A method for handlebars ballast calculation in order to reduce vibrations transmissibility in walk behind tractors

Submitted: 5 September 2016
Accepted: 22 October 2016
Published: 1 June 2017
Abstract Views: 2141
PDF: 869
Appendix: 239
HTML: 582
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Walk behind tractors have some advantages over other agricultural machines, such as the cheapness and the easy to use, however the driver is exposed to high level of vibrations transmitted from handles to hand-arm system and to shoulders. The vibrations induce discomfort and early fatigue to the operator. In order to control the vibration transmissibility, a ballast mass may be added to the handles. Even if the determination of the appropriate ballast mass is a critical point in the handle design. The aim of this research was to study the influence of the handle mass modification, on the dynamic structure behaviour. Modal frequencies and subsequent transmissibility calculated by using an analytical approach and a finite elements model, were compared. A good agreement between the results obtained by the two methods was found (average percentage difference calculated on natural frequencies equal to 5.8±3.8%). Power tillers are made generally by small or medium-small size manufacturers that have difficulties in dealing with finite element codes or modal analysis techniques. As a consequence, the proposed analytical method could be used to find the optimal ballast mass in a simple and economic way, without experimental tests or complex finite element codes. A specific and very simple software or spreadsheet, developed on the base of the analytical method here discussed, could effectively to help the manufacturers in the handlebar design phase. The choice of the correct elastic mount, the dimensioning of the guide members and the ballast mass could be considerably simplified.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Angelo Fabbri, Department of Agricultural and Food Science, University of Bologna, Cesena (FC)
Department of Agricultural and Food Science
Chiara Cevoli, Department of Agricultural and Food Science, University of Bologna, Cesena (FC)
Department of Agricultural and Food Science

How to Cite

Fabbri, A., Cevoli, C. and Cantalupo, G. (2017) “A method for handlebars ballast calculation in order to reduce vibrations transmissibility in walk behind tractors”, Journal of Agricultural Engineering, 48(2), pp. 81–87. doi: 10.4081/jae.2017.599.