurs in June and July for all

weather stations. The highest maximum temperature recorded was
49°C in Bir Soltan, Chammakh, and Dar Dhaoui. However, the
highest mean annual maximum temperature (26°C) was recorded
in 2017 at Gordhab station. 

During the experiment, only two rain events that exceeded 100
mm were recorded both in 2017, the first (145 mm) happened in
April, and it affected only the region of Zammour, the second (116
mm) happened in November, and it was less localised as it affected
the regions of Médenine, Djerba, and Chammakh. On average,
Chammakh, Zammour, Médenine, and Djerba received more rain
annually. In contrast, Dar Dhaoui station received the least annual
rainfall of all the stations. 

Figure 4 shows the maximum and minimum average monthly
temperature and the cumulative monthly precipitation of all the
regions. As we can see in Figure 4, the 2017-2018 campaign was
the rainiest year, but as stated earlier, this higher number can be
attributed to two heavy rain events that might trigger an intense
runoff. The temperature was typical of the region, with no note-
worthy annual differences. 

                             Article

Figure 3. Soil measurements position in the orchards.
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Validation results
Table 2 shows the comparison between the measured soil

water content and the simulation results. During the three years of
the experiment, the P-values for all the linear regressions are
smaller than 0.05 therefore all linear regressions are statistically
significant. The estimated soil water content showed a strong
regression coefficient r2 for both zones of Zammour and Ksar
Djedid (0.92 and 0.77, respectively) and a strong index of agree-
ment (0.91 and 0.72, respectively). However, the soil moisture of
the zones of Zarzis and Dar Dhaoui has a smaller correlation (with
R2 equal to 0.59 and 0.52 for Zarzis and Dar Dhaoui, respectively). 

In general, the model overestimates the soil water content. This
is evident when the data from all regions are combined and in the
individual regions. When analysed region by region, we can see
that the model slightly overestimates the soil water content in the
mountainous and piedmont regions, i.e., when there is a strong cor-
relation. However, this was not the case for Zarzis and Dar Dhaoui,
where the model showed a more significant overestimation. For
the most part, the index of agreement was in concordance with the
regression coefficient. At its highest (0.91 in Zammour), the model
strongly agrees with the measurements. At its lowest (0.67 in Dar
Dhaoui), the model still produces a reasonable prediction. 

In addition, despite the substantial variability between the
zones, shown in the maximum and minimum values for each
region, the model estimates the water soil content relatively with

satisfactory accuracy for each zone. These results emphasize the
flexibility of the model across the different regions. For example,
the mountainous region recorded almost double the maximum soil
water content of the inner plain region. When it comes to the min-
imum soil water content, the difference was more staggering,
where the Zammour region recorded nearly the triple soil moisture
recorded in Dar Dhaoui. Overall, when all regions were combined,
the model showed good regression and agreement values (0.72 and
0.76, respectively). 

Simulation results
In order to illustrate the result of the simulation in the case of

land surfaces covered with olive-tree, Figure 5 shows the evolution
of the olive-covered area by the simulated depletion classes in the
monthly time step. The precipitation input data are shown at the
bottom row, which shows the inner-annual (seasonal) ups and
downs typical for the region. Water depletion follows this cycling
closely throughout the years, which is shown by the expansion of
the area with low depletion in rainy seasons and vice versa. The
only notable exception of this was in the early summer of 2019,
when precipitation had almost no effect on the area distribution.
This strong correlation between water depletion and rainfall can
also be seen on a yearly basis. As the annual precipitation
decreased from 2017 to 2019, we can notice the expansion of the
areas with heavy water depletion. As the drought became more
severe, the autumnal rains could not replenish the water reserve in
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Figure 4. Interstation average monthly precipitation, maximum and minimum temperatures (T max and T min) during the observation
period in the study site.

Table 2. Comparison between estimated and measured soil water content in the four agro-ecological zones of the study site during the
observation period.

                                       R2                 P-value                IA             RMSE (mm)          Min (mm)              Max (mm)          St. dev. (σ)
Zammour                                0.922                      0.0002                     0.914                         34.9                                125                                   236                               15.3
Zarzis (Chammakh)              0.596                       0.008                      0.718                         45.1                                 25                                     132                               10.2
Ksar Djedid                           0.7747                     0.0007                    0.7299                        42.7                                 44                                     153                               16.5
Dar Dhaoui                            0.5212                     0.0001                    0.6701                        44.3                                 42                                     128                               7.36
All                                             0.7295                    5.2E-15                   0.7697                        40.3                                 25                                     236                               25.7
IA, index of agreement; St. Dev., standard deviation.
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the soil profile. Figure 6 shows the evolution of the olive areas
affected by severe drought (depletion higher than 150 mm) com-
pared to the average depletion of the olive area in the region at a
monthly time step. As can be seen in Figure 6, while the effect of
seasonal variation can be noticeable in both parameters, the annual
variation has affected them differently. Hence, drought expanded
the vulnerable area dramatically but did not have a strong signifi-
cance on the average depletion.

In rainfed orchards, soil water balance depends on rainfall as
the main source of water supply and on evapotranspiration as the
most important component in terms of extracting water from the
topsoil layer. The water stress coefficient (Ks) offers an insight into
the effect on the tree independently from the evaporation compo-
nent (Kokkotos et al., 2020). For an overview of the general spatial

distribution of these simulated parameters, corresponding simula-
tion results in yearly pace have been summarised in Figure 7. 

Soil water depletion is the product of all the factors combined.
However, we can see that precipitation has the most significant
share of influence. This can be seen as even regional rainfalls can
reverse the general trend; for instance, a localised rainfall of 70
mm in 2018 in the region of Médenine restored the water reserve
and thus reduced the water depletion in that area, when all other
regions appear to be affected by the general drought in 2018. 

As shown in Figure 7A, the precipitation amount has the
biggest share of influence over the soil water depletion, as we can
see that areas with high depletion levels expanded in the years with
low total precipitation. Furthermore, when we compare the precip-
itation map and depletion level, we can see a clear overlap of these
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Figure 5. Evolution of the olive planted area (km²) in the study site by depletion classes - during the observation period.

Figure 6. Evolution of the olive planted area (km²) with depletion higher than 150 mm in the study site and the mean monthly deple-
tion (mm) during the observation period.

Non
-co

mmerc
ial

 us
e o

nly



two maps. Similarly, a comparison between soil map and depletion
shows that poorly evolved soils with low water retention capability
increased the water depletion. Figure 7 shows that olive growing
zones were dynamic over the simulation period. As such, in the
mountainous and the piedmont regions, the model generated low
water depletion even in 2018 and 2019. In inner plain and coastal
regions, the model produced a mosaic pattern of water depletion
levels during drought.

Figure 7B shows an increase in stress coefficient as we move
away from the coast. Additionally, we can note significant variabil-
ity in stress levels in the mountainous zone. On the contrary, the

stress level in the coastal zone was more or less homogenous spa-
tially. Figure 7C shows the annual spatial distribution of the adjust-
ed evapotranspiration. It shows that overall adjusted evapotranspi-
ration was high in the mountainous zone. Conversely, it was rela-
tively low for the inner plain zone; these low values ranged
between 163 and 337 in 2017 and 219 and 419 in 2018. 

Figure 8 illustrates the percentage of the olive growing area
where the stress coefficient is below 0.25 by olive growing region
at a monthly time step. It shows a high seasonal variability across
all the regions. Excluding June and July of 2019, Figure 8 shows a
substantial variability between olive growing zones. For example,

                             Article

Figure 7. Average simulated annual: soil water depletion (mm) (A), stress coefficient (dimensionless) (B), and adjusted evapotranspira-
tion (mm) (C) during the observation period in the study site.

Figure 8. Percentage of the area where the stress coefficient is extreme (0->0.25) by olive growing region.
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the mountain zone has a shortened and delayed phase of stress dur-
ing the summer. On the other hand, data show that the olive area
was not totally under severe stress in inner plain olive orchards
until later in 2019.

Figure 8 shows that during the relatively short period of
drought (2 years), almost all olive plantations, regardless of the
zone, fall entirely under severe stress. While this condition is
reverted as soon as the summer season ends, we can notice a vary-
ing degree of response depending on the zone and the year. 

Discussion

Model evaluation
Since modelling plant-soil water balance is complicated, it is

common for soil water models such as SPARSE, SAMIR, MET-
RIC, and MINARET to have a small margin of inaccuracy when
estimating soil moister (Santos et al., 2012; González-Dugo et al.,
2013; Saadi et al., 2015, 2018). Depending on the methodology
utilised in each study, this inaccuracy can often be attributed to
poor configuration of soil layers, incorrectly calibrated inputs, and
inadequate temporal or spatial nature of the input data. Our study
noticed a persistent overestimation of the soil water balance across
the regions. In previous studies that used HidroMORE as a mod-
elling platform, this overestimation of soil water content was
attributed to two factors (Sánchez et al., 2010): 

i) The presence of sandy soils (and soils with high infiltration
coefficient in general) can increase the rate of deep percolation,
and if not accounted for, this can off-balance the model calculation
in favour of more water retention thus an overestimation of the
simulated soil water content. In the study zone, these types of soils
are abundant and cover extensive areas (Mtimet, 2001). However,
in many cases, these soils are completely misidentified or not
described correctly. This could be seen when actual soil analysis
was taken. Frequently, analysis results disagree with the described
soil type in the map (Schiettecatte et al., 2005; Dhief et al., 2011;
Nagaz et al., 2012).

ii) The root depth of the crop can have a great impact on the
soil water content estimation. It defines the soil volume in which
the plant can extract the water via transpiration. If the actual root
depth is greater than the model input, the real tree has more water
available to extract from the additional volume. Thus, the real
plant-soil system will lose more water to the environment through
transpiration, and we will overestimate the soil moisture in part of
the model. In the case of the olive tree under rainfed conditions,
this parameter can be particularly hard to define (Connor, 2005). It
varies from less than a metre in shallow soil with near-the-surface
soil crust to more than 3 m, depending on the soil characteristic,
water availability pattern, and cultivar (Nguyen and Bich, 2019).
The distribution of the root system of the olive tree is adaptive on
both the vertical and lateral axis (Tognetti et al., 2005; Zeleke,
2014). Particularly, root development is very responsive to water
supply in rainfed systems and can exceed the normal root develop-
ment by a substantial margin (Connor, 2005). In this study, the
diversity of soil types, water harvesting techniques, and the occa-
sional supplementary irrigation favour a diverse root system. In
addition, olive trees are grown from both seedlings and cuttings,
which further deepen the root diversity (Connor, 2005). Despite
our effort to classify olive orchards in four different zones, the
variability within the zones and the extent of the olive root system
were underestimated in this study (Rouina et al., 2007). 

Furthermore, HidroMORE tends to underestimate the irriga-
tion requirement during the summer (which is inversely propor-
tional to the soil water content) for different crops (Garrido-Rubio
et al., 2020a). This was due to the underestimation of evapotran-
spiration. The underestimation is intrinsic to the method used by
HidroMORE to calculate evapotranspiration, which is the FAO56
dual crop coefficient (Moreno et al., 2017; Garrido-Rubio et al.,
2020a). This method appears to systematically underestimate ref-
erence evapotranspiration in semi-arid and windy areas with high
atmospheric evaporative demand (Fernández et al., 2010). 

The overall relatively low correlation observed between the
model output and measured data is due to the methodology of this
study that uses soil moisture as the parameter to validate the result.
Soil moisture is sensitive to a wide range of environmental factors.
Thus, accurately estimating it with a narrow margin of error is still
a major challenge (Karandish and Šimůnek, 2016; Hati et al.,
2020). Furthermore, when compared to measured soil water con-
tent, reported a correlation of this parameter in similar studies is
often low, and the correlation coefficient (r2) ranges between 0.17
and 0.84 (Wagner et al., 2007; Elshorbagy and Parasuraman, 2008;
Yinglan et al., 2019). However, this parameter offers insight into
the real performance of the model since it evaluates the most diffi-
cult parameter to estimate in the water balance equation that can be
measured relatively easily on the field (Sheets and Hendrickx,
1995). 

We can notice that the correlation coefficient (R2) is in concor-
dance with the index of agreement; this is to be expected as the lat-
ter is a natural extension to the former. However, the index of
agreement highlights the bias encountered in the data and elimi-
nates the effect of group size (Cohen et al., 2001; Duveiller et al.,
2016). Thus, the slightly better index of the agreement shows that
even when the correlation is weak, the datum is symmetrical and
interchangeable. Therefore, the model prediction shows minimum
bias between low soil water content data and high ones. Regardless
of the statistical metrics, the model better predicts soil water con-
tent for Zammour and Ksar Djedid. This can be attributed to the
specific soil types occupied by olive orchards in these zones. As
discussed previously, soil type is a major factor in the erroneous
result for HidroMORE, and when this issue is addressed, we min-
imise error factors. In these zones, soil characteristics were
obtained from the previous field and/or laboratory measurements.
This adjustment gave the model better inputs to simulate the soil
water retention. In addition, the deep soil layer allowed a deeper
root zone by eliminating the inherited limit of soil depth. Hence,
the model simulated more water loss via evapotranspiration in the
absence of rain. On the other hand, the low correlation in the
coastal and inner plains shows that a finer soil map with better soil
characteristics is crucial to improve simulation results. 

The model showed satisfactory results across all zones, high-
lighting the model’s robustness despite the high spatial variability.

Model simulation
In the early summer of 2019, recorded precipitation appears to

have no visible effect on the modelled depletion. This abnormality
can be explained by misrepresenting the real amount of rain in that
period. A very spatially limited rain event that falls on one of the
weather stations can overestimate the precipitation input when the
model extrapolates the punctual weather station data to the nearby
area (Moreno et al., 2017). This limitation can be solved by
increasing the density of weather stations. 

The depletion level follows the annual drought patterns.
Hence, the depletion was not so severe in the first two years, but it
became more extreme by mid-2019. The water reserve was quickly
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restored as soon as the autumn entered; thus no permanent damage
was inflicted on the trees. However, the implication of the extreme
depletion of the water reserve on the yield will manifest in the fol-
lowing harvest by prolonging the period of no production. While it
is normal for orchards to be harvested once in three or four years,
with the increased economic pressure, farmers may abandon these
traditional orchards due to low productivity (Khabou et al., 2009).
This can have profound consequences on the already fragile social
integrity of the region. Moreover, this spike in depletion can be an
early warning to prepare for supplementary irrigation in the next
year to avoid permanent damage to the trees. 

The spatial distribution of water depletion reveals the effect of
soil type, and this can be clearly seen in the region near Dar
Dhaoui, where the presence of the poorly evolved soil type with
low water retention capacity increased the water depletion in all
the simulation period (Mtimet, 2001; Taamallah, 2003). However,
the mountain and the piedmont zones maintained low water deple-
tion even in 2018 and 2019. In there, the added water by the tradi-
tional water harvesting systems contributed to combatting the low
precipitation. This shows the importance of these structures, which
are highlighted in several studies (Ouessar et al., 2006, 2008,
2009; Ben Fraj et al., 2016; Castelli et al., 2019; Calianno et al.,
2020). These results emphasize once again the effectiveness of
these traditional techniques and the importance of incentivising
farmers to install them (Adham et al., 2019). 

In lowland regions, we can see a mosaic of water depletion lev-
els during the drought; this variability follows the soil type map.
This stresses the importance of using high resolution and accurate
maps in simulations to guide the decision-making processes
regarding the region. The generated variability from soil hetero-
geneity is observed in other HidroMORE applications (Ortega et
al., 2019), which weigh the model’s suitability in such a complex
environment. In the study area, we had limited options when
choosing the soil map for the simulation. Hence, a more detailed
and updated map is needed for better results in the Médenine gov-
ernorate. At the monthly time step (data not presented), we can see
that throughout the years, the mountain and the piedmont zones
were the most affected during the summer. This can be seen in
water depletion levels in these regions. This is due to the relatively
higher evapotranspiration generated in those regions (Calianno et
al., 2020). However, with the rainy season onset (autumn), trees
could recover, as shown by the reduced water depletion. In the
inner plain region, despite the hot and arid climate, seasonal
change was less detrimental than the yearly change; this is most
likely due to the measures taken by farmers to adapt trees to the
stressful conditions. Thus, the horticultural practices lessened the
effect of harsh climate (Karray and Abichou, 2007). In coastal
olives, the proximity to the sea reduces the severity of the climate.
Thus, while the depletion rate increased during the summer, the
increase was moderate. Worth noting that the coastal area has the
lion’s share in olive production in the region (ODS, 2019). Thus,
any measure taken to improve olive productivity will have the
most significant impact on the gross olive production. In both these
regions, precipitation has a more immediate effect on depletion
(Dhaou et al., 2009). 

The spatial distribution of the adjusted evapotranspiration and
the stress coefficient is mainly influenced by the climate, soil, and
olive orchards type. In the latter case, this can be seen by the
increase of stress level as we move away from the coast, where the
climate can be harsher. The mountainous zone stood out with sig-
nificant variability in the simulated stress level regardless of the
year; this can be attributed to the heterogeneous terrain character-
ized by the presence of steep slopes and variation in altitudes

(Ouessar, 2017). However, the coastal olive region seems to be the
most sensitive to weather conditions as stress levels appear more
or less homogenous across the region but differ remarkably from
year to year. On the other hand, the effect of olive orchards type on
evapotranspiration can be seen in mountainous and piedmont
regions where the combination of large size of the tree canopy pro-
duces higher rates of transpiration and the higher evaporative
demand create greater evapotranspiration rates. In the inner plain
olive orchards, we can see that despite the zone’s high evaporative
demand, the adjusted evapotranspiration remained relatively. In
this region, the horticultural practices well adapted to extremely
stressful conditions can explain these low values (Karray and
Abichou, 2007).

As shown previously, all regions showed clear seasonal vari-
ability, with a strong influence on the amount of precipitation.
Except for the summer of 2019, we can see substantial variability
between olive growing zones. This inconsistency can be attributed
in part to localized regional rainfall. However, throughout the
experiment and regardless of local rainfall, the mountainous
regions have a shortened and delayed phase of stress during the
summer, where the majority of olive allocated land is under severe
stress. Another remarkable trend appears with inner plain olive
orchards, where the olive area is not totally under severe stress
until later in 2019. The coastal olives were the most affected by
stress. This can be seen in the extended period of time when the
olive area is in totality under severe stress. 

Conclusions
This study aimed to map the spatial distribution of drought

stress in the olive groves in the governorate of Médenine through
the computation of the water balance in the olive orchards of the
study site using the HidroMORE model. The study’s results con-
firm the reliability of the remote sensing-based soil water balance
estimation as a tool for monitoring olive trees over a large and
diverse area in arid and semi-arid conditions. It was capable of
detecting variation at the orchard level. Besides, it has a reasonable
accuracy across all the regions, despite the vast difference in cli-
mate, topography, agricultural practices, and cultivars. Moreover,
the input required for the methodology used in this study was min-
imal and readily available. This approach can be used over a larger
area and can be used on a national or regional level (MENA or
North Africa) to create a unified system of evaluation. This can
help organize actions and government intervention in order to
increase sustainability. 

This study corroborated many studies’ findings that the tradi-
tional water harvesting system is an effective tool in reducing the
effect of aridity on the olive trees. Furthermore, it indicated that
selecting the appropriate soil type is crucial in lessening the impact
of water shortage during drought. As such, performing soil analy-
sis is highly l to assess productivity and evaluate the likelihood of
tree survival. This is particularly important in the coastal region
where tree productivity is high, and the weather is more favourable
for olive production. In the inner plain olive zone and despite the
extreme harsh weather, olive trees were horticulturally conducted
to reduce the effect of stress. While the productivity is marginal,
the social importance of these plantations justifies the effort to save
them in a period of prolonged drought.

Moreover, all olive plantations, regardless of the zone, fall
entirely under severe stress by the end of 2019. This shows that
during an extended period of drought, intervention is required to
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save the trees. Hence, prioritising areas of intervention is manda-
tory. In that sense, our study offers an objective tool to prioritise
orchards in an eventual intervention. Furthermore, the work pre-
sented in this study can be extended via linking the water balance
model with climate models for future forecasts and seeking more
opportunities in CC’s framework. 
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